
2024-05-26 07:16 1/4 LOFAR build instructions

LOFAR Wiki - https://www.astron.nl/lofarwiki/

LOFAR build instructions

This page describes how to obtain and build LOFAR the software.

 Please take note that ASTRON only thoroughly builds and tests the LOFAR software on their
production systems that contain CentOs 7.2 and Ubuntu 12.04 LTS 64-bit Linux distros. For other
distros and/or versions we cannot guarantee that a build will create a fully and correctly working
package. Support for this is not provided.

Prerequisites

Mind that to be able to build LOFAR, first you need to have various other custom packages available
on your system. below is a list of packages and versions that have been confiormed to work (other
versions may work, but we have not tested that). Note that this is not a complete list. If there is no
URL provided, the package can usually be installed as part of the OS distribution of from the
Distributor's package repository.

boost 1.40 or larger
cfitsio 3.23 or larger
wcslib 4.8 or larger
cmake 2.8 or larger
hdf5 1.8.4 or larger
casacore 2.0.3 or latest version and its dependencies (lapack, blas, fftw, etc.); see
https://github.com/casacore
casacore-python 2.0.1 or latest version (see https://github.com/casacore)
casarest latest development version (see https://github.com/pkgw/casarest or its local mirror
https://svn.astron.nl/casarest/)
log4cplus 1.0.4 or larger
AOFlagger 2.7.1 or larger (http://sourceforge.net/projects/aoflagger/)

Note: use the -DBUILD_SHARED_LIBS=ON flag! See
http://sourceforge.net/p/aoflagger/wiki/installation_instructions/
If you want to use the graph tools of the AOFlagger, in the lofar build you need to provide
-DMAKE_AOFlagger=OFF to Cmake. Otherwise, the LOFAR build will built the (older)
graph tools.

Some Linux distributions may have ready to install packages available for some of these, for other
distros you may need to build these from code or search hard for binary installations. You may require
your system managers help to set all these up properly.

CMake

LOFAR uses CMake as build tool. For general information on CMake, please refer to the CMake
documentation pages.

You will need CMake 2.8 or later in order to build the LOFAR software. Most Linux distributions contain

https://github.com/casacore
https://github.com/casacore
https://github.com/pkgw/casarest
https://svn.astron.nl/casarest/
http://sourceforge.net/projects/aoflagger/
http://sourceforge.net/p/aoflagger/wiki/installation_instructions/
http://www.cmake.org
http://www.cmake.org/cmake/help/documentation.html
http://www.cmake.org/cmake/help/documentation.html

Last update:
2017-04-21 06:04 public:user_software:lofar https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1492754652

https://www.astron.nl/lofarwiki/ Printed on 2024-05-26 07:16

CMake as a binary package. If yours doesn't, or if it's too old, you can download the CMake sources
and build CMake yourself.

Getting Started

Step 1

Make sure you have a working copy of (part of) the LOFAR software tree. To check out the whole tree:

$ cd <working directory>
$ svn checkout https://svn.astron.nl/LOFAR/trunk LOFAR

Alternatively, you can do a minimal checkout of the LOFAR tree and let the build system do a
checkout of the parts that are needed for your specific build.

$ cd <working directory>
$ svn checkout -N https://svn.astron.nl/LOFAR/trunk LOFAR
$ svn update LOFAR/CMake

This requires an account on the SVN server. There is also a guest read-only account; mail Arno
Schoenmakers or Marcel Loose for details if you need this.

Please refer to The LOFAR Subversion Repository page (password protected) for more information on
how to check out LOFAR software.

Step 2

Create a build directory, preferably outside of the source tree. The name of the directory must adhere
to the naming conventions described in section 3.6 of LOFAR Build Environment. So, for example,
when using the GNU compiler suite to build a debug version of the software, you'd have to create a
build directory named gnu_debug.

$ mkdir -p build/gnu_debug

Step 3

Run cmake from the build directory. You must provide the (relative) path to the top-level
CMakeLists.txt file (in this example <working dir>/LOFAR). You can give a list of packages to
build using the -DBUILD_PACKAGES option:

$ cd build/gnu_debug
$ cmake -DBUILD_PACKAGES="Package1 Package2" <working dir>/LOFAR

If you plan to run make install to install the built software in a directory of your choice (instead of
in the top level build directory), you will have to define CMAKE_INSTALL_PREFIX on the command-

http://www.cmake.org/cmake/resources/software.html
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:documentation:lofarsvn
https://www.astron.nl/lofarwiki/lib/exe/fetch.php?media=engineering:software:development:lofar_buildenv_manual.pdf

2024-05-26 07:16 3/4 LOFAR build instructions

LOFAR Wiki - https://www.astron.nl/lofarwiki/

line:

$ cd build/gnu_debug
$ cmake -DBUILD_PACKAGES="Package1 Package2" \
 -DCMAKE_INSTALL_PREFIX:PATH=<installpath> \
 <working dir>/LOFAR

Most users probaly need the Offline programs (NDP3, BBS, Imager) and/or the pipeline framework. To
build all these, you can provide as package Offline.

A complete package list, useful for those who are familiar with the code organization, can be found in
the file CMake/LofarPackageList.cmake.

Step 4

When CMake completes without errors, you can run make to actually build the software. You can use
the curses-based ccmake (or use make edit-cache) to edit CMake's cache file to modify any of the
cache variables (e.g., which LOFAR packages to build, paths to third-party libraries and/or include
files, etc.).

$ make [-j n] [-k]

Where the -j n option denotes parallel build using n cores of your system (much faster).

If you want the build to continue even when encountering errors in the build process, you can add the
-k flag to the make command. For instance:

If you want the build products to be installed as well, add install to the make command:

$ make install

Note that the install option only works when the previous make step has completed without errors.

Note

Most (but not all!) changes to CMake files (*.cmake or CMakeLists.txt) will be detected by CMake,
and will trigger a (re)run of cmake whenever needed. So typing make is usually sufficient to get a
correct (re)build of the software.

Build Options

Build options can be specified in two ways. The preferred, “static” way of doing this is through the
different variants files. These settings can be overridden by the user, either by setting options on the
command-line when invoking cmake, or by edit them by using the semi-graphical environment
ccmake.

Last update:
2017-04-21 06:04 public:user_software:lofar https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1492754652

https://www.astron.nl/lofarwiki/ Printed on 2024-05-26 07:16

Packages

To find external packages (like casacore, aoflagger, etc) one can add directory pointers to the CMake
command line like these:

-DCASACORE_ROOT_DIR=/opt/cep/casacore/current
-DAOFLAGGER_ROOT_DIR=/opt/cep/aoflagger/current

etc.

Available Options

The following options are currently available. This is neither an exhaustive, nor an authoritative list. It
merely serves as an example to which global build options may be set.

Option Description Default value
BUILD_DOCUMENTATION Build code documentation OFF
BUILD_SHARED_LIBS Build shared libraries ON
BUILD_STATIC_EXECUTABLES Build statically linked executables OFF
BUILD_TESTING Build test programs ON
LOFAR_SVN_UPDATE Always do an svn update <undefined>
LOFAR_VERBOSE_CONFIGURE Be verbose when configuring ON
USE_BACKTRACE Use backtraces in exceptions ON
USE_LOG4CPLUS Use the Log4Cplus logging package ON
USE_LOG4CXX Use the Log4Cxx logging package OFF
USE_MPI Compile with MPI support OFF
USE_OPENMP Compile with OpenMP support OFF
USE_SHMEM Use shared memory ON
USE_SOCKETS Use network sockets ON
USE_THREADS Use thread support ON

Some options are mutually exclusive (e.g., USE_LOG4CPLUS, and LOG4CXX cannot be used
simultaneously). These restrictions are checked.

LOFAR_SVN_UPDATE uses three states. When <undefined>, only files that are missing but needed
are updated. When OFF, files are never updated (this is useful if you don't have access to the SVN
server, or if you're working with an exported source tree). When ON, files are always updated.

From:
https://www.astron.nl/lofarwiki/ - LOFAR Wiki

Permanent link:
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1492754652

Last update: 2017-04-21 06:04

https://www.astron.nl/lofarwiki/
https://www.astron.nl/lofarwiki/doku.php?id=public:user_software:lofar&rev=1492754652

	LOFAR build instructions
	Prerequisites
	CMake
	Getting Started
	Step 1
	Step 2
	Step 3
	Step 4
	Note

	Build Options
	Packages
	Available Options

