
2025-10-27 11:23 1/4 LOFAR build instructions

LOFAR Wiki - https://www.astron.nl/lofarwiki/

LOFAR build instructions

This page describes how to obtain and build LOFAR the software.

Prerequisites

Mind that to be able to build LOFAR, first you need to have various other custom packages available
on your system:

cfitsio
wcslib 4.3 or larger
cmake 1.6.4 or larger
hdf5 1.8.4 or larger
casacore 1.4 or larger
pyrap
casarest
log4cplus

You may require your system managers help to set all these up properly.

CMake

LOFAR uses CMake as build tool. For general information on CMake, please refer to the CMake
documentation pages.

You will need CMake 2.6 or later in order to build the LOFAR software. Most development was done
using CMake 2.6.2. Most Linux distributions contain CMake as a binary package. If yours doesn't, or if
it's too old, you can download the CMake sources and build CMake yourself.

Getting Started

Step 1

Make sure you have a working copy of (part of) the LOFAR software tree. To check out the whole tree:

$ cd <working directory>
$ svn checkout https://svn.astron.nl/LOFAR/trunk LOFAR

Alternatively, you can do a minimal checkout of the LOFAR tree and let the build system do a
checkout of the parts that are needed for your specific build.

$ cd <working directory>
$ svn checkout -N https://svn.astron.nl/LOFAR/trunk LOFAR

http://www.cmake.org
http://www.cmake.org/cmake/help/documentation.html
http://www.cmake.org/cmake/help/documentation.html
http://www.cmake.org/cmake/resources/software.html

Last update:
2013-03-11 08:27 public:user_software:lofar https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1362990429

https://www.astron.nl/lofarwiki/ Printed on 2025-10-27 11:23

$ svn update LOFAR/CMake

Please refer to The LOFAR Subversion Repository page for more information on how to check out
LOFAR software.

Step 2

Create a build directory, preferably outside of the source tree. The name of the directory must adhere
to the naming conventions described in section 3.6 of LOFAR Build Environment. So, for example,
when using the GNU compiler suite to build a debug version of the software, you'd have to create a
build directory named gnu_debug.

$ mkdir -p build/gnu_debug

Step 3

Run cmake from the build directory. You must provide the (relative) path to the top-level
CMakeLists.txt file (in this example <working dir>/LOFAR). You can give a list of packages to
build using the -DBUILD_PACKAGES option:

$ cd build/gnu_debug
$ cmake -DBUILD_PACKAGES="Package1 Package2" <working dir>/LOFAR

If you plan to run make install to install the built software in a directory of your choice (instead of
in the top level build directory), you will have to define CMAKE_INSTALL_PREFIX on the command-
line:

$ cd build/gnu_debug
$ cmake -DBUILD_PACKAGES="Package1 Package2" \
 -DCMAKE_INSTALL_PREFIX:PATH=<installpath> \
 <working dir>/LOFAR

Add package list!

Step 4

When CMake completes without errors, you can run make to actually build the software. You can use
the curses-based ccmake (or use make edit-cache) to edit CMake's cache file to modify any of the
cache variables (e.g., which LOFAR packages to build, paths to third-party libraries and/or include
files, etc.).

$ make

If you want the build to continue even when encountering errors in the build process, you can add the
-k flag to the make command. For instance:

https://www.astron.nl/lofarwiki/doku.php?id=engineering:software:lofarsvn
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=engineering:software:development:lofar_buildenv_manual.pdf

2025-10-27 11:23 3/4 LOFAR build instructions

LOFAR Wiki - https://www.astron.nl/lofarwiki/

$ make -k

If you want the the build executables to be installed as well, add install to the make command as
well:

$ make install

Note that the install option only works when the make has completed without errors.

Note

Most (but not all!) changes to CMake files (*.cmake or CMakeLists.txt) will be detected by CMake,
and will trigger a (re)run of cmake whenever needed. So typing make is usually sufficient to get a
correct (re)build of the software.

Build Options

Build options can be specified in two ways. The preferred, “static” way of doing this is through the
different variants files. These settings can be overridden by the user, either by setting options on the
command-line when invoking cmake, or by edit them by using the semi-graphical environment
ccmake.

Available Options

The following options are currently available. This is neither an exhaustive, nor an authoritative list. It
merely serves as an example to which global build options may be set.

Option Description Default value
BUILD_DOCUMENTATION Build code documentation OFF
BUILD_SHARED_LIBS Build shared libraries ON
BUILD_STATIC_EXECUTABLES Build statically linked executables OFF
BUILD_TESTING Build test programs ON
LOFAR_SVN_UPDATE Always do an svn update <undefined>
LOFAR_VERBOSE_CONFIGURE Be verbose when configuring ON
USE_BACKTRACE Use backtraces in exceptions ON
USE_LOG4CPLUS Use the Log4Cplus logging package ON
USE_LOG4CXX Use the Log4Cxx logging package OFF
USE_MPI Compile with MPI support OFF
USE_OPENMP Compile with OpenMP support OFF
USE_SHMEM Use shared memory ON
USE_SOCKETS Use network sockets ON
USE_THREADS Use thread support ON

Some options are mutually exclusive (e.g., USE_LOG4CPLUS, and LOG4CXX cannot be used
simultaneously). These restrictions are checked by the LofarOptions macro. Furthermore, this macro

https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar-cmake:macros#lofaroptions

Last update:
2013-03-11 08:27 public:user_software:lofar https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1362990429

https://www.astron.nl/lofarwiki/ Printed on 2025-10-27 11:23

calls lofar_find_package for each package that is marked to be used. It is a fatal error if that
package cannot be found.

LOFAR_SVN_UPDATE uses three states. When <undefined>, only files that are missing but needed
are updated. When OFF, files are never updated (this is useful if you don't have access to the SVN
server, or if you're working with an exported source tree). When ON, files are always updated.

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1362990429

Last update: 2013-03-11 08:27

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1362990429

	LOFAR build instructions
	Prerequisites
	CMake
	Getting Started
	Step 1
	Step 2
	Step 3
	Step 4
	Note

	Build Options
	Available Options

