
THE LOFAR IMAGING COOKBOOK:
Manual data reduction with the imaging pipeline

Version 18.0

November 11, 2015

Edited by Aleksandar Shulevski



This cookbook describes the process of manually reducing a Measurement Set with the LOFAR imag-
ing pipeline. It is intended to speed up the learning process for future commissioning, by collating
various tips, tricks, and solutions in a single place. The LOFAR wiki1 contains much more infor-
mation on each stage of the data reduction, but might be out of date in many places. The contents
of this cookbook are an approximation to the correct way of reducing LOFAR data – USE WITH
CAUTION.
The softwares that have been designed for LOFAR data reduction are still in development. Some-
times, quicker results might be obtained with other data reduction packages (such as CASA). How-
ever, to test and improve the quality of the new software, we strongly encourage the users to follow the
proposed way of the cookbook and talk to the software developers in case you experience problems
or have any questions.

For any suggestions or comments regarding this manual, you are kindly requested to post an issue in
the LOFAR issue tracker2. As a reference person, please select A. Shulevski, who will either solve
the issue or report it to the maintainer of a specific chapter of the manual. Please read the instructions
regarding the issue tracker on the LOFAR wiki3 beforehand.

The Lofar Imaging Cookbook was edited by Timothy Garn before he passed away.

COVER ILLUSTRATION:

LOFAR is being used to study supermassive black holes and the affect they have on their local envi-
ronment. A classic example of an active galaxy is Cygnus A, which lies in a nearby cluster of galaxies
at a distance of about 700 million lightyears. At the center of this galaxy is a powerful active nucleus
that emits jets of plasma at relativistic speeds. An early LOFAR image at 240 MHz shown here that
these jets extend far beyond the stellar part of the galaxy, up to 200 thousand light years from the cen-
ter, before abruptly interacting with the intra-cluster medium at impact points called hotspots. (Image
credits: J. McKean and M. Wise, ASTRON).

Editor in chief: Aleksandar Shulevski4

Authors: Roberto F. Pizzo, Ger van Diepen, Tammo Jan Dijkema, G. Heald, Francesco de Gasperin,
M. Iacobelli, John McKean, Maaijke Mevius, André Offringa, Emanuela Orrú, David Rafferty, Cyril
Tasse, Bas van der Tol, Valentina Vacca, Nicolas Vilchez, Reinout van Weeren, Wendy Williams and
Sarod Yatawatta, on behalf of the Lofar commissioning team.

1http://www.lofar.org/operations/doku.php?id=software:standard_imaging_pipeline
2https://support.astron.nl/lofar_issuetracker/
3http://www.lofar.org/operations/doku.php?id=maintenance:lofar_issue_tracker
4shulevski[at]astron[dot]nl

2

http://www.lofar.org/operations/doku.php?id=software:standard_imaging_pipeline
https://support.astron.nl/lofar_issuetracker/
http://www.lofar.org/operations/doku.php?id=maintenance:lofar_issue_tracker
http://www.lofar.org/operations/doku.php?id=software:standard_imaging_pipeline
https://support.astron.nl/lofar_issuetracker/
http://www.lofar.org/operations/doku.php?id=maintenance:lofar_issue_tracker


Changes

The latest released version of the cookbook is available at the web address:

http://www.astron.nl/radio-observatory/lofar/lofar-imaging-cookbook

This link is advertised on the LOFAR wiki. The very latest (development) version of the cookbook
can also be found on the USG repository:

http://usg.lofar.org/svn/documents/trunk/Tutorials/Imaging/

The LOFAR software is continuously improving and, as a consequence, several procedures (and the
cookbook itself) continuously change. In the following, we report an overview of the (recent) changes
applied to the manual.

Overview of the changes

Most recent changes

2015-11-11 – updated the Getting Started chapter (Chapter 1);
– updated the LoSoTo chapter (Chapter 8);
– added new DPPP calibration chapter (Chapter 6);
– added new RM Synthesis chapter (Chapter 13);
– changed the references for the LOFAR analysis scripts to the GitHub repository instead

of CEP3.

2015-06-19 – update of the Getting Started chapter (Chapter 1).
– updated the DPPP chapter, improved the baseline selection documentation, added docu-

mentation for the up-arrow character and added a few examples (Chapter 5);
– update of the LoSoTo chapter (Chapter 8);
– update of the Sagecal chapter (Chapter 9);
– update of the AW Imager chapter (Chapter 10);
– update of the Source Detection chapter (Chapter 11);
– update of the Sky Model Construction chapter (Chapter 14);
– update of the Useful resources chapter (Chapter 16)

2015-02-24 – Renaming on NDPPP with DPPP through the Cookbook;
– added to the DPPP chapter a description on how to use steps coded in Python (Sect. 5.4.1);
– update of the Selfcal chapter (Chapter 12);
– update of the LoSoTo chapter (Chapter 8);
– update of the BBS chapter (Chapter 7), including a description on how to use parmexportcal.

2014-11-04 – general update of the entire manual to make it compatible with the architecture of the
CEP3 commissioning cluster.

2014-04-22 – corrections to the BBS chapter (Chapter 7);
– corrections to the Selfcal chapter (Chapter 12).

3

http://www.astron.nl/radio-observatory/lofar/lofar-imaging-cookbook
http://usg.lofar.org/svn/documents/trunk/Tutorials/Imaging/


Contents

Changes 3

Overview of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Getting Started 1

1.1 The LOFAR cluster layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 CEP2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 CEP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Logging on to CEP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Setting up your working environment . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Login scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Generation of SSH keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Disable SSH Host Key Checking . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Data copy from and to CEP3 cluster . . . . . . . . . . . . . . . . . . . . . . 7

2 Data Inspection 8

2.1 Viewing Measurement Set details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Pyrap / PyDAL scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Quick baseline-based visibility inspection . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 CASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Casaviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 CASA table viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.3 Plotting with CASA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.4 CASA tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.5 CASA bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The Drawer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Plot Ateam elevation.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Useful tools to handle Measurement Sets . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.1 Concatenating subbands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7.2 Splitting the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.3 Converting MS times to a friendly format . . . . . . . . . . . . . . . . . . . 21

3 Imaging pipeline 22

3.1 Running long-duration processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The AOFlagger - RFI Console 24

4.1 How to run the AOFlagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



4.2 Advanced settings with RFI Console . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Visualizing RFI and flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.2 Changing flagging parameters . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.3 RFI Console’s parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.4 Using the direct reading mode . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.5 Flagging of bad baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 The Default Pre-Processing Pipeline (DPPP) 30

5.1 Various ways to use DPPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 Basic usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 Copy a MeasurementSet and calculate weights . . . . . . . . . . . . . . . . 31

5.1.3 Count flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.4 Preprocess a raw LOFAR MS . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.5 Update flags using the preflagger . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.6 Remove baselines and/or channels . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.7 Combining stations into a superstation . . . . . . . . . . . . . . . . . . . . . 34

5.1.8 Update flags for NaNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.9 Creating another data column . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.10 Demixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.11 Combine MeasurementSets . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.12 Advanced multi-step example . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 The ParSet File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Input / output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2 Flagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.4 Combining PreFlagger keywords into sets . . . . . . . . . . . . . . . . . . . 41

5.3 MSSelection, antenna/baseline syntax . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Antenna names/numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.2 Physical baseline length . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.3 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Arbitrary User DPPP Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 User Step in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Flag statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Analyzing the data quality with aoqplot . . . . . . . . . . . . . . . . . . . . . . . 49

5.6.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6.2 Analyzing the statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

ii



5.6.3 Background information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Additional information: manual flagging in CASA . . . . . . . . . . . . . . . . . . 52

6 Gain calibration with DPPP 53

6.1 Calibration variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Make a skymodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 Applying solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Transferring solutions and the beam . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.6 Applying the beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Calibration with BBS 56

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3 Source catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.1 Gaussian sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3.2 Spectral index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3.3 Rotation measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.4 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.5 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.6 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.6.1 Beam model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.7 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.8 Example reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.8.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.8.2 Gain calibration (direction independent) . . . . . . . . . . . . . . . . . . . . 64

7.8.3 Gain calibration (direction independent, phase or amplitude only) . . . . . . 67

7.8.4 Gain calibration (direction dependent) with source subtraction . . . . . . . . 70

7.8.5 Differential TEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.9 Tweaking BBS to run faster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.10 Global parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.10.1 Setting up your environment . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.10.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.10.3 Defining a global solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.11 Pre-computed visibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.12 Inspecting the solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.13 The global bandpass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.13.1 LBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

iii



7.13.2 HBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.14 Gain transfer from a calibrator to the target source . . . . . . . . . . . . . . . . . . . 80

7.14.1 The “traditional” approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.14.2 The LOFAR multi-beam approach . . . . . . . . . . . . . . . . . . . . . . . 82

7.15 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.16 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.16.1 Common problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8 LoSoTo: LOFAR Solution Tool 85

8.1 H5parm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.1 HDF5 format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.2 Characteristics of the H5parm . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.1.3 Example of H5parm content . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.1.4 H5parm benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.2 LoSoTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.2.3 LoSoTo parset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.4 Developing in LoSoTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.5 Clock/TEC separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 SAGECAL 97

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2 Using SAGECAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

9.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

9.2.3 SAGECAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.2.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

9.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.4 Distributed Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10 The AW Imager 102

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

10.4 Output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

iv



10.5.1 Data selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

10.5.2 Image properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.5.3 weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.5.4 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10.5.5 Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

10.5.6 Gridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

11 Source detection and sky model manipulation: PyBDSM and LSMTool 106

11.1 Source detection: PyBDSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.1.2 Recent Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.1.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.1.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

11.1.6 Usage in Python scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.2 Sky model manipulation: LSMTool . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11.2.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.3 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

11.4 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.5 The Parset File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11.6 Interactive use and scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12 Automated Self-Calibration 120

12.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.3 Selfcal: the stand-alone version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12.3.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

12.3.2 Required Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

12.3.3 Selfcal implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 125

12.3.4 Selfcal examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13 RMSynthesis 129

13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13.1.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

14 Sky Model Construction Using Shapelets 132

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

14.2 Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

v



14.2.1 modkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

14.2.2 fitscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

14.2.3 ds9 and kvis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

14.2.4 Duchamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

14.2.5 buildsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

14.2.6 restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

14.2.7 shapelet gui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14.2.8 convert skymodel.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

14.3 Step by Step Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

14.3.1 Initial point source model . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

14.3.2 Initial shapelet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

14.3.3 Using both shapelets and point sources together . . . . . . . . . . . . . . . . 143

14.3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

14.3.5 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

14.3.6 Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

14.3.7 Recalibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

14.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

15 Practical examples 147

15.1 3C 295 – A bright source at the centre of the field . . . . . . . . . . . . . . . . . . . 147

15.2 HBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

15.2.1 Inspecting the raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

15.2.2 Flagging and data compression . . . . . . . . . . . . . . . . . . . . . . . . . 148

15.2.3 Post-compression data inspection and flagging . . . . . . . . . . . . . . . . 150

15.2.4 Calibration with BBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

15.2.5 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

15.2.6 Combining Measurement Sets . . . . . . . . . . . . . . . . . . . . . . . . . 161

15.2.7 Subtraction of 3C 295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

15.3 LBA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

15.3.1 Inspecting the raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

15.3.2 Flagging and demixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

15.3.3 Post-compression data inspection and flagging . . . . . . . . . . . . . . . . 168

15.3.4 Combining Measurement Sets . . . . . . . . . . . . . . . . . . . . . . . . . 168

15.3.5 Calibration with BBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

15.3.6 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

16 Useful resources 177

16.1 Webpages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

vi



16.2 Useful analysis scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

16.3 Contact points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

16.4 Commissioning reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

17 Acknowledgments 181

A GNU screen 183

B LOFAR simulation software and new Demixing approach 186

B.1 Simulating a Measurement Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.1.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Comparing observations and simulations . . . . . . . . . . . . . . . . . . . . . . . . 188

B.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.3 New demixing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3.1 Predict . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3.2 A-team clipper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

vii



1 Getting Started5

1.1 The LOFAR cluster layout

The correlated data coming from the Cobalt6 correlator are stored on a cluster of machines called
CEP2 cluster (see Sect. 1.1.1 for an extensive overview). CEP2 has been added to the LOFAR offline
system at the beginning of 2011. Till March 2011, another cluster of computing machines was used
to store and process the data (CEP1). Nowadays, CEP2 is normally used by the Radio Observatory
to process the data through the initial stages of the data reduction (flagging and averaging of the
visibilities), while another CEP facility is currently used by both the commissioners and LOFAR
users to manually play with the data and understand which strategy to use for the calibration and
the imaging: the new commissioning cluster CEP3 (see Sect. 1.1.2). CEP2 will be soon replaced by
another CEP facility, providing technologies that are not available on CEP2, especially with respect
to resource management. The CEP4 cluster is currently being installed with the aim to have it ready
for production before the end of 2015. In the following sections we will focus on discussing the
architecture of CEP facilities as well as their usage policies.

1.1.1 CEP2

The LOFAR CEP2 cluster is composed of 100 compute nodes (locus001-100). A detailed descrip-
tion of all the packages available on the new cluster and on its network interface can be found on line
at http://www.lofar.org/wiki/doku.php?id=operations:phase2cluster. In the following, a few more de-
tails on this cluster components are given.

• Frontend: it has 2 lhn head nodes (called lhnxxx; lhn001 is the main head node for users).
Each head node (lhn001 & lhn002) consists of: 64 GB memory 16 CPU’s @ 2.3 GHz, 512 GB
Solid State Disc, 6 TB RAID5 disks.

• Processing units: the 100 locus compute nodes with 21TB each (called locusxxx). Each lo-
cusxxx compute nodes consists of: 64 GB memory, 24 CPU’s (6 quad cores @ 2.1 GHz), 21
TB disk space, XFS filesystem, 40 Gbps Infiniband network interface.

• 4 router nodes: Each of the 4 router nodes connect a quarter of the compute nodes to the
CEP network switches. They are also used to interface the Ethernet Fiber connections to the
Infiniband interconnect of the cluster. They can be seen as network equipment by the user.

• Infiniband interconnect using Ethernet protocol:

USAGE POLICY: CEP2 is meant for storing the observations and process them through the Lofar
pipelines but not for commissioning work. For that, commissioners can use CEP3 with prior coor-
dination with the Radio Observatory (sciencesupport[at]astron[dot]nl). Since the CEP2 cluster is
meant to be a machine dedicated to run the pipeline, the Observatory will give access to it just to a
few selected people (exclusively to perform MSSS- related work). Due to the limited disk space, CEP2
is not intended for long term storage of raw data and/or intermediate products.

5This chapter is maintained by M. Iacobelli, iacobelli[at]astron[dot]nl.
6It is located in Groningen, The Netherlands.

1

http://www.lofar.org/wiki/doku.php?id=operations:phase2cluster


1.1.2 CEP3

The CEP3 cluster is available since November 2014 and allows running science processing close to the
CEP2 facility as well as for commissioning work. An overview of the hardware and software as well
as of major policies and procedures is available at http://www.lofar.org/operations/doku.php?id=cep3:start.
The cluster consists of 24 equivalent servers with the following specifications:

• DELL PowerEdge R720 Rack server

• Dual Intel Xeon e5 2660 v2 processors (10 cores each)

• 128 GB memory

• 4x 8 TB internal disk configured in RAID 6 (24 TB net capacity)

• 10 GE data interconnect

• 1 GE management network

In the future the servers can be fitted with up to two GPU cards (e.g. NVIDIA K20X).

Two head nodes (lhd001 & lhd002) are available for logging in and (limited) interactive development
and processing purposes. Access to the CEP3 system can only be done through the lhd002 head
node, Access to the twenty worker nodes is managed through a job management system. Users are
required to submit requests for processing jobs/sessions on the worker nodes. In general, data will be
distributed across the local disks on the worker nodes and processing jobs are distributed accordingly.

USAGE POLICY: Observing, CEP2 processing time and the use of CEP3 are allocated by the LO-
FAR Programme Committee and the ILT director during the regular proposal evaluation stages, or
under Director’s Discretionary Time.
Access and use of CEP3 is under the sole control of the Radio Observatory’s Science Support Group
(SSG). Access for Users will be granted only at the discretion of the Science Support Group. Users
should conform to the access, resource allocation and data deletion policies issued by the SSG at all
times.
Users awarded with access to CEP3 will be able to access the cluster for a limited period of time (4
weeks by default). The awarded period starts from the moment the user’s data is copied from CEP2
(after Radio Observatory pipeline processing) to CEP3. At the beginning of a Cycle, users can derive
this timeline by checking the observing schedule, which is available at http://www.astron.nl/radio-
observatory/cycles/cycles. Access timelines related to observing programs involving observations
spread in time will be discussed between the PI and Science Support. After the granted period
on CEP3 has expired, all user’s data products generated on the cluster will be automatically and
promptly removed, to enable new users to have enough disk space to perform their data reduction.
Extensions to the default 4-week period will be granted only in exceptional circumstances and only
if properly justified through a formal request to be sent to sciencesupport@astron.nl no later than 1
week before the expiration of your access privileges. Monitoring of node usage during allocated time
will be performed and the evaluation of extension requests will be based on such statistics.

1.2 Logging on to CEP3

As mentioned above, normal users have access only to CEP3 head node(s), while the access to pro-
cessing nodes is controlled using the Slurm cluster management software. In the head node users
can experience the quality of the data and understand the best approach to use in the lof node(s) for

2

http://www.lofar.org/operations/doku.php?id=cep3:start
http://www.astron.nl/radio-observatory/cycles/cycles
http://www.astron.nl/radio-observatory/cycles/cycles


the calibration and imaging of the visibilities. After Science Support has set up a reservation on a
particular processing node(s), you should have a reservationID needed for setting up access to the
working node(s)

• To access CEP3, begin by logging on to portal.lofar.eu7:

> ssh -Y <user name>@portal.lofar.eu

where <user name> is likely to be the user’s surname. Type in your default password8:

> "password"

Throughout this cookbook, > is used to indicate a new input line.

• You can now log in to the front end (you are requested to use lhd002)9:

> ssh -Y lhd002

If this is the first time you will be logging onto the cluster, you are advised to change your
password by typing:

> yppasswd

in the usual fashion (old default password, new password, confirm new password).

• In order to log on to (for example) lof01910, start a Slurm job from the head node lhd002.
Any job will do, but we advice starting an interactive bash shell:

> use Slurm

> srun --reservation=<reservationID> -N<nr of nodes> bash -i

This should give you a prompt (or more than one if you have more nodes on your job). Once
you have the Slurm job running and log using ssh-keys enabled (see Sect. 1.3.2 for instructions),
you are allowed standard SSH access with X-forwarding to the reserved nodes from the head
node starting from a new terminal screen on the head node lhd002:

> ssh -XY <user name>@lof019

Once on the compute node, you will be located in your home directory ( /home/<user name>),
which is visible from any node.

For more information on the cluster architecture/properties, you can visit:

http://www.lofar.org/operations/doku.php?id=public:lofar cluster
http://www.lofar.org/operations/doku.php?id=cep3:start

7The actual host name is lfw.lofar.eu (lfw=LOFAR firewall), but this alias will work fine.
8Your default password will be communicated to you at the moment of the creation of your Lofar account by Teun

Grit (grit[at]astron[dot]nl).
9You may have to log out of and log in again to the portal first

10The Radio Observatory will assign you with a suitable lof node to work on

3

http://www.lofar.org/operations/doku.php?id=public:lofar_cluster
http://www.lofar.org/operations/doku.php?id=cep3:start


1.3 Setting up your working environment

1.3.1 Login scripts

After an account is created, you will have a separate CEP3 $HOME directory. At the first login, it will
be empty and needs to be setup properly to be able to use the provided tools and programs on CEP3.
Log in to the front end cluster and from your $HOME directory follow the approaches reported below.

Create a link to the systems login scripts:

• Make sure to delete any potential .profile or .cshrc file on your home directory (check with
ls -a)

• > ln -s /opt/cep/login/bashrc $HOME/.profile

or

> ln -s /opt/cep/login/cshrc $HOME/.cshrc

depending on whether you use a BASH login shell or a (T)CSH login shell.

• Now log in again; you should see a welcome message.

For BASH, make sure your .bashrc is as clean as possible, that means not cluttered with variables
(especially LOFARROOT, LD LIBRARY PATH & PYTHONPATH should not have -too many- de-
fault settings); although this probably applies to (t)csh as well.

While the python packages are initialised by default, to use a certain package you can make use of
the “use” alias. To initialise the LOFAR imaging pipeline software together with and linked against
casacore, casarest, and pyrap type

> use Lofar

To initialize the CASA software, which could be useful for particular steps of the data reduction, you
can type

> use Casa

On CEP3 AIPS version 31DEC14 is available. To be able to use you must contact Marco Iacobelli,
Teun Grit or Arno Schoenmakers to add you to the user group “aipsgrp”. Then you can execute

> use AIPS

You can then start AIPS with the normal startup command, e.g.

> aips tpok tv=local

SageCal and auxiliary scripts have been installed, using OpenBlas. To activate them type

> use Lofar

> use Sagecal

4



The self-calibration tool of the Standard Imaging Pipeline (see Sect. ??) is installed and can be acti-
vated by typing:

> use Pyselfcal

The WSClean wide-field imager has been installed. To activate it type:

> use Wsclean

The COmplex Half-Jacobian Optimization for N-directional EStimation (CohJones) peeling tool and
auxiliary scripts have been installed. To activate it type:

> use CohJones

To activate Duchamp, type

> use Duchamp

To activate DS9, just type

> use DS9

Similarly, the Karma software (useful during imaging), can also be initialised:

> use Karma

To run a few scripts needed during the data reduction (see Sect. 16.2) without having to copy them
into your working directory, just type:

> use Lofar ; use Cookbook

To activate a collection of python scripts from the Imaging commissioning, type

> use Scripts

To extract TEC, vTEC, Earth magnetic field and Rotation Measures from GPS and WMM data for
radio interferometry observations, the RMextract tool is installed. To activate it type:

> use Lofar

> use RMextract

Finally, you can initialise scripts to perform RM-Synthesis with

use RMSynthesis

and activate Pyrmsynth 1.2.1 by executing rm synthesis.py (Option –help gives options). Also avail-
able is library rm tools (use import rm tools within a python script).

You can also create a file in your home directory (.mypackages) that contains a list of all packages
to initialize at login time. For example, if this file contains the line

5



Casa Lofar

the login scripts will initialize the CASA and the LOFAR imaging pipeline software for you at login
time.

On the LOFAR wiki more information can be found about the LOFAR login environment. Also, an
updated list of the software packages installed on CEP3 is found here.

Processing can now take place. Once you have logged onto this compute node, you should create
your own working directory using

> mkdir /data/scratch/<username>

You can now cd into it and use it as your working space.

You can copy in here the data provided by the Radio Observatory by e.g. typing:

> scp -r <user name>@lhd002:/data/<user>/<LOFAR dataset> .

where <LOFAR dataset> has the syntax LXXXXX11.

1.3.2 Generation of SSH keys

We use the Secure Shell (SSH) on the LOFAR Central Processing (CEP) to connect to different
systems. This page explains how this can be used without having to supply a password each time you
want to connect to a system (very useful to run things such as BBS (Sect. 7) on nodes of a cluster, or
other remote machines). With normal SSH you always have to give a password. If you use a private
and public key, you can access systems where your public key is in $HOME/.ssh/authorized keys

from the system where you have the private key.

• For Linux or OS X:

From the front end node lhd002 set up passwordless access to the lof nodes (if you have a job
running to provide you access) via SSH: Go to, or create a directory

$HOME/.ssh

> ssh-keygen -t dsa

Press enter and again when prompted for a password. Now you have a file id rsa.pub in this
directory. Copy it to authorized keys.

> cp ~/.ssh/id_dsa.pub ~/.ssh/authorized_keys

$HOME/.ssh/authorized keys must be available on all the machines you need to access with
this key; since your home directory is automatically mounted on all the cluster nodes, they
should already be accessible—you can copy it to other, external, systems if required.

• For Windows and additional information, refer to the LOFAR wiki 12.
11"L" stays for LOFAR, XXXXX is the ID number of the observation, which is assigned to it at the moment of the

scheduling
12http://www.lofar.org/wiki/doku.php?id=public:ssh-usage

6

http://www.lofar.org/operations/doku.php?id=public:lle
http://www.lofar.org/operations/doku.php?id=public:lle
http://www.lofar.org/operations/doku.php?id=cep3:usersoftware
http://www.lofar.org/wiki/doku.php?id=public:ssh-usage


1.3.3 Disable SSH Host Key Checking

Normally, when you first connect to a new host, SSH will prompt you for confirmation of the host
key:

> ssh lof019

The authenticity of host ’lce019 (10.176.0.19)’ can’t be established.

RSA key fingerprint is 73:27:96:cd:f5:04:b7:c3:57:47:49:97:8b:87:8b:15.

Are you sure you want to continue connecting (yes/no)?

When trying to run a command over many compute (and/or storage) nodes using multiple SSH con-
nections, that can get pretty annoying. To get around it, set StrictHostKeyChecking to no in
$HOME/.ssh/config:

> cat > ~/.ssh/config

StrictHostKeyChecking no

1.3.4 Data copy from and to CEP3 cluster

Data transfers from CEP2 to CEP3 should always be coordinated with the Radio Observatory (sci-
encesupport[at]astron[dot]nl). Data retrieval from LTA locations as well as from/to other computing
facilities is also possible as detailed at http://www.lofar.org/wiki/doku.php?id=cep3:userdata. Al-
though access to the CEP3 systems can only be done through the lhd002 head node, data transfers
to the outside world can be done directly. Because data will be transferred via the LOFAR portal,
care should be taken not to flood the available network bandwidth with the public internet. Thus we
recommend to limit the bandwidth to not disturb the portal access of other users. Note that the portal
capacity is 120MB/s.

7

http://www.lofar.org/wiki/doku.php?id=cep3:userdata


2 Data Inspection13

Data inspection is essential for a proper data reduction and can be carried out using either scripts
(by means of a python interface to the Measurement Set) or CASA14. In this Chapter, we summarize
the various tools that can be used to inspect the LOFAR visibilities at the beginning and during the
processing of your data.

2.1 Viewing Measurement Set details

The program msoverview provides you with details on the contents of a Measurement Set, no matter
if it is raw or it has been already processed. You are advised to use this script when you start working
on your data. You can run it by typing:

> msoverview in=some.MS verbose=T

where the verbose parameter allows you to have more detailed information about the observation, as
the used antennas and their positions.

An example of the output of the program is given below.

msoverview: Version 20110407GvD

=============================================================================

MeasurementSet Name: /data1/L2011_24909/L24909_SB000_uv.MS MS Version 2

=============================================================================

This is a raw LOFAR MS (stored with LofarStMan)

Observer: unknown Project: LOFAROPS

Observation: LOFAR

Antenna-set: HBA_ZERO

Data records: 47250 Total integration time = 125.174 seconds

Observed from 31-Mar-2011/14:04:59.0 to 31-Mar-2011/14:07:04.2 (UTC)

Fields: 1

ID Code Name RA Decl Epoch

0 BEAM_0 04:37:04.0000 +29.40.14.0000 J2000

(nVis = Total number of time/baseline visibilities per field)

Spectral Windows: (1 unique spectral windows and 1 unique polarization

setups)

SpwID #Chans Frame Ch1(MHz) ChanWid(kHz)TotBW(kHz) Ref(MHz) Corrs

0 64 TOPO 114.942932 3.05175781 195.3125 115.039062 XX XY

YX YY

Antennas: 27:

ID Name Station Diam. Long. Lat.

0 CS001HBA0 LOFAR 0.0 m +006.52.07.1 +52.43.34.7

13This chapter is maintained by R. F. Pizzo, pizzo[at]astron[dot]nl
14Documentation available at the web address http://casa.nrao.edu/

8

http://casa.nrao.edu/


1 CS002HBA0 LOFAR 0.0 m +006.52.07.6 +52.43.46.8

2 CS003HBA0 LOFAR 0.0 m +006.52.10.9 +52.43.51.8

3 CS004HBA0 LOFAR 0.0 m +006.52.03.0 +52.43.47.8

4 CS005HBA0 LOFAR 0.0 m +006.52.08.8 +52.43.42.5

5 CS006HBA0 LOFAR 0.0 m +006.52.17.0 +52.43.43.7

6 CS007HBA0 LOFAR 0.0 m +006.52.15.3 +52.43.51.1

7 CS017HBA0 LOFAR 0.0 m +006.52.38.3 +52.43.52.0

8 CS021HBA0 LOFAR 0.0 m +006.51.46.1 +52.43.54.4

9 CS024HBA0 LOFAR 0.0 m +006.52.27.5 +52.43.19.7

10 CS026HBA0 LOFAR 0.0 m +006.52.54.0 +52.43.50.0

11 CS030HBA0 LOFAR 0.0 m +006.51.37.7 +52.44.12.4

12 CS032HBA0 LOFAR 0.0 m +006.51.39.2 +52.43.38.6

13 CS101HBA0 LOFAR 0.0 m +006.52.50.8 +52.44.11.3

14 CS103HBA0 LOFAR 0.0 m +006.53.45.2 +52.43.48.8

15 CS201HBA0 LOFAR 0.0 m +006.52.55.0 +52.43.39.2

16 CS301HBA0 LOFAR 0.0 m +006.52.07.1 +52.43.11.7

17 CS302HBA0 LOFAR 0.0 m +006.50.53.7 +52.42.57.6

18 CS401HBA0 LOFAR 0.0 m +006.51.24.1 +52.43.42.8

19 CS501HBA0 LOFAR 0.0 m +006.51.57.9 +52.44.29.9

20 RS106HBA LOFAR 0.0 m +006.59.05.6 +52.41.21.6

21 RS205HBA LOFAR 0.0 m +006.53.50.8 +52.40.17.6

22 RS208HBA LOFAR 0.0 m +006.55.10.4 +52.29.03.1

23 RS306HBA LOFAR 0.0 m +006.44.32.3 +52.42.18.5

24 RS307HBA LOFAR 0.0 m +006.40.54.8 +52.37.02.5

25 RS406HBA LOFAR 0.0 m +006.45.04.2 +52.49.59.6

26 RS503HBA LOFAR 0.0 m +006.51.04.8 +52.45.33.2

The MS is fully regular, thus suitable for BBS

nrows=47250 ntimes=125 nbaselines=378 nband=1

Together with providing important information on the observation details, this program will be useful
to test, at later stages, whether the averaging in time or frequency of the data has been successful.

2.2 Pyrap / PyDAL scripts

Pyrap is a python interface to the casacore library, which allows the raw data tables (Measurement
Sets) to be manipulated and the data plotted via python scripts (e.g. Figs. 1 and 2). These allow you
to customize what is plotted, and can be significantly faster than CASA for plotting large datasets.

Visualizing the data before running the pipeline is essential to pick up any hardware/observation
errors. For example, observed data in the past has had gaps present due to correlator errors etc.
An extensive description of the Pyrap utilities is available at the web address

http://www.astron.nl/casacore/trunk/pyrap/docs/

2.3 Quick baseline-based visibility inspection

Visibilities can be plotted relatively rapidly by making use of the combination of pyrap and the plot-
ting package PGPLOT, both of which work quickly. A script is available which plots visibility data

9

http://www.astron.nl/casacore/trunk/pyrap/docs/


Figure 1: Plotted here using a pyrap script is the amplitude vs time for the SB0.MS 3C196 observation.
The high level of RFI is instantly apparent.

(a) Elevation vs. time (b) uv coverage

Figure 2: Two examples of useful data plotted with pyrap scripts, for the SB0.MS 3C196 observation.

from all baselines in a Measurement Set15. It plots either amplitude or phase against time, frequency,
or channel number.

To use it, you should first prepare the environment by typing

> use Cookbook

> use Lofar

The script itself is uvplot.py16, and it will list its (many) options if you use the -h flag.

> uvplot.py -h

uvplot.py v1.6, 14 April 2010

Usage: uvplot.py [options]

Options:

-h, --help show this help message and exit

15uvplot.py can also be used to plot the raw visibilities and may be significantly faster than the PLOTMS task in
CASA.

16The script has been created by G. Heald.

10



-i INMS, --inms=INMS Input MS to plot [no default]

...

Figure 3: An example of using uvplot.py. The command used to generate this plot
was uvplot.py -i /data/scratch/pipeline/L2009 15697/SB64.MS -t 0,1500 -y phase

-n 1,2 -x time -d output.ps/cps .

One particularly useful option is the -q flag. It will give a short listing of crucial information about
the Measurement Set specified with -i:

uvplot.py -i /data/scratch/pipeline/L2009_15697/SBXXX.MS -q

This feature will, in particular, report how many timeslots are in the Measurement Set. If this number
is larger than a few thousand, you should consider only plotting small timeranges at a time (for speed
and clarity of the plots).
An example of output plots is provided in Fig. 3

To simplify the process of specifying plot options, you can optionally use the GUI interface to the
plotting program (see Fig. 4). If you pass the --gui flag to uvplot.py, then a graphical window will
appear where you can edit the plot settings. Any other options specified on the command line will
show up in the GUI window. Once the settings are specified as you like, click the green “Plot” button
at the bottom left. Once the plotting is finished, you can change the options in the interface and plot
again. Quit the program with the red button at the bottom right of the interface.

11



Figure 4: The GUI interface to the plotting program uvplot.py.

2.4 CASA

CASA17 is the python-based next generation replacement for AIPS/AIPS++ and can be used to
display the data18. Be aware that trying to inspect the raw visibilities with CASA will produce a
”segmentation fault” error. To avoid this, you should make a copy of the dataset with DPPP
(see the first example parset in Sect. 5.2). Moreover, when opening with CASA a MeasurementSet
observed between May and October 2011, you will get the following error:

Unrecognized mount type

This is due to the fact that the MS writer version used during those months was specifying the antenna
mount as FIXED, and not as ALT-AZ, which is CASA friendly. To solve this problem, you can run
the following taql command on your MS (your.MS):

> taql ’update your.MS/ANTENNA set MOUNT="X-Y" ’

2.4.1 Casaviewer

To initialize the CASA software, type

> use Casa

17http://casa.nrao.edu/
18Be warned: attempting to display unaveraged data will take a long time (about 20 mins, for a single subband of a

13 hour dataset), while doing this on averaged, single channel data may not show all of the RFI.

12

http://casa.nrao.edu/


Casaviewer can be used to plot the visibilities and look at an image. Once you are sure that you have
properly initialized Casa (Sect. 1.3.1), to invoke casaviewer just type:

> casaviewer

2.4.2 CASA table viewer

To inspect the content of a Measurement Set, use the casabrowser:

> casabrowser

This is useful to understand how the data are contained in the Measurement Set. It is also essential
when you suspect that a MS is corrupted. Things to check include whether the time ranges are
sensible, and the interval values are consistent.

2.4.3 Plotting with CASA

An alternative way of viewing the XX and YY polarisations, plotting time against amplitude, for each
set of baselines in turn, is given below.

> casapy

Inside CASA:

> task = ’plotxy’

> vis = ’<DPPP output filename>.MS’

> selectdata = True

> correlation = ’XX,YY’

> iteration = ’baseline’

> subplot = 221

> inp plotxy

> go plotxy

When not present, plotxy19 creates a scratch data column in a MS file. This process takes a consid-
erable amount of time and it increases the size of the inspected dataset. To avoid this problem and
to be able to inspect the data more quickly, you can use the CASA task plotms, which can also be
called from outside CASA by typing

> casaplotms

2.4.4 CASA tips

CASA works in a similar way to AIPS20. To view the current settings of a task, type inp <task

name>. To reset all settings, type default <task name>. To reload settings from the last run of a
task, type tget <task name>21.

19We caution users that the task plotxy is no longer being developed and will be deprecated in favor of plotms in
future releases of CASA.

20http://aips.nrao.edu/
21For more detailed information and examples of how to use CASA, we direct users to the CASA Guides:

http://casaguides.nrao.edu/index.php?title=Main Page

13

http://aips.nrao.edu/
http://casaguides.nrao.edu/index.php?title=Main_Page


2.4.5 CASA bugs

• Trying to inspect the raw data with casaviewer or plotxy is impossible. It is advised to first
touch the raw data through DPPP (see Sect. 5), making a copy of it (see Sect. 5.2).

• A nasty bug exists in the SPLIT task in CASA, whereby attempting to average a Measurement
Set in both time and frequency gives a corrupted output Measurement Set. If using the SPLIT
task, do not apply any averaging, as further processing with the pipeline will not be possible.

We recommend that CASA users regularly check the list of known issues maintained by the NRAO
for each officially released version. This information can be found by visiting the CASA releases
page22, selecting the relevant version of CASA, and then clicking on the Known Issues link.

2.5 The Drawer23

The Drawer is a useful algorithm that can be adopted to quickly inspect a MeasurementSet and in-
vestigate which sources are contributing to the visibilities. The software automatically converts the
fringes seen in the visibilities to locations in the sky, having the advantage that (i) it works very well
on the raw data and therefore it can be used before any calibration, (ii) it is very fast to recover spatial
information on the half sphere centered on the phase center of the observation (one can generally gen-
erate an all sky plot in less than a few minutes). The concept behind the Drawer was already known
and used in AIPS (task FRMAP).
As the fringes ”produced” by each individual baseline are rotating on the sky, each source modulates
the visibility, depending on its distance from the phase center (far away sources give a higher fringe
rate). The Drawer performs an FFT of the visibility of each given baseline in a particular timeslot,
along the time axis, and finds the dominant frequency. From that value, and from the ”speed” of the
given baseline in the uv plane, it solves a simple equation and derives a line on the sky. Per baseline,
it reflects all the possible places where the source producing the given detected modulation could be.
The lines of all the baselines/timeslots are then gridded onto an image. The pixel values do not reflect
the flux of the sources, but the log of the occurrence of fringe finding. The current version of the
software does not deal with data chunks yet, i.e. it first reads the whole MS and puts the visibilities
into memory. Therefore it performs quicker on averaged datasets containing a few channels.

2.5.1 Examples

First, the LofIm and Pythonlibs environment need to be properly set:

> use Lofar

> use Cookbook

The help file of drawMS is self contained:

> drawMS -h

Options:

--version show program’s version number and exit

22http://casa.nrao.edu/release.shtml
23This sub section was kindly provided by Cyril Tasse (cyril[dot]tasse[at]obspm[dot]fr)

14

http://casa.nrao.edu/release.shtml


Figure 5: drawMS is a simple algorithm that allows to quickly recover spatial information on the
sources that have the brightest apparent flux. In this example, drawMS is run on the raw data of an
observation of the Bootes field. One can clearly see the contribution from CasA, CygA, and TauA,
while there is no direct contribution from the Sun.

-h, --help show this help message and exit

* Necessary options:

Won’t work if not specified.

--ms=MS Input MS to draw [no default]

* Data selection options:

ColName is set to DATA column by default, and other parameters select

all the data.

--ColName=COLNAME Name of the column to work on. Default is DATA. For

example: --ColName=CORRECTED_DATA

--uvrange=UVRANGE UV range (in meters, not in lambda!). Default is

0,10000000. For example: --uvrange=100,1000

--wmax=WMAX Maximum W distance. Default is 10000000.

--timerange=TIMERANGE

Time selection range, in fraction of total observing

time. For example, --timerange=0.1,0.2 will select the

second 10% of the observation. Default is 0,1.

--AntList=ANTLIST List of antennas to compute the lines for. Default is

all. For example: --AntList=0,1,2 will plot 0-n, 1-n,

2-n

15



Figure 6: Top panel: a very wide field image of the Bootes field (a few SBs), which took a long time
to be imaged because of the large field of view. Bottom panel: drawMS outputs were generated in
less than 5 minutes. Line plots show the overdensities corresponding to real sources in the image. We
can see that the coherency in the data gets partly lost before and after sunrise. This is probably due to
turbulence in the ionosphere.

--FillFactor=FILLFACTOR

The probability of a baseline/timeslot to be

processed. Default is 1.0. Useful when large dataset

are to be drawn. For example --FillFactor=0.1 will

result in a random selection of 10% of the data

* Algorithm options:

Default values should give reasonable results, but all of them have

noticeable influence on the results

16



--timestep=TIMESTEP

Time step between the different time chunks of which

the drawer does the fft. Default is 500.

--timewindow=TIMEWINDOW

Time interval width centered on the time bin

controlled by --timestep. If not defined then it is

set to --timestep.

--snrcut=SNRCUT Cut above which the fringe is drawn. Default is 5.0.

--maskfreq=MASKFREQ

When a fringe is found, it will set the fft to zero in

that 1D pixel range. Default is 2.0.

--MaxNPeaks=MAXNPEAKS

Maximum number of fringes it will find per baseline

and timeslot. Default is 7.

--NTheta=NTHETA Number of angles in the l-m plane the algorithm will

solve for. Default is 20.

* Fancy options:

Plot NVSS sources, or make a movies.

--RadNVSS=RADNVSS Over-plot NVSS sources within this radius. Default is

0 (in beam diameter).

--SlimNVSS=SLIMNVSS

If --RadNVSS>0, plot the sources above this flux

density. Default is 0.5 Jy.

--MovieName=MOVIENAME

Name of the directory that contains the movie (.mpg),

the individual timeslots (.png), and the stack

(.stack.png). Each page correspond to the data

selected by --timewindow, separated by --timestep. For

example --MovieName=test will create a directory

"dMSprods.test". Default is None.

As explained in the help file, default values should give reasonable results, but all of them have
noticeable influence on the results. However, some handy parameters that are often used are the
following: ColName (”DATA” by default, or ”CORRECTED DATA”), FillFactor (less lines, but
speedup the calculus), RadNVSS (to display the location of NVSS sources), MovieName (to generate
a time-movie), and timewindow/timestep (see help file).

Here are a few examples of drawMS possible usage. For the plot of Fig. 5, on the raw data:

/home/tasse/drawMS/drawMS --ms=name.MS

For the plot of Fig. 6, for the first part of the run, on the raw data:

drawMS --ms=name.MS --timerange=0.0,0.5 --FillFactor=0.5

and for the second part of the run:

drawMS --ms=name.MS --timerange=0.5,1.0 --FillFactor=0.5

17



Figure 7: The elevation and angular distance of the A-team from the target field centered on
B1835+62. The plot was obtained with plot Ateam elevation.py.

Time sliced animations (movies) can contain a lot of information, sometimes hard to interpret. The
following command should produce something sensible:

drawMS --ms=name.MS --snrcut=3 --timestep=100

--timewindow=300 --uvrange=100,100000 --MovieName=test

2.6 Plot Ateam elevation.py

The low frequency radio sky is dominated by a few bright sources that form the so called A-team:
CasA, CygA, VirA, TauA, HydA, HerA. The removal of these sources from the target visibilities is
very important in order to achieve high dynamic range images. A useful script providing an overview
of the elevation and distance of the A-team from a given target is plot Ateam elevation.py. On
CEP3, you can initialize this script by typing:

use Cookbook

The output of the script (see e.g. Fig. 7) should be analyzed to understand which of the A-team
sources should be subtracted from a given observation. The algorithm performing the subtraction is
called demixing and is described in Sect. 5.1.10.

2.7 Useful tools to handle Measurement Sets

2.7.1 Concatenating subbands

Sometimes it is necessary to concatenate multiple subbands (e.g. to form a single image). This can
be done in a very efficient way using the msconcat function in pyrap.tables.

> pt.msconcat ([’ms1’,’ms2’,’ms3’], newms)

18



It concatenates the MSs given in the list and creates a new MS. The concatenation is done in a so-
called virtual way, which makes it very fast. It also has the advantage that if data in the original
MSs change (e.g., by a BBS run) the concatenated MS sees those changes as well, so there is no
need to concatenate again. However, they must be re-concatenated if another column (e.g., COR-
RECTED DATA) gets added to the orginal MSs.

Note that in general the resulting MS cannot be used in the CASA environment. However, it can be
used in the casa table viewer.

2.7.2 Splitting the dataset

If you need to select just a time slice of the MS, you can use TaQL (Table Query Language); this is an
SQL-like language which works on MS, and can perform all kinds of selections (and more). A taql

command line task exists that can perform such a time slice:

> taql ’select from dataset.MS where TIME in {MJD(2009/06/11/10:00:00),

MJD(2009/06/11/13:00:00)} giving selected_data.MS

Note the use of the MJD function: time in a MS is stored in seconds of Modified Julian Day, and
the MJD function converts a date (note the CASA date convention: slashes as separator between year,
month, day and hour) to seconds MJD. The braces ({}) indicate a closed interval, and thus require a
start and end point as their arguments.

If you prefer Python, dislike the SQL syntax, or for whatever other reason, you can use a python script
split ms by time.py 24 that allows you to select part of the MS.

> python split_ms_by_time.py

The script consists of only a few lines, and is shown below:

#################################################################

# split_ms_by_time.py

#!/usr/bin/python

import pyrap.tables as pt

# on the offline cluster if you are in c ot tcsh type:

# use Casa; use Pythonlibs; use Lofar; use Casacore

# Run this program as python split_ms_by_time.py

# or Run it as ./split_ms_by_time.py if the script is executable

# Pandey:v0.0:May2010 contact: pandey[at]astro.rug[dot]nl

####### START USER ENTRY #########

# Enter the correct input and output table names below

tablename = ’abc_output.MS’

outputname = ’abc_output_junk1.MS’

# Please Enter the start and end times in hours for the output Measurement Set

24it is initialized with ’use Cookbook’

19



# relative to the start of input Measurement Set

# for example start = 1.0 means output Measurement Set will start, 1 hour from

# the start of input MS

# end = 3.0 will mean that output MS will stop 3 hours from the start of

# INPUT MS

# So output MS will have 2 hours of data in such a case

start_out = 0.1

end_out = 0.3

####### END USER ENTRY #########

print ’###############################################’

t = pt.table(tablename)

starttime = t[0][’TIME’]

endtime = t[t.nrows()-1][’TIME’]

print ’=====================’

print ’Input Measurement Set is ’+tablename

print ’Start time (sec) = ’+str(starttime)

print ’End time (sec) = ’+str(endtime)

print ’Total time duration (hrs) = ’+str((endtime-starttime)/3600)

print ’=====================’

print ’Output Measurement Set is ’+outputname

print ’Start time (relative to input ms start) = ’+str(start_out)

print ’End time (relative to input ms start) = ’+str(end_out)

print ’Total time duration (hrs) = ’+str(end_out-start_out)

print ’=====================’

print ’Now going to do the Querry to select the required time range’

t1 = t.query(’TIME > ’ + str(starttime+start_out*3600) + ’ && \

TIME < ’ + str(starttime+end_out*3600), sortlist=’TIME,ANTENNA1,ANTENNA2’)

print ’Total rows in Input MS = ’+str(t.nrows())

print ’Total rows in Output MS = ’+str(t1.nrows())

print ’Now Writing the output MS’

t1.copy(outputname, True)

t1.close()

t.close()

print ’Copying Completed... Thanks for using the script ’

print ’###############################################’

20



start and end define the time range that one wants to extract from the initial dataset, in units of hours
starting from the beginning of the observation. For example if your observation consists of 10 hours
and you want to extract from the 2nd to the 8th hours the required values are start = 1, end = 8.

2.7.3 Converting MS times to a friendly format

It is possible to convert the times given in a Measurement Set from MJD (Modified Julian Date) to a
more friendly format by using the TaQL command

dateList = pt.taql(’calc ctod(mjdtodate([select TIME from ~/SB000.MS]))’)

This will return a list with date/time strings for all cells in the TIME column. You can select only row
10 like e.g.

dateList = pt.taql(’calc ctod(mjdtodate([select TIME from

~/GER.MS limit 1 offset 10]))’)

If you have a time in a python variable timevar, you can use something like

dateList = pt.taql(’calc ctod(mjdtodate($timevar s))’)

The s is needed to tell that the MJD is in seconds.

In the first examples TaQL sees in the table that the unit of TIME is seconds.

Of course, you can give any other selection in the select command.

See http://www.astron.nl/casacore/trunk/casacore/doc/notes/199.html for more info on TaQL.

21

http://www.astron.nl/casacore/trunk/casacore/doc/notes/199.html


3 Imaging pipeline25

While the cookbook deals with all the aspects of the LOFAR image data reduction step by step,
eventually the data reduction of LOFAR observations will become automatic and will be performed
through the Standard Imaging Pipeline. The Standard Imaging Pipeline is still under development,
and its first version deployed in LOFAR Version 1.0 and 2.0 is graphically illustrated in Fig. 8.
The first standard data processing steps are encapsulated within a sub-pipeline called the Pre-processing
Pipeline, which consists of two steps:

Correlator

temporary
UV storage

temporary
UV storage

DPPP

flag, demix,
average

flag, demix,
average

DPPP

BBS

calibrate
antenna gains

apply gain
calibration

BBS

calibration
parameters

calibrator
source model

calibrate
phases, apply

BBS

flag

DPPP

deconvolve,
image

AWImager

image
storage

extract
sources

PyBDSM

local
sky model

global
sky model

find median
gain values

Parmexportcal

Calibrator pipeline

Target pre-
processing pipeline

Imaging pipeline

Figure 8: A diagram of the Standard Imaging Pipeline.

• The Calibrator Pre-Processing Pipeline, which flags the data in time and frequency, and option-
ally averages them in time, frequency, or both (the software that performs this step is labeled
DPPP - New Default Pre-Processing Pipeline, see Sect. 5). This stage of the processing also
includes a subtraction of the contributions of the brightest sources in the sky (the so called ”A-
team”: Cygnus A, Cassiopeia A, Virgo A, etc...) from the visibilities through the ’demixing’
algorithm (B. van der Tol, PhD thesis). Eventually, the solutions for the calibrator are computed,
using the BlackBoard Selfcal (BBS) system (Sect. 7) - specifically developed for LOFAR.

• The Target Pre-processing pipeline performs RFI excision and removes the contributions of the
A-team from the visibilities. This step is followed by the BBS calibration, which applies the
externally generated solutions for the calibrator to the target field. In the future, the calibration
of the complex station gains will be achieved using a local sky model (LSM). This will be
generated from the Global Sky Model (GSM), which will soon be provided by the MSSS survey.

Following the pre-processing stage, the calibrated data are further processed in the Imaging Pipeline,
which begins with an imaging step that uses the AWImager (Sect. 10). AWImager is able to perform

25This chapter is maintained by R. F. Pizzo, pizzo[at]astron[dot]nl

22



both W-projection and A-projection, a scheme that can potentially take into account all direction-
dependent effects in the deconvolution step. Source finding software (Sect. 11) is used to identify
the sources detected in the image, and generate an updated local sky model. In future versions of
the pipeline one or more ‘major cycle’ loops of calibration (with BBS), flagging, imaging, and LSM
updates will then be performed. At the end of the process, the final LSM will be used to update the
GSM, and final image products will be produced.

3.1 Running long-duration processes

Running the pipeline, or the individual sub processes, can take a long time. In this case, one could
start up the process, redirect the output and errors and put the job in the background. One could
even logout (after having “disowned” the job), to return a few hours later to see how the process is
doing. For such purpose, one can make use of the screen utility, which creates a terminal inside the
actual terminal, which behaves independently of the parent one. Logging out of the parent terminal
will leave the screen terminal running. Using the screen utility can also prevent problems caused
by accidental internet disconnections and it allows also to run multiple virtual terminals through one
login session. For more details, see Section A at the end of the manual.

23



4 The AOFlagger26

The frequencies covered by LOFAR are considerably affected by RFI, both in the low and the high
band (see Fig. 9 and 10). An efficient cleaning of the data is essential to obtain high quality images.

The AOFlagger (the algorithm executed by ”RFI Console”) is an independent flagger. It was origi-
nally written for the Epoch of Reionization key science project, which needed a flagger with better
accuracy compared to the MADFlagger technique implemented in DPPP (Chapter 5), but is since
then optimized to be accurate for any observation and was therefore put inside the LofIm environ-
ment. Several comparisons have been made between the MADFlagger and the AOFlagger, and the
consensus is that the AOFlagger is more accurate.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50  100  150  200

R
F

I (
pe

rc
en

ta
ge

)

Frequency (MHz)

RFI (median)
RFI (average)

Figure 9: The RFI distribution in most of the observable frequencies of LOFAR. It combines data
from four observations, whose RFI spectra have been given in more detail in figure 10. In most of
the frequencies, the RFI situation is benign and cause only a few percent of data loss. Towards 30
MHz and lower, RFI become harder to deal with. The high end of the HBA contain a few strong and
broadband digital broadcast transmitters.

Using the AOFlagger to flag the data and DPPP to average them afterwards seems a good strategy and
it should provide data clean enough to perform the calibration and the imaging. Recently, the flagger
has also been incorporated into DPPP (see Chapter 5). If one wants to use the default flagging settings,
it is recommended that DPPP is used directly with the AOFlagger option, because it is faster and uses
less resources compared to executing the steps separately. For details on how to run RFIconsole
within DPPP, please see Chapter 5. In the following sections, the details regarding the AOFlagger as

26The author of this Chapter is André Offringa (andre[dot]offringa[at]anu[dot]edu[dot]au).

24



 0

 5

 10

 15

 20

 25

 30  35  40  45  50  55  60  65  70  75

R
F

I (
pe

rc
en

ta
ge

)

Frequency (MHz)

(a) LBA (6 hour observation)

 0

 5

 10

 15

 20

 25

 115  120  125  130  135  140  145  150  155  160

R
F

I (
pe

rc
en

ta
ge

)

Frequency (MHz)

Total (median)
Total (average)

(b) HBA low (24 hour observation)

 0

 5

 10

 15

 20

 25

 180  185  190  195  200  205  210  215

R
F

I (
pe

rc
en

ta
ge

)

Frequency (MHz)

(c) HBA mid (1 hour observation)

 0

 5

 10

 15

 20

 25

 215  220  225  230  235  240  245

R
F

I (
pe

rc
en

ta
ge

)

Frequency (MHz)

(d) HBA high (6 hour observation)

Figure 10: The RFI in the LBA and HBA bands of LOFAR. The HBA has been split into three parts
(HBA low, mid and high), which were observed independently. Towards lower frequencies (below 30
MHz), the data are more affected by interferences. Parts of the HBA high range (around 225 MHz)
are contaminated by several broadband digital broadcast transmitters. Please note that it is unknown
whether these observations are representative of the RFI distribution in LOFAR bands. Also note that
they were partly performed during daytime.

25



independent routine are summarized.

4.1 How to run the AOFlagger

The AOFlagger runs on a measurement set and updates its flag table. This requires write access to the
measurement set, thus it can not be directly run on the raw data on the storage nodes. Since the raw
measurement sets are written using a special read-only storage manager (LofarStMan), the storage
manager needs to be changed before running the flagger. This can be done by running the following
command (e.g. for SB0.MS):

> makeFLAGwritable SB0.MS

which gives the following output

Successful read/write open of default-locked table SB0.MS: 23 columns,

91341 rows

Created new FLAG column; copying old values ...

FLAG column now stored with SSM to make it writable

It might take a few moments to rewrite the flag column. After this, your measurement set is ready
to be flagged by the AOFlagger. The fastest mode of RFI Console, called the indirect read mode,
will rewrite the data set to a temporary location. This location will be the path from where you start
RFI Console. Therefore, you have to make sure you start RFI Console from a scratch directory, for
example:

> mkdir /data/scratch/offringa/temp

> cd /data/scratch/offringa/temp

Now, you are ready to flag the set:

offringa@lce032:/data/scratch/offringa/temp$ rficonsole -indirect-read SB0.MS

The program will now run the default algorithm on the measurement set and output status messages
and progress to the console. Depending on the size of the observation, this might take up to several
hours (it might therefore be appropriate to run it inside a ’screen’, as described in Sect. A). In almost
all cases, this should produce flags which will be good enough for further reduction.

Please note that the current working directory will be used as a temporary storage location! Thus by
running RFI Console like above, temporary files will be created in /data/scratch/offringa/temp

that will take up the amount of space equal to the size of the sub-band (i.e. measurement set). So, do
not run this in your home directory but always on the local hd’s of the nodes.

Once the flagger has finished, it will print statistics of the flagged data per channel and polarization.
E.g.:

Summary of RFI per channel: (166,700,363 Hz - 166,894,149 Hz)

Channel 1- 8: 7.8% 7.8% 7.7% 7.7% 7.7% 7.7% 7.6% 7.6%

Channel 9- 16: 7.6% 7.6% 7.6% 7.6% 7.6% 7.7% 8.3% 8.7%

[..]

Channel 241-248: 7.5% 7.5% 7.5% 7.5% 7.5% 7.5% 7.6% 7.6%

Channel 249-255: 7.6% 7.6% 7.6% 7.6% 7.6% 7.5% 7.3%

Polarization statistics: XX: 3.3%, XY: 3.3%, YX: 3.3%, YY: 3.4%

26



After having ran RFI Console, the next step will normally be to use DPPP to average the data. When
averaging a measurement set that has been flagged by the AOFlagger, your DPPP parset should not
have any flagging steps in it.

4.2 Advanced settings with RFI Console

In this chapter, some techniques will be described which might be helpful when the default strategy
is not good enough or when you would like to analyze the RFI and/or the flag results more closely.

4.2.1 Visualizing RFI and flags

A useful tool to analyze the RFI and flags in a measurement set is the “RFI Gui”. To start it, make
sure you have your X forwarded and start it with:

> rfigui

In the RFI Gui, there are options to alter flagging parameters, compare flags of different strategies,
image individual baselines and several plotting options. For further explanation, refer to the RFI Gui
tutorial and the references therein, which can be found on the following address:

http://www.astro.rug.nl/rfi-software/gui-tutorial.html

4.2.2 Changing flagging parameters

If you would like to change the flagger settings outside of the RFI Gui, it is possible to change RFI
Console’s strategy by creating a configuration file and change the flagger’s settings in it.

You can create such a file with:

> rfistrategy default mystrategy.rfis

This will create a file named mystrategy.rfis. Settings can be changed in two ways, either by:

• adding parameters to the rfistrategy executable. Run rfistrategy without parameters to
get a list of options;

• or manually changing the file and altering the parameters. The strategy file is an xml text file,
and can be edited by hand with any text editor such as nano or emacs.

Once you have completed the alternative strategy, you can run it with:

> rficonsole -strategy mystrategy.rfis SB0.MS

4.2.3 RFI Console’s parameters

The RFI Console program can also take additional parameters. These can be retrieved by running the
RFI Console program without commands. One useful option is to specify the number of threads to
be used. This can be done through the -j option:

27

http://www.astro.rug.nl/rfi-software/gui-tutorial.html


> rficonsole -indirect-read -j 8 SB0.MS

In this case, we would use 8 threads to flag the data instead of 4, which is the default. More threads
will require more memory. More than 8 threads on the clusters slow down the process, therefore it is
not recommended.

Another option is to flag based on data in the CORRECTED DATA column, instead of the default DATA
column. This can be done with the -column option:

> rficonsole -column CORRECTED_DATA SB0.MS

With this option, you can flag the corrected data created by BBS. While this fixes bad solutions,
flagging corrected data (with any flagger) might not be a good approach, thus this option is BEING
TESTED.

4.2.4 Using the direct reading mode

Since AOFlagger used to be limited by IO seeking and not by cpu performance, the indirect read
approach was implemented in which a measurement set is written to a temporary location in a different
order. The increase in speed on large sets is on the order of several factors, typically around 3 or 4
times. If you do not want RFI Console to rewrite the set, you can leave out the “indirect-read” option.

4.2.5 Flagging of bad baselines

A new feature has been recently implemented in RFI Console. At the end of each flagging run, it
finds baselines which seems to behave abnormally. The program tries to establish a smooth RFI vs.
baseline-length curve as in Fig. 11, estimates a standard deviation of the baselines to this curve, and
clips baselines above some threshold, which is defaulted to 6 times the standard deviation.

Currently, RFI Console does not write the flags back to the MS, as it is important to test the new
functionality. For the moment, RFI Console writes to the terminal which baselines look bad. For the
observation analyzed in Fig. 11, the output looks like this:

Baseline CS002LBA x CS501LBA looks bad: 0% rfi

(zero or above 40% abs threshold)

Baseline CS002LBA x CS401LBA looks bad: 0% rfi

(zero or above 40% abs threshold)

Baseline CS002LBA x CS302LBA looks bad: 0% rfi

(zero or above 40% abs threshold)

[...]

Estimated std dev for thresholding, in percentage of RFI: 0.09%

Baseline CS030LBA x CS103LBA looks bad: 1.69% rfi,

10.7*sigma away from est baseline curve

Baseline CS001LBA x CS030LBA looks bad: 1.34% rfi,

6.9*sigma away from est baseline curve

Baseline CS005LBA x CS201LBA looks bad: 1.51% rfi,

9*sigma away from est baseline curve

Found 19/136 bad baselines: CS002LBAxCS501LBA, CS002LBAxCS501LBA,

CS002LBAxCS401LBA, CS002LBAxCS302LBA, CS002LBAxCS301LBA,

CS002LBAxCS201LBA, CS002LBAxCS103LBA, CS002LBAxCS032LBA,

28



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  500  1000  1500  2000  2500  3000  3500  4000

P
er

ce
nt

ag
e 

R
F

I

Baseline length (meters)

Smoothed values
Threshold

Accepted baselines
Rejected baselines

Figure 11: The percentage of RFI vs baseline length for sub band 127 of the observation
L2010 08567. The bad baselines (in purple) will be reported in the output of RFI Console.

CS002LBAxCS101LBA, CS002LBAxCS030LBA, CS002LBAxCS024LBA,

CS002LBAxCS021LBA, CS001LBAxCS002LBA, CS002LBAxCS003LBA,

CS002LBAxCS004LBA, CS002LBAxCS005LBA, CS002LBAxCS007LBA,

CS030LBAxCS103LBA, CS001LBAxCS030LBA, CS005LBAxCS201LBA

In the case you would like to apply the flaggings suggested by RFI Console to the measurement set,
you can create a strategy file and change the two occurrences of
<flag-bad-baselines>0</flag-bad-baselines>

to
<flag-bad-baselines>1</flag-bad-baselines>.
This will make it unnecessary for you to create a new DPPP.parset to perform the baseline flagging.

4.3 Documentation

The properties and performance of the AOFlagger have been described in the following papers:

• Post-correlation radio frequency interference classification methods, Offringa et al., MNRAS,
Volume 405, Issue 1, pp. 155-167 (http://arxiv.org/abs/1002.1957).

• A LOFAR RFI detection pipeline and its first results, A.R. Offringa et al., Proceedings of Sci-
ence, RFI2010 (http://arxiv.org/abs/1007.2089).

29

http://arxiv.org/abs/1002.1957
http://arxiv.org/abs/1007.2089


5 The Default Pre-Processing Pipeline (DPPP)27

DPPP (default pre-processing pipeline) is the flagging and averaging routine for LOFAR data. It is
capable of flagging the data (using various flaggers, including the AOFlagger - Sect. 4) and average
them to produce data sets clean of RFI and ready for the calibration.

Recently DPPP has been updated to incorporate a fast gain calibration step. Calibration with DPPP is
described in Chapter 6.

DPPP can perform the following operations (see following sections for more details):

1. Flagging (automatic or manual)

2. Averaging in time and/or frequency

3. Phase shift to another phase center

4. Count flags and writing the counts into a table for plotting purposes.

5. Combine subbands into a single MeasurementSet

6. Demix and subtract A-team sources

7. Add stations to form a superstation

8. Filter out baselines and/or channels

9. Predict a sky model

10. Apply the LOFAR beam model

11. Do gain calibration

12. Apply calibration solutions

13. An arbitrary step defined in user code (C++ or Python)

Each of these operations works on the output of the previous one in a streaming way (thus without
intermediate writes to disk). The steps can be combined in any way. The same type of step can be
used multiple times with probably different parameters.

The ability to execute an arbitrary DPPP step is implemented by means of dynamically loadable
shared libraries. It is described in more detail in Sect. 5.4.

The input to DPPP is any (regularly shaped) MeasurementSet (MS). Regularly shaped means that
all time slots in the MS must contain the same baselines and channels. Furthermore, the MS should
contain only one spectral window; for a multiband MS this can be achieved by specifying which
spectral window to use. The data in the given column are piped through the flagging and averaging
steps defined in the parset file (See Sect. 5.2) and finally written. This makes it possible to e.g. flag
at the full resolution, average, flag on a lower resolution scale, perform more averaging, and finally
write the data to a new MeasurementSet.

The output can be a new MeasurementSet, but it is also possible to update the flags or data in the
input. When averaging or phase-shifting to another phase center is done, the only option is to create
a new MeasurementSet.

27This section is maintained by Ger van Diepen (diepen[at]astron[dot]nl) and David Rafferty
(rafferty[at]strw[dot]leidenuniv[dot]nl).

30



It is possible to combine multiple MeasurementSets into a single spectral window. In this way mul-
tiple subbands can be combined into a single MeasurementSet. Note this is different from pyrap’s
msconcat command, because msconcat keeps the individual spectral windows, while DPPP com-
bines them into one.

Detailed information on DPPP can be found here28. For specific questions regarding this software,
you can contact the software developers, Tammo Jan Dijkema (dijkema[at]astron.nl) or Ger van
Diepen (diepen[at]astron.nl).

5.1 Various ways to use DPPP

Several operations can be done using DPPP varying from copying a MeasurementSet to combining
several MeasurementSets and from simple or advanced flagging to phase-shifting the data to another
phase reference direction.

5.1.1 Basic usage

To run DPPP, you should specify in a parset file (see Sect 5.2) which are the operations to perform
on the data and which are the parameters that you want to use. You can copy this DPPP.parset file
into your working directory by typing:

cp /globaldata/COOKBOOK/Parset/DPPP.parset .

After this preparation, you can make the LOFAR software available and run the task by typing:

> use LofIm

> DPPP

If no argument is given, DPPP will execute the DPPP.parset file. If a parset file has a different name,
it can be given as argument to the DPPP command like:

> DPPP some.parset

It is possible to override any in the parset file by adding them to the command line:

> DPPP some.parset msin=other.MS msout=other-avg.MS

Outputs are printed to screen, including the percentage of data that have been flagged for each antenna
and frequency channel.
The next sections contain some examples of parset files. They only show a subset of the available
parameters.

5.1.2 Copy a MeasurementSet and calculate weights

The raw LOFAR MeasurementSets are written in a special way. To make them appear as ordinary
MeasurementSets a special so-called storage manager has been developed, the LofarStMan. This
storage manager is part of the standard LOFAR software, but not of a package like CASA. To be able
to use CASA to inspect the raw LOFAR data, a copy of the MeasurementSet has to be made which
can be done with a parset like:

28http://www.lofar.org/wiki/doku.php?id=public:user_software:ndppp

31

http://www.lofar.org/wiki/doku.php?id=public:user_software:ndppp
http://www.lofar.org/wiki/doku.php?id=public:user_software:ndppp


msin = in.ms

msin.autoweight = true

msout = out.ms

steps = []

Apart from copying the input MS, it will also flag NaNs and infinite data values. Furthermore the
second line means that proper data weights are calculated using the auto-correlations. The latter is
very useful, because the LOFAR online system only calculates simple weights from the number of
samples used in a data value.

5.1.3 Count flags

The percentages of flagged data per baseline, station, and frequency channel can be made visible
using:

msin = in.ms

msout =

steps = [count]

The output parameter is empty meaning that no output will be written. The steps parameter defines
the operations to be done which in this case is only counting the flags.

5.1.4 Preprocess a raw LOFAR MS

The following example is much more elaborate and shows how a typical LOFAR MS can be prepro-
cessed.

msin = in.ms

msin.startchan = nchan/32 #1

msin.nchan = nchan*30/32

msin.autoweight = true

msout = out.ms

steps = [flag,avg] #2

flag.type = aoflagger #3

flag.memoryperc = 25

avg.type = average #4

avg.freqstep = 60

avg.timestep = 5

1. Usually the first and last channels of a raw LOFAR dataset are bad and excluded. Because
the number of frequency channels of a LOFAR observations can vary (typical 64 or 256), an
elaborate way is used to specify the first and number of channels to use. They are specified as
expressions where the ’variable’ nchan is predefined as the number of input channels.

2. Two operations have to be done: flagging followed by averaging. The parameters for these
steps are specified thereafter using the step name. Note that a step name can be anything, but
for clarity meaningful names should be used.

3. A step is defined by various parameters. Their names have to be prefixed with the step name.
In this way it is possible to have multiple steps of the same type in a single DPPP run.

32



First the type of step has to be defined, because the name is only a name. In this case the
aoflagger is used, an advanced data flagger developed by André Offringa. This flagger works
best for large time windows, so it tries to collect as many data in memory as possible. However,
to avoid memory problems this step will not use more than 25% of the available memory.

4. The next step is averaging the data, 60 channels and 5 time slots to a single data point. Averag-
ing is done in a weighted way. The new weight is the sum of the original weights.

In DPPP the data flows from one step to another. In this example the flow is read-flag-average-write.
The data of a time slot flows to the next step as soon as a step has processed it. In this case the flag
step will buffer a lot of time slots, so it will take a while before the average step receives data. Using
its parset parameters, each step decides how many data it needs to buffer.

5.1.5 Update flags using the preflagger

The preflagger step in DPPP makes it possible to flag arbitrary data, for example baselines with
international stations.

msin = in.ms

msout =

steps = [flag]

flag.type = preflagger

flag.baseline = ![CR]S*

No output MS is given meaning that the input MS will be updated. Note that the msout always needs
to be given, so one explicitly needs to tell that an update should be done.
The preflagger makes it possible to flag data on various criteria. This example tells that baselines
containing a non core or remote station have to be flagged.
Note that in this way the baselines are flagged only, not removed. The Filter step described hereafter
can be used to remove baselines or channels.

5.1.6 Remove baselines and/or channels

The filter step in DPPP makes it possible to remove baselines and/or leading or trailing channels. In
fact, it should be phrased in a better way: to keep baselines and channels. An output MS name must
be given, because data are removed physically.

msin = in.ms

msout = out.ms

steps = [filter]

filter.type = filter

filter.baseline = [CR]S*

If this would be the only step, it has the same effect as using msselect with deep=true.
The filter step might be useful to remove, for example, the superterp stations after they have been
summed to a single superstation using a stationadder step.

The filter step has the capability (using the remove parameter) to remove the stations not being used
from the ANTENNA subtable (and other subtables) and to renumber the remaining stations. This will
also remove stations filtered out in previous steps (e.g., msselect), even if the filter step itself does
not filter on baseline. In this way it can be used to ’normalize’ a MeasurementSet.

33



5.1.7 Combining stations into a superstation

The stationadder step in DPPP makes it possible to add stations incoherently forming a superstation.
This is particularly useful to combine all superterp stations, but can, for instance, also be used to add
up all core stations.
This step does not solve or correct for possible phase errors, so that should have be done previously
using BBS. However, this might be added to a future version of DPPP.

msin = in.ms

msout = out.ms

steps = [add]

add.type = stationadder

add.stations = {CSNew:[CS00[2-6]*]}

This example adds stations CS002 till CS006 to form a new station CSNew. The example shows that
the parameter value needs to be given in a Python dict-like way. The stations to be added can be given
as a vector of glob patterns. In this case only one pattern is given. Note that the wildcard asterix is
needed, because the station name ends with LBA or HBA (or even HBA0 or HBA1).

In the example above the autocorrelations of the new station are not written. That can be done by
setting parameter autocorr. By default they will be calculated from by summing the autocorre-
lations of the input stations. By setting parameter sumauto to false, they are calculated from the
crosscorrelations of the input stations.

5.1.8 Update flags for NaNs

Currently it is possible that BBS writes NaNs in the CORRECTED DATA column. Such data can
easily be flagged by DPPP.

msin = in.ms

msin.datacolumn = CORRECTED_DATA

msout = .

steps = []

DPPP will always test the input data column for NaNs. However, if no steps are specified, DPPP will
not update the flags in the MS. An update can be forced by defining the output name as a dot. Giving
the output name the same name as the input has the same effect.

5.1.9 Creating another data column

When updating a MeasurementSet, it is possible to specify another data column. This can, for in-
stance, be used to clone the data column.

msin = in.ms

msin.datacolumn = DATA

msout = .

msout.datacolumn = CORRECTED_DATA

steps = []

In this way the MeasurementSet will get a new column CORRECTED DATA containing a copy of
DATA. It can be useful when thereafter, for example, a python script operates on CORRECTED DATA.

34



Figure 12: Top:the elevation and angular distance of the A-team from the target field centered on
B1835+62. This plot shows that during this observation CygA and CasA are very high in elevation
and pretty close to our target (24 and 33 degrees, respectively). Bottom left: target visibilities before
demixing - the interference of Cas A and Cyg A with the target visibilities is the cause of the bump
in the data in the second part of the observation. Bottom right: the contributions of the two A-tam
sources is gone. This is particularly evident in the second part of the observation.

5.1.10 Demixing

The so-called ”demixing” procedure should be applied to all LBA (and sometimes HBA) data sets
to remove from the target visibilities the interference of the strongest radio sources in the sky (the so
called A-team: CasA, CygA, VirA, etc...). Removing this contribution is essential to make it possible
to properly calibrate the target field. To understand whether demixing is needed for your data, you are
suggested to inspect the elevation of the A-team sources during your observation. By combining this
information with the angular distance of the A-team from your target, you can have a clear picture

35



of how critical is to apply this algorithm to your data to improve the calibration and imaging of the
visibilities. This overview is provided by the script plot Ateam elevation.py, which is described
in Sect. 2.6.

There are two ways to do the demixing:

• The old demixer will demix in the same way for the entire observation without taking temporal
variations into account. One can define:

– The baselines to use.

– The (A-team) sources to solve for and to subtract.

– If the target has to be ignored, solved or deprojected.

– Possibly different time and frequency averaging factors to use for demix and subtract.

• Recently a new demixing scheme (designed by Reinout van Weeren) has been added to DPPP.
Basically it works the same as the old demixer, but for each time window it estimates the data
by evaluating a rough model of the A-team sources and target. Using those data it tests which
sources have to be demixed, which baselines should be used, and if the target has to be ignored,
solved, or deprojected. The LOFAR beam is taken into account in estimate, solve, and subtract.
In this scheme one can specify:

– A detailed model of the A-team sources to be used in the solve/subtract.

– A rough model of the A-team sources to be used in the estimation. If not given, the
detailed model is used.

– A model of the target field which can be obtained using e.g. gsm.py.

– The baselines to be used in the demixer. Note that the estimation step might exclude
baselines for a given time window.

– Various threshold and ratio values to test which sources, etc. to use.

Below, an example old demixer parset is given:

msin = in.ms

msout = out.ms

steps = [demix]

demix.type = demixer

demix.subtractsources=[CygA, CasA, VirA]

demix.targetsource=3C196

demix.freqstep=16

demix.timestep=10

Following this example, the source models of CygA, CasA, and VirA will be subtracted with the gain
solutions calculated for them. The target source model is also used to get better gain solutions for the
A-team sources.

If no source model is given for the target, the target direction is projected away when calculating the
gains. This should not be done if an A-team source is close to the target. Currently, Science Support
is investigating how close it can be. If too close, one should specify

demix.ignoretarget=true

Examples of demixing performance on real data are given in Figure 12.

36



5.1.11 Combine MeasurementSets

For further processing it can be useful to combine preprocessed and calibrated LOFAR Measure-
mentSets for various subbands into a single MeasurementSet. In this way BBS can run faster and can
a single image be created from the combined subbands.

msin = somedirectory/L23456_SAP000_SB*_uv.MS.dppp

msin.datacolumn = CORRECTED_DATA

msin.baseline = [CR]S*&

msout = L23456_SAP000_SBcomb_uv.MS.dppp

steps = []

The first line shows that a wildcarded MS name can be given, so all MeasurementSets with a name
matching the pattern will be used. The data of all subbands are combined into a single subband and
the meta frequency info will be updated accordingly.
The second line means that the data in the CORRECTED DATA column will be used and written as
the DATA column in the output MS.
The third line means that only the cross-correlations of the core and remote stations are selected and
written into the output MS. Note this is different from flagging the baselines as shown in the preflagger
example. Input selection means that non-matching baselines are fully omitted, while the preflagger
only flags baselines.
Note that no further operations are needed, thus no steps are given. However, it is perfectly possible
to include any other step. In this case one could use count.

It is important to note that subbands to be combined should be consecutive, thus contiguous in fre-
quency. Otherwise BBS might not be able to handle the MS. This means that the first and last channels
of an MS should not be removed, but flagged instead using the preflagger.

5.1.12 Advanced multi-step example

The following example is more elaborate. It flags (using a median flagger), averages all channels,
flags the result of the average, and finally averages in time.
Note that this is not meant to be the default parset file that you could use on your data. To produce the
appropriate parset file to run on your observation, you should first inspect the data and decide which
parameters are needed to perform an efficient flagging.

#####################################################

#

# DPPP.parset

#

msin = ~/SB0.MS

msin.startchan = 8

msin.nchan = 240

msin.datacolumn = DATA # is the default

msin.autoweight = true # to calculate the proper weights

# from the autocorrelations

msout = "SB0_DPPP.MS" # if empty, the input MS is updated and

# no averaging steps can be done

msout.datacolumn = DATA # is the default

37



steps = [preflag,flag1,count,avg1,flag2,avg2,count]

preflag.type=preflagger

# This step will flag the autocorrelations.

# Note that they are not flagged by default by DPPP.

preflag.corrtype=auto

# Detect RFI using a median flagger

flag1.type=madflagger

flag1.threshold=4

flag1.freqwindow=31

flag1.timewindow=5

flag1.correlations=[0,3] # only flag on XX and YY

avg1.type = squash # synonym for average

avg1.freqstep = 256 # average a factor of 256 in frequency

avg1.timestep = 1 # is the default; no averaging in time

# Do another median flagging step on the averaged data

flag2.type=madflagger

flag2.threshold=3

flag2.timewindow=51

# Compress in time.

avg2.type = squash

avg2.timestep = 5 # average a factor of 5 in time

Note that the count step counts percentages of data flagged until this step. Each flag step also shows
percentages of data flagged, but only by that flag step.
Because the default step type is the name of the step, the count step does not need further parameters.
However, it is possible to specify some.

5.2 The ParSet File

As shown in the examples in the previous section, the steps to perform the flagging and/or averaging
of the data have to be defined in the parset file. The steps are executed in the given order, where the
data are piped from one step to the other until all data are processed. Each step has a name to be
used thereafter as a prefix in the keyword names specifying the type and parameters of the step. An
extensive description of the parameters which can be set in the parset file is given in the following
sections.

The name of the parset file needs to be given as the first (and only) argument to the DPPP command.
It defaults to DPPP.parset.

A description of all the parameters that can be used in DPPP can be found online at the address

http://www.lofar.org/wiki/doku.php?id=engineering:software:tools:ndppp.

38

http://www.lofar.org/wiki/doku.php?id=engineering:software:tools:ndppp


5.2.1 Input / output parameters

A description of the input/output parameters of DPPP is given below.

msin The msin step defines which MS and which DATA column to use. It is possible to skip leading
or trailing channels. It sets flags for invalid data (NaN or infinite). Dummy, fully flagged data
with correct UVW coordinates will be inserted for missing time slots in the MS. Missing time
slots at the beginning or end of the MS can be detected by giving the correct start and end time.
This is particularly useful for the imaging pipeline where BBS requires that the MSs of all sub
bands of an observation have the same time slots. When updating an MS, those inserted slots
are temporary and not put back into the MS.

When combining multiple MSs into a single one, the names of the input MSs can be given in
two ways using the msin argument.

– The name can be wildcarded as done in, say, bash using the characters *, ?, [], and/or .
The directory part of the name cannot be wildcarded though. For example,

msin=L23456\_SAP000\_SB*\_uv.MS

– A list of MS names can be given like msin=[in1.ms, in2.ms].

The MSs will be ordered in frequency unless msin.orderms=false is given.

It is possible to select baselines to use from the input MS. If a selection is given, all baselines
not selected will be omitted from the output. Note this is different from the Preflagger where
data flags can be set, but always keeps the baselines.

LOFAR data are written and processed on the CEP2 cluster in Groningen. This cluster consists
of the head node lhn001 and the compute/storage nodes locus001..100. Different subbands are
stored on different nodes, and it may be necessary to search them all for the required data.
MeasurementSets are named in the format LXXXXX SAPnnn SBmmm uv.MS, where L stands for
LOFAR, XXXXX is the observation number, nnn is the subarray pointing (beam), and mmm is
the subband.
For example, /data/L32667 SAP000 SB010 uv.MS

msout The msout step defines the output. The input MS is updated if an emtpy output name is given.

Data should be written to /data/scratch/<username> (which may need creating initially).
Output data should not be written back to the storage disks. Also, do not write output data to
/home/<user name>, as space is very limited on this disk.

You can let DPPP create a so-called VDS file, which tells other data processing programs (no-
tably, BBS and mwimager) where the data live. You need a so-called cluster description file for
this. These can be found in /globaldata/COOKBOOK/files.
(For the curious, the cluster description is a simple ASCII file that should be straightforward to
understand).

5.2.2 Flagging

The properties of the flagging performed through DPPP can be summarized as follows.

• If one correlation is flagged, all correlations will be flagged.

39



• The msin step flags data containing NaNs or infinite numbers.

• A PreFlagger step can be used to flag (or unflag) on time, baseline, elevation, azimuth, simple
uv-distance, channel, frequency, amplitude, phase, real, and imaginary. Multiple values (or
ranges) can be given for one or more of those keywords. A keyword matches if the data matches
one of the values. The results of all given keywords are AND-ed. For example, only data
matching given channels and baselines are flagged.

Keywords can be grouped in a set making it a single (super) keyword. Such sets can be OR-ed
or AND-ed. It makes it possible to flag, for example, channel 1-4 for baseline A and channel
34-36 for baseline B. Below it is explained in a bit more detail.

• A UVWFlagger step can be used to flag on UVW coordinates in meters and/or wavelengths. It
is possible to base the UVW coordinates on a given phase center. If no phase center is given,
the UVW coordinates in the input MS are used.

• A MADFlagger step can be used to flag on the amplitudes of the data. It flags based on the
median of the absolute difference of the amplitudes and the median of the amplitudes. It uses a
running median with a box of the given size (number of channels and time slots). It is a rather
expensive flagging method with usually good results.

It is possible to specify which correlations to use in the MADFlagger. Flagging on XX only,
can save a factor 4 in performance.

• An AOFlagger step can be used to flag using the AOFlagger. Usually it is faster than using
rficonsole itself, because it does not reorder the data. Instead it flags in a user-defined time
window. It is possible to specify a time window overlap to reduce possible edge effects. The
larger the time window, the better the flagging results. It is possible to specify the time window
by means of the amount of memory to be used.
The flagging strategy can be given in an rficonsole strategy file. Such a file should not contain a
’baseline iteration’ command, because DPPP itself iterates over the baselines. Default strategy
files exist for LBA and HBA observations (named LBAdefault and HBAdefault).
Note that the AOFlagger flags more data if there is a large percentage of zero data in the
time window. This might happen if zero data is inserted by DPPP for missing time slots in a
MeasurementSet or for missing subbands when concatenating the MeasurementSets of multiple
subbands.
By default the QUALITY subtables containing flagging statistics are written. They can be
inspected using aoqplot.

5.2.3 Averaging

The properties of the averaging performed through DPPP can be summarized as follows.

• Unflagged visibility data are averaged in frequency and/or time taking the weights into account.
New weights are calculated as the sum of the old weights.

Some older LOFAR MSs have weight 0 for unflagged data points. These weights are set to 1.

• The UVW coordinates are also averaged (not recalculated).

• It fills the new column LOFAR FULL RES FLAG with the flags at the original resolution for
the channels selected from the input MS. It can be used by BBS to deal with bandwidth and
time smearing.

40



• Averaging in frequency requires that the average factor fits integrally. E.g. one cannot average
every 5 channels when having 256 channels.

• When averaging in time, dummy time slots will be inserted for the ones missing at the end. In
that way the output MeasurementSet is still regular in time.

• An averaged point can be flagged if too few unflagged input points were available

5.2.4 Combining PreFlagger keywords into sets

The PreFlagger supports the selection on numerous keywords. See the parset description below for a
list of all keywords.
A single keyword can have multiple values, for example baseline=[ [RT0,RT1],[RT0,RT2] ]

specifies two baselines. A data point matches a keyword if it matches one of the values. This is
effectively an OR.
The given keywords are AND-ed, thus a data point is only flagged if all keywords match. It makes
it possible to express something like: flag frequencies 20-30 MHZ for baselines containing remote
stations like:

steps=[flag]

flag.type=preflagger

flag.freqrange=[20..30MHz]

flag.baseline=[RS*]

In query languages it is common to combine selections using AND and OR operators. The PreFlagger
supports this idiom as well. Multiple PreFlagger sets can be defined, each with its own keywords and
values. The sets can be combined using the following operators or their synonyms (in decreasing
order of precedence). Parentheses can be used to change the order of precedence.

NOT !
AND & & &
OR | | | ,

Using such a set expression it is possible to also flag frequencies 110-140 MHz for all core-core
baselines.

steps=[flag]

flag.type=preflagger

flag.sets=s1 or s2 # could also be given as s1,s2

flag.s1.freqrange=[20..30MHz]

flag.s1.baseline=[RS*]

flag.s2.freqrange=[110..140MHz]

flag.s2.baseline=[[CS*,CS*]]

This example shows that each set has a name (in this case s1 and s2), that has to be used as an extra
prefix in the names of the keywords in that set. It makes it possible to nest set expressions to any
depth. For example, s2 could have a sets keyword as shown below. Note that s2 matches if all its
keywords match, thus if the freqrange, baseline, and s2a or s2b matches.

steps=[flag]

flag.type=preflagger

41



flag.sets=s1 or s2 # could also be given as s1,s2

flag.s1.freqrange=[20..30MHz]

flag.s1.baseline=[RS*]

flag.s2.freqrange=[110..140MHz]

flag.s2.baseline=[[CS*,CS*]]

flag.s2.sets=s2a || s2b

flag.s2.s2a.timeofday=23:55:00..0:05:00 # around midnight

flag.s2.s2b.elevation=0deg..10deg

5.3 MSSelection, antenna/baseline syntax

In order to select particular baselines, antennas, and baseline lengths, DPPP uses the CASA baseline
selection syntax. Its properties are reported in the following.

• Whitespace can be given at will.

• The selection is given as a list of groups separated by semicolons. A group can be preceded by
an exclamation mark meaning exclusion. It can be used to exclude part of a previous group. If
desired, part of that excluded group can be selected again in a subsequent group.
Note that the OR relation is used for ordinary groups, while AND is used for excluded groups.
For example:

group1; group2; !group3; group4; !group5

means

group1 OR (group2 AND NOT group3) OR (group4 AND NOT group5)

• A group contains baseline specifications that can be given in two ways: using antenna
names/numbers or using physical baseline length ranges

5.3.1 Antenna names/numbers

• A group consists of one or two lists of antenna specifications separated by an operator telling
which correlations to use.

1. & means cross-correlations only.

2. && means cross- and auto-correlations.

3. &&& means auto-correlations only (no second list can be given in this case).

If no second list is given, all baselines between the antennae in the first list are selected, other-
wise the baselines between the antennae in the first and second list.
If a single list without operator is given, all cross-correlation baselines containing the given
antennae are selected.

• An antenna list consists of one or more antenna names and/or numbers separated by commas.
An antenna number is the index (row number) in the ANTENNA sub table of a MeasurementSet.

42



• An antenna name can contain the following characters:
alphabetic digit : . + −
The first character cannot be a digit.
However, any character (thus also pattern characters) can be used in a name if it is escaped by
preceding it with a backslash.

• Antennae can be specified with a pattern as used in a shell for file names. Such a pattern has
the following special characters:

1. * means zero or more characters

2. ? means a single character

3. square brackets give a choice of characters. A hyphen can be used for ranges and an up-
arrow for negation. For example:

[a-zA-Z0-9] a single letter or digit.
[abcde] one of these 5 letters.
[∧abcde] not one of these letters.

4. curly braces indicate a choice of strings (separated by commas). For example:
′∗{h,cc}′ for any name ending inh or cc

As shown in the last example a pattern has to be enclosed in single or double quotes if it
contains a comma (or possibly other special characters).

• An antenna name can be given as an extended regular expression if enclosed in slashes29. For
example:

/CS.∗HBA.∗/ for all HBA core stations.
Note this could somewhat easier be given as a pattern: CS∗HBA∗

• An antenna number can be a single number or a range with the tilde (∼) as separator. The end
value is inclusive. For example:

0∼5,10∼12,18,20

• An antenna name, pattern, or regex can be preceded by a up-arrow / caret (∧) meaning negation.
For example:

∧[CR]S∗ for all international stations (i.e., no CS* and RS*)
Note there is quite a difference between the negations with ∧ and !. The first one applies to a
station name/pattern, the second to the entire group. For example:

∧CS∗& selects all cross-correlations between non-core stations.
!CS∗& selects all baselines not being a cross-correlation between core stations.
!CS∗&&∗ selects all baselines except those between a core and any other station.

In the second example the auto-correlations between core stations are also selected as well as
the baselines between core stations and remote or international stations. This is not the case in
the first example. The third example is almost the same as the first one, but it also selects the
auto-correlations of the remote and international stations.

5.3.2 Physical baseline length

• A group consists of one or more baseline length specifications separated by commas. A speci-
fication can be one of the following.

29 See the man pages on the web (e.g., http://www.regular-expressions.info) for more info on regular expres-
sions

43



1. < value

all baselines with physical length ≤ the given value.

2. > value

all baselines with physical length ≥ the given value.

3. value1 ∼ value2

all baselines with physical length ≥ value1 and ≤ value2.

• A value is an integer or floating-point number, optionally followed by a unit. The default unit
is m (meter). If in a range value2 has a unit, value1 defaults to that unit. It is not allowed to
have a unit for value1, while not having one for value2.

• Note there is some ambiguity between a range of antenna numbers and a range of baseline
lengths. A range of integer numbers represents antenna numbers, while a range of floating
point numbers represents baseline lengths. An integer number followed by a unit is also seen
as a floating-point number.
A range containing an integer and a floating number is not allowed.

5.3.3 Some examples

Some examples of baseline/antenna selection are reported in the following.

CS∗
all baselines containing core stations.

∧[CR]S∗&
all cross-correlation baselines between international stations.

∧[CR]S∗&; !DE601∗ & DE605∗
all cross-correlation baselines between international stations, except Effelsberg-Jülich.

!CS∗
all baselines not being a cross-correlation between core stations.

CS∗ &

all cross-correlations between core stations.

CS∗ & RS∗
all cross-correlations between core and remote stations.

CS∗ & [CR]S∗
CS∗ & CS∗,RS∗
CS∗&; CS∗&RS∗

all cross-correlations between core and core or remote stations. The lines give various ways to specify
it (in order of performance).

![CR]S∗ &&

all baselines containing European stations

44



CS∗ && RS∗; ! CS001 & RS∗; CS001 & RS001

all cross- and auto-correlations between core and remote. However, the baselines between CS001 and
remote stations are excluded with the exception of the baseline between CS001 and RS001.

1∼5
1,2,3,4,5

all cross-correlations baselines containing station numbers 1 till 5.

100.∼500.m
100.∼500.
100m∼500m
.1 ∼.5km

all baselines with a physical length between 100 and 500 meter.

<1km; !100∼200m
baselines with a length ≤ 1000 meter with the exception of lengths between 100 and 200 meter.

<1km; !RT[56]

baselines with a length ≤ 1000 meter except baselines containing RT5 or RT6.

5.4 Arbitrary User DPPP Step

Besides the predefined DPPP steps like AOFlagger, Averager, etc., it is possible to use any user-
defined DPPP step. Such a step has to reside in a shared library, that will dynamically be loaded by
DPPP. The name of such a shared library has to be the step type name (without the prefix lib). DPPP
will try to load a library libxxx.so (or .dylib on OS-X) when a step type xxx is unknown.

To make this a bit more flexible it is possible to define multiple steps in a single shared library. In
such a case the step type name has to consist of 2 parts separated by a dot. The first part is the library
name, the second part the step type in that library.
For example:

steps=[averager, mystep1, mystep2]

mystep1.type = mystep.stepa

mystep2.type = mystep.stepb

defines two user steps. Both step implementations reside in library libmystep.so. An example of
a dynamically loaded step can be found in the LOFAR source code repository in LOFAR/CEP/DPP-
P/TestDynDPPP.

5.4.1 User Step in Python

The mechanism described above is used to make it possible to implement a user step in Python. The
step type has to be pythondppp which has the effect that the library libpythondppp.so will be
loaded. This library will look for two specific parset keys:

• stepname.python.module

defines the Python module to be loaded. If the module name is not given, it defaults to the class
name.

45



• stepname.python.class

defines the class in that module to be used.

Note it is possible that a single Python module contains multiple classes.

The Python class has to be derived from DPStep which forms the superclass for all DPPP steps
implemented in Python. A few functions must be implemented in the subclass. They are similar to
the virtual functions in the C++ base class DPStep.

• init (self, parsetDict)

is the constructor. It receives a dict containing the parset keys and values for this step. It must
call the constructor of the superclass and can thereafter process the parset.

• updateInfo(self, dpinfo)

handles the meta data. It receives a dict containing the meta data describing the observation.
The names of the keys in the dict are the same as the names of the data members in the C++
class DPInfo without the prefix its. The step must return a dict with possibly changed meta
data. Usually this dict can be empty, but when e.g. averaging is done, the step changes meta
data like number of channels which must be returned in the dict.
The function can allocate the arrays needed in the process function described below.

• process(self, time, exposure)

is the heart of the step class. It is called for each time slot to process data for the baselines, chan-
nels, and polarisations in that time slot. It receives the time (MJD in sec) and exposure (sec).
The data that are needed can be obtained using the functions getData, getFlags, getWeights,
and/or getUVW. These functions read into existing numpy arrays which can be created (e.g., by
updateInfo) using the functions makeDataArray, etc..
The function processNext must be called at the end to execute the process function in the
next DPPP step. It must supply a dict containing changed data. The keys in the dict are TIME,
EXPOSURE, DATA, FLAGS, WEIGHTS, and/or UVW.
Similar to the behaviour in existing steps like Averager and AOFlagger, a step can buffer data
as needed. Once a time slot is ready for the next step, it must call processNext. In this call
a dict containing all data fields must be supplied, because the C++ layer does not have the old
data anymore.

The following functions have a default implementation in the superclass, but can/must be imple-
mented in the subclass if needed.

• finish(self)

is called at the very end of the processing. If data were buffered, it can be used to process the
last data (and call processNext for them). Note that the C++ layer will call finish of the next
step.

• needVisData(self)

This function only needs to be implemented in a subclass if the step does not need the visibility
data.

• needWrite(self)

This function needs to be implemented in a subclass if it changes data (visibility data, flags,
weights, and/or UVW) that needs to be written (or possibly updated) in the MeasurementSet.

• show(self)

can show the parameters of the step. It should return a string (with newlines) that will be printed

46



by the C++ layer. An empty string is not printed.
The implementation in the superclass shows all parset keys, so usually this function does not
need to be implemented.

• showCounts(self)

can show possible counts (e.g., nr of flags set). It should return a string (with newlines) that
will be printed by the C++ layer. An empty string is not printed.

• showTimings(self, elapsedDuration)

can show possible timings of parts in this step. It should return a string (with newlines) that will
be printed by the C++ layer. An empty string is not printed. It receives the elapsed time (sec)
this entire step took. This time is always printed, so usually this function does not need to be
implemented.

• addToMS(self, msname)

can add information to the output MeasurementSet. This function will only be needed in very
special cases where dedicated info needs to be added to the MS.

An example DPStep subclass can be found in the LOFAR source code repository in LOFAR/CEP/DPP-
P/PythonDPPP/test/tPythonStep.py. Its parset defines an increment that is applied to the TIME and
UVW. It prints the sum of the various data arrays.
The file is shown below. Further down a possible parset is shown.

from lofar.pythondppp import DPStep

from lofar.parameterset import parameterset

class tPythonStep(DPStep):

def __init__(self, parsetDict):

# The constructor gets the subset of the DPPP parset containing

# all keys-value pairs for this step.

# Note: the superclass constructor MUST be called.

DPStep.__init__(self, parsetDict)

parset = parameterset(parsetDict)

self.itsIncr = parset.getDouble(’incr’, 1)

def updateInfo(self, dpinfo):

# This function must be implemented.

self.itsInfo = dpinfo

# Make the arrays that will get the input buffer data from

# the getData, etc. calls in the process function.

self.itsData = self.makeArrayDataIn()

self.itsFlags = self.makeArrayFlagsIn()

self.itsWeights = self.makeArrayWeightsIn()

self.itsUVW = self.makeArrayUVWIn()

# Return the dict with info fields that change in this step.

return {};

def process(self, time, exposure):

# This function must be implemented.

# First get the data arrays needed by this step.

self.getData (self.itsData);

47



self.getFlags (self.itsFlags);

self.getWeights (self.itsWeights);

self.getUVW (self.itsUVW);

# Process the data.

print "process tPythonStep", time-4.47203e9, exposure, self.itsData.sum(),

self.itsFlags.sum(), self.itsWeights.sum(), self.itsUVW.sum()

# Execute the next step in the DPPP pipeline. TIME,UVW are changed.

return self.processNext ({’TIME’: time+self.itsIncr,

’UVW’: self.itsUVW+self.itsIncr})

def finish(self):

# Finish the step as needed.

# This function does not need to be implemented.

# Note: finish of the next step is called by the C++ layer.

print "finish tPythonStep"

def showCounts(self):

# Show the counts of this test.

# This function does not need to be implemented.

return " **showcounttest**"

def addToMS(self, msname):

# Add some info the the output MeasurementSet.

# This function does not need to be implemented.

print "addToMS tPythonStep", msname

The following parset executes the Python step twice. Note that for the first time the increment is not
defined, so the default 1 will be used. Also note that, as shown in the second step, it is not needed to
define the Python module because its name is the same as the class.

msin=tPythonStep_tmp.MS

msout=tPythonStep_tmp.msout

msout.overwrite=T

steps=’[pystep1,pystep2]’

pystep1.type=PythonDPPP # case-insensitive

pystep1.python.module=tPythonStep

pystep1.python.class=tPythonStep

pystep1.somekey=somevalue # unused key

pystep2.type=pythondppp

pystep2.python.class=tPythonStep

pystep2.incr=3.5

5.5 Flag statistics

Several steps shows statistics during output about flagged data points.

• A MADFlagger and AOFlagger step show the percentage of visibilities flagged by that flagging

48



step. It shows:

1. The percentages per baseline and per station.

2. The percentages per channel.

3. The number of flagged points per correlation, i.e. which correlation triggered the flagging.
This may help in determining which correlations to use in the MADFlagger.

• A UVWFlagger and PreFlagger step show the percentage of visibilities flagged by that flagging
step. It shows percentages per baseline and per channel.

• The msin step shows the number of visibilities flagged because they contain a NaN or infinite
value. It is shown which correlation triggered the flagging, so usually only the first correlation
is really counted.

• A Counter step can be used to count and show the number of flagged visibilities. Such a step
can be inserted at any point to show the cumulative number of flagged visibilities. For example,
it can be defined as the first and last step to know how many visibilities have been flagged in
total by the various steps.

Furthermore the AOFlagger step will by default write some extra QUALITY subtables in the output
MeasurementSet containing statistical information about its performance. These quality data can be
inspected using the aoqplot tool.

5.6 Analyzing the data quality with aoqplot

Once you have succesfully run DPPP on the measurement sets in your observation, it is recommended
that you validate the results of the flagger and get an impression of the quality of the full observation.
For this, the aoqplot tool that is part of the LofIm build can be used.

Basically, the tool allows you to plot standard deviations and RFI percentages and some other quanti-
ties, over time, frequency, baselines and the time-frequency domain of the full observation, i.e., over
all sub-bands. Since an observation can be several terabytes of data, the performance of standard
tools to perform such analysis is an issue, and the aoqplot was designed to overcome this problem.
Fig. 13 shows an example of the aoqplot interface, plotting the data standard deviations of an LBA
set over the entire frequency range. It also allows one to plot differential statistics. “Differential”
in this context means that the standard deviation is calculated over the difference between adjacent
channels. Therefore, they quantify the noise, because the difference of signal in adjacent (3 kHz)
channels is tiny and can be neglected. Differential quantities are prefixed with a “D”, such as DMean
and DStdDev.

5.6.1 Usage

If your environment allows (see below), one can get the statistic plots of an observation of a DPPPed
set, with the following command:

aoqplot yourobservation.gvds

The gvds file is given by the observatory and describes the observation, in particular the locations of
the measurement sets. The aoqplot tool will now connect to all the nodes with an ssh connection,
start a bash-session on the node and start a client there that connects back to your node and sends

49



Figure 13: The aoqplot window showing the standard deviation of the data over frequency of a full
observation.

the quality tables. Once all the tables have been received, a window will appear containing the plots.
Collecting all the tables takes typically less than 5 seconds.

The use of ssh and bash requires that you should be able to ssh to all the involved nodes without
manual intervention, and that the client (called “aoremoteclient”, part of the LofIm daily build)
is directly in your bash path after ssh-ing. Thus, after ”ssh locus001” (or lce001), you should be
able to start aoremoteclient within bash without a “use LofIm”. The easiest way of doing this
is by putting LofIm in ~/.mypackages. If you have problems running the aoqplot due to your
environment, please let us know.

When a node is not answering, or there is some error with the measurement set, the set will be
skipped, an error will be given describing the problem and the statistics will be collected without those
measurement sets. If none of the measurement sets can be queried, you will see a dialog window with
many error messages and the window will not appear thereafter. If you can not determine the cause
of this, please let us know. The software is currently (January 2012) still experimental.

The aoqplot can also be used on individual sub-bands by putting the measurement set filename in
the command line, e.g.:

aoqplot SB000.MS

5.6.2 Analyzing the statistics

The aoqplot tool provides the following statistics:

• Count: the number of samples that are left after flagging of the data. This should normally be
fairly constant over time, frequency and baselines, apart from a few imprints of RFI that lower
the number of available samples. Since the flags of the complex values of different polarizations

50



are normally equal, there’s no use in looking at this statistic for polarizations or real/imaginary
components indivually.

• Mean: the mean of the data. If you are observing a strong source (such as a calibrator), this
value should contain structure over time, frequency and baselines. Note that if you for example
plot the mean over time, each sample in the plot shows the mean of that timestep over all base-
lines and frequencies. Therefore, if your source is not in the phase centre, it will be supressed
and can even be averaged out, because sources outside the phase centre contribute sinusoidally
and will cancel out. If your source is in the phase centre, the Mean is a very good representation
of the strength of the signal. Together with an estimate of the noise, this can be used to calculate
the signal-to-noise ratio during the observation. If you know the approximate flux density of
the source, you can estimate the gain during the observation and, together with an estimate of
the noise, calculate a rough estimate of the system noise. Cross polarizations can be checked to
see if there was significant differential Faraday rotation during the observation.

• StdDev: the standard deviation of the data after flagging. The standard deviation should not
have significant imprints of RFI. In good data, one generally sees about three significant spikes
in HBA (in ± 115-163 MHz) and zero spikes in LBA (>30 MHz, an example is given in
Fig. 13). The standard deviation is rather sensitive for low-level RFI, and a few RFI spikes
do not seem to hurt calibration at this point (please report if you think otherwise). If there are
time or frequency ranges at which the standard deviation is significantly different, try to select
different polarizations and use the different domains (time-frequency, baseline, time, frequency,
...) to see if you can localize the guilty data range. The position of the Sun and the Milky Way
in the sky can significantly change the standard deviation. Because the StdDev includes the
variance of the signal, it is recommended also to look at the DStdDev.

• DCount, DMean and DStdDev are similar to the above statistics, but are calculated over the
differences of samples (after flagging) in adjacent channels. They contain therefore very little
contribution of the signal, and can be used to get an accurate estimate of the noise. They have
been normalized to represent the same units as their counterpart values. The DMean should
be close to zero, as the signal should be subtracted out, and the noise should average out (it is
mainly there because it is easy to calculate, but it is often more helpful to look at Mean and
DStdDev).

• RFI: the amount of RFI found by the flagger. The ’base level’ of RFI is 2–5%, but can contain
a few spikes over time or frequency that go up to 20%–100% at times. This is normally not
a problem. Sub-bands or stations with significant different RFI levels (either 0% or >∼ 5%)
often indicate an issue with the station. Such problems are often also reflected in the standard
deviations. Different polarizations and real/imaginary values have equal RFI ratios.

• SNR: the signal-to-noise ratio. It is calculated by Mean / DStdDev. This value is only accurate
if you are observing a source in the phase centre, due to the reasons mentioned in the paragraph
for the Mean value.

5.6.3 Background information

The aoqplot tool works together with DPPP. Recent versions (>21 December 2011) of DPPP will
add so-called quality statistic tables to a measurement set. These tables circumvent having to read
the entire DATA column of a measurement set to get the basic statistics. The way they are stored is
described in the quality statistics proposal written by André Offringa30. Because the statistics plotting

30offringa[at]astro[dot]rug[dot]nl

51

offringa[at]astro[dot]rug[dot]nl


tool require these tables, you can not directly plot statistics of measurement sets that are averaged by
an older DPPP, or have not been averaged at all.

The statistics are calculated individually for the real and complex values. This is not common when
treating complex values, but does allow easy interpretation. This means that µr and σr, the real mean
and real standard deviations respectively, are calculated as:

µr =
1
N ∑

x∈X
real(x) (1)

σ
2
r =

1
N ∑

x∈X
(real(x)−µr)

2 (2)

If you select “amplitude” in the aoqplot user interface, the actual plotted quantity is:

|σ |=
√

σ2
r +σ2

i , (3)

i.e., the amplitude of the standard deviation of the real and imaginary components, not the standard
deviation over the amplitudes. The same holds for the “XX+YY” and “XY+YX” check boxes, which
represent the sum of the statistic, not the statistic over the sums.

If, for some reason, you want to use aoqplot, but do not want to use DPPP to average the data, a
different way of adding the required quality statistics to a measurement set is by using the aoquality
tool, part of the LofIm build. The general usage is:

aoquality collect SB000.MS

The aoquality also has some options for retrieving statistics on the command line. Run aoquality

without parameters to get a list of options.

5.7 Additional information: manual flagging in CASA

While manual flagging will not be practical once the pipeline is completed, during early stages it may
be useful to remove remaining RFI in order to test the calibration or imaging routines. Flagging tasks
in CASA include FLAGDATA and FLAGCMD for command-line based flagging. The task PLOTMS offers
GUI-based flagging. PLOTXY can also be used for manual flagging, but users should be aware that it
is being deprecated in favor of PLOTMS and may not be available in future releases of CASA. Once
the CASA PLOTMS has loaded and data is visible, click the Mark Region button, highlight data that
you wish to flag, click the Flag button, and Quit once you are finished.

CASA also provides two algorithms, RFLAG and TFCROP, for automatic RFI flagging. These algo-
rithms are available as options within the FLAGDATA task. For more information on their usage, we
suggest users consult Chapter 3 of the latest version of the CASA Cookbook.

Observations at ‘low’ elevation (below ∼ 30◦ for Cygnus A, and below ∼ 40◦ for 3C196) are suffi-
ciently noisy that they are of limited use. These bad time ranges need to be identified and removed.
This could be done through DPPP, but also by manual flagging in CASA or using the CASA SPLIT31

task or the python script split ms by time.py (Section 2.7.2). Splitting out part of a Measure-
mentSet can be done as part of the distributed pipeline and will most likely be necessary until more
robust flagging routines are implemented.

31The SPLIT task will be deprecated in favor of the MSTRANSFORM task beginning with CASA v.4.1.0.

52



6 Gain calibration with DPPP32

The most common gain calibration procedures can be performed with DPPP. Using DPPP (instead
of BBS, Chapter 7) makes a considerable difference in speed: DPPP calibration is at least 10 times
faster.

However, BBS can handle more calibration scenarios, which sometimes makes it necessary to use
BBS.

The calibration problem that DPPP can solve is the following: find a set of Jones matrices {Gp}
(one for every station p) which corrects the measured visibilities Vpq to closely resemble the model
visibilities Mpq (for all baselines pq), i.e. minimize

‖Vpq−GpMpqGH
q ‖ (4)

The matrices G will be referred to as gain matrices although they correct for more than just electrical
gains.

6.1 Calibration variants

There are various options to restrict the shape of G. The main difference is whether to solve for the
amplitude of the solutions or only for the phase. Also, the number of free parameters can be restricted.

Shape Calibration type Free parameters

Gp =

(
A(p)

xx eφ
(p)
xx A(p)

xy eφ
(p)
xy

A(p)
yx eφ

(p)
yx A(p)

yy eφ
(p)
yy

)
diagonal 4

Gp =

(
A(p)

xx eφ
(p)
xx 0

0 A(p)
yy eφ

(p)
yy

)
diagonal 4

Gp =

(
eφ

(p)
xx 0

0 eφ
(p)
yy

)
phaseonly 2

Gp =

(
eφ (p)

0
0 eφ (p)

)
scalar phase 1

6.2 Make a skymodel

To perform a calibration, you need a sky model (see Section ). You can get one from the catalogs in
gsm.py (see Section ), or make your own. To make the sky model (in text format) readable by DPPP,
it needs to be converted from plain text to a sourcedb. That is done with the program makesourcedb.
Usually the sourcedb is called ’sky’ and copied into the data set you’re reducing. If you put it else-
where, it is customary to give it the extension .sourcedb.

32This section is maintained by Tammo Jan Dijkema (dijkema[at]astron[dot]nl).

53



makesourcedb in=my.skymodel out=L123.MS/sky format=’<’

The part format=’<’ is necessary to convince makesourcedb that the format is given by the first line
in the file.

It is also possible to calibrate on model visibilities – in this case no sky model is necessary. See the
online documentation of DPPP, the parameter to look for is usemodelcolumn.

6.3 Calibration

To perform a phase only calibration, the following parset can be given to DPPP.

msin=L123.MS

msout=

steps=[ gaincal]

gaincal.sourcedb=L123.MS/sky

gaincal.parmdb=L123.MS/instrument

gaincal.caltype=phaseonly

gaincal.solint =2

The part solint=2 specifies that we only want one solution for every two time intervals. This can
improve the signal to noise ratio – but one should have a physical argument that tells that the solu-
tions do not change within the solution interval. Currently one solution is computed that is assumed
constant over the entire band, more flexibility will be added in the future.

The parset above performs a phase only calibration, and stores the calibration result in the parmdb
(parameter database) L123.MS/instrument. This file will be created if it is not there yet – in fact
it is better if it is not there yet. Note that it is a convention to save the calibration tables in a file
(casa table) called instrument in the data set being reduced. If you store it outside the data set, the
convention is to give it the extension .parmdb.

The solution table can (and should!) be inspected with parmdbplot.py, see Section 7.12. Note that
this calibration step does not yet change the visibilities.

6.4 Applying solutions

To apply the calibration solutions in DPPP, the step applycal can be used. The following parset applies
the solutions that were obtained by gaincal33.

msin=L123.MS

msout=.

msout.datacolumn=CORRECTED_DATA

steps=[ applycal]

gaincal.parmdb=L123.MS/instrument

It is a convention to write the output to the column CORRECTED DATA, to avoid changing the original
data column DATA.

6.5 Transferring solutions and the beam

When transferring solutions from a calibrator to a target, the sensitivity of the beam across the sky
needs to be taken into account: the instrument does not have the same sensitivity at the position of the

33Ideally, applycal could be called within the same call of DPPP, so that the visibilities are read only once. This has not
been implemented yet.

54



calibrator field as at the position of the target field. You can compensate for this by using a model for
the LOFAR beam. Effectively, then instead of equation 4 the following equation is solved for Gp:

‖Vpq−GpBpMpqBH
q GH

q ‖ (5)

In the case of transferring solutions, the calibration is usually about the amplitude and the calibration
type should be either diagonal or fulljones.

A parset for calibrating on the calibrator field, taking the beam into account, is given below:

msin=L123.MS

msout=

steps=[ gaincal]

gaincal.sourcedb=L123.MS/sky

gaincal.parmdb=L123.MS/instrument

gaincal.caltype=diagonal

gaincal.usebeammodel=true

6.6 Applying the beam

When applying the solutions of the calibrator to the target, you should probably not apply the beam, so
that another round of calibration is possible afterwards. Only after you are done with all calibration,
the beam should be applied (just before imaging). Applying the beam is possible with

msin=L123.MS

msin.datacolumn=CORRECTED_DATA

msout=.

msout.datacolumn=CORRECTED_DATA

steps=[ applybeam]

55



7 Calibration with BBS34

BBS is a software package that was designed for the calibration and simulation of LOFAR data. This
section provides a practical guide to reducing LOFAR data with BBS. Do not expect a description
of the optimal way to calibrate LOFAR data that works on all possible fields. Much still has to be
learned about the reduction of LOFAR data. This chapter should rather be viewed as a written record
of the experience gained so far, through the efforts of many commissioners and developers.

NOTE: the most common calibration scenarios can now be performed in DPPP, which is a lot faster
(at least 10 times). Please first see if your calibration can be done with DPPP, see Chapter 6.

7.1 Overview

The sky as observed by LOFAR is the ”true” sky distorted by characteristics of the instrument (station
beam, global bandpass, clock drift, . . . ) and the environment (ionosphere). The goal of calibration
(and imaging) is to compute an accurate estimate of the “true” sky from the distorted measurements.

The influence of the instrument and the environment on the measured signal can be described by
the measurement equation. Calibration involves solving the following inverse problem: Given the
measured signal (observations) and a parameterized measurement equation (model), find the set of
parameter values that minimizes the difference between the model and the observations.

The core functionality of BBS can conceptually be split into two parts. One part concerns the simula-
tion of visibilities given a model. The other part concerns estimating best-fit parameter values given a
model and a set of observed visibilities. This is an iterative procedure: A set of simulated visibilities is
computed using the current values of the parameters. Then, the values of the parameters are adjusted
to minimize the difference between simulated visibilities and observed visibilities, and an updated set
of simulated visibilities is computed. This continues in a loop until a convergence criteria is met.

BBS has two modes of running. The first is to run as a stand-alone tool to calibrate one subband. If
a single subband does not contain enough signal, BBS offers the possibility to use data from multi-
ple subbands together for parameter estimation. This is called global parameter estimation. In this
chapter, we will focus on the stand-alone version; only in Section 7.10 we will treat the global solve.

As input, BBS requires an observation (one or more subbands / measurement sets), a source catalog
(see Section 7.3), a table of initial model parameters (see Section 7.5), and a configuration file (also
called parset, see Section 7.8) that specifies the operations that need to be performed on the obser-
vation as a whole. As output, BBS produces a processed observation, a table of estimated model
parameters, and a bunch of log files.

7.2 Usage

To calibrate a single MS, execute the calibrate-stand-alone script on the command line:

> calibrate-stand-alone -f <MS> <parset> <source catalog>

The important arguments provided to the calibrate-stand-alone script in this example are:

• <MS>, which is the name of the MS to process.

34This section is maintained by Tammo Jan Dijkema (dijkema@astron.nl). Most of it is written by Joris van Zwieten
and Reinout van Weeren.

56



• <parset>, which defines the reduction (see Section 7.8).

• <source catalog>35, which defines a list of sources that can be used for calibration (see
Section 7.3).

• The -f option, which overwrites stale information from previous runs.

You can run the script without arguments for a description of all the options and the mandatory
arguments, such as the -v option to get a more verbose output.

7.3 Source catalog

The source catalog defines the sources that can be used (referred to) in the reduction. It is a plain text
file that is translated by the makesourcedb tool into a form that BBS can use. (Internally, the script
converts the catalog file to a sourcedb by running makesourcedb on it, before starting BBS.)

A catalog file can be created by hand using a text editor. Using tools like awk and sed, it is relatively
straight-forward to convert existing text based catalogs into makesourcedb format. Various catalog
files created by commissioners have been collected at /globaldata/COOKBOOK/Models on the CEP
cluster.

Alternatively, a catalog file in makesourcedb format can be created using the gsm.py tool. This
tool extracts sources in a cone of a given radius around a given position on the sky from the Global
Sky Model or GSM. The GSM contains all the sources from the VLSS, NVSS, and WENSS survey
catalogs. See Section 7.4 for more information about the GSM and gsm.py.

Below is an example catalog file for 3C196. In this example, 3C196 is modelled as a point source with
a flux of 153 Jy and a spectral index of -0.56 with a curvature of -0.05212 at a reference frequency of
55.468 MHz.

# (Name ,Type ,Ra,Dec ,I, ReferenceFrequency = ’55.468e6’, SpectralIndex) = format

3C196 , POINT , 08:13:36.062300 , +48.13.02.24900 , 153.0 , , [-0.56, -0.05212]

Another example catalog file describes a model for Cygnus A. It is modelled as two point sources that
represent the Eastern and the Western lobe respectively, with a flux ratio of 1:1.25.

# (Name , Type , Ra, Dec , I) = format

CygA.E, POINT , 19:59:31.60000 , +40.43.48.3000 , 1.25

CygA.W, POINT , 19:59:25.00000 , +40.44.15.7000 , 1.0

For each source, values should be specified for the fields listed in the header line, in the same order.
The only mandatory fields are: Name, Type, Ra, and Dec. The declination separators have to be dots,
not colons, unless you want the declination to be interpreted as hours (i.e., multiplied by a factor 15).

If a field is left blank (e.g. the ReferenceFrequency in the 3C196 example above), the default value
specified in the header line is used. If this is not available, then the application defined default value
is used instead.

When a catalog contains sources defined by shapelets as well as point sources or Gaussian sources, it
is easiest to create two catalog files (one containing the shapelet sources and one containing the rest).
Using the append option of the makesourcedb tool, a single parmdb containing all the sources can
then be created and fed to the calibrate-stand-alone script using the --sourcedb option.

35When the MS already contains a sourcedb, it is not necessary to specify a new source catalog if you’re calibrating on
the same sourcedb.

57



For more information about the recognized fields, default values, and units, please refer to the make-
sourcedb documentation on the LOFAR wiki36.

7.3.1 Gaussian sources

A Gaussian source can be specified as follows.

# (Name , Type , Ra, Dec , I, Q, U, V, ReferenceFrequency =’60e6’, \

SpectralIndex =’[0.0]’, MajorAxis , MinorAxis , Orientation) = format

sim_gauss , GAUSSIAN , 14:31:49.62 ,+13.31.59.10 , 5,,,,,[-0.7], 96.3, 58.3, 62.6

Note that the header line beginning with ”# (Name, ...” must be a single line, and has been spread
over multiple lines here for clarity (indicated by a backslash). There is a known issue about the
definition of the Orientation. This is only relevant if the Gaussian is not symmetric, i.e. the major
axis and minor axis differ, and the Gaussian is far away from the phase center. Until this has been
fixed, only use Gaussians that are close to the phase center.

7.3.2 Spectral index

The spectral index used in the source catalog file is defined as follows:

log10(S) = log10(S0)+ c0log10

(
ν

ν0

)
+ c1

[
log10

(
ν

ν0

)]2

+ . . .+ cn

[
log10

(
ν

ν0

)]n+1

(6)

with ν0 being the reference frequency specified in the ReferenceFrequency field, c0 the spectral
index, c1 the curvature, and c2, . . . ,cn the higher order curvature terms. The SpectralIndex field
should contain a list of coefficients [c0, . . . ,cn]

37.

7.3.3 Rotation measure

For polarized sources, Stokes Q and U fluxes can be specified explicitly, or implicitly by specifying
the intrinsic rotation measure RM, the polarization angle χ0 at λ = 0, and the polarized fraction p.

In the latter case, Stokes Q and U fluxes at a wavelength λ are computed as:

Q(λ ) = p I(λ ) cos(2χ(λ )) (7)
U(λ ) = p I(λ ) sin(2χ(λ )) (8)
χ(λ ) = χ0 +RM λ

2 (9)

Here, I(λ ) is the total intensity at wavelength λ , which depends on the spectral index of the source.

The intrinsic rotation measure of a source can be specified by means of the field RotationMeasure.
The polarization angle χ0 at λ = 0 and the polarized fraction p can be specified in two ways:

• Explicitly by means of the fields PolarizationAngle and PolarizedFraction.

• Implicitly, by means of the fields Q, U, and ReferenceWavelength.

36http://www.lofar.org/operations/doku.php?id=engineering:software:tools:
makesourcedb

37The old format of specifying the spectral index as the number of coefficients minus one (i.e. n), followed by n+ 1
separate fields SpectralIndex:0, SpectralIndex:1, . . . , SpectralIndex:n is not supported anymore.

58

http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makesourcedb
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makesourcedb
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makesourcedb


When specifying Q and U at a reference wavelength λ0, the polarization angle χ0 at λ = 0, and the
polarized fraction p will be computed as:

χ0 =
1
2

tan−1(
U
Q
)−λ

2
0 RM (10)

p =

√
(Q2 +U2)

I(λ0)
(11)

Here, I(λ0) is the total intensity at reference wavelength λ0, which depends on the spectral index of
the source. Note that the reference wavelength λ0 must be > 0 if the source has a spectral index.

7.4 GSM38

The Global Sky Model or GSM is a database that contains the reported source properties from the
VLSS, WENSS and NVSS surveys. The gsm.py script can be used to create a catalog file in
makesourcedb format (see Section 7.3) from the information available in the GSM. As such, the
gsm.py script serves as the interface between the GSM and BBS.

A catalog file created by gsm.py contains the VLSS sources that are in the field of view. For every
VLSS source, counterparts in the other catalogs are searched and associated depending on criteria
described below. Spectral index and higher-order terms are fitted according to equation 6 in Sec-
tion 7.3.2.

On CEP, there is a GSM database instance and is loaded with all the sources and their reported
properties from the VLSS, WENSS and NVSS surveys. The WENSS survey is actually split up into
two catalogs according to their frequencies: A main (δ ≤ 75.8, ν = 325 MHz) and a polar (δ ≥ 74.5,
ν = 352 MHz) part. The VLSS and NVSS surveys are taken at 73.8 MHz and 1400 MHz, respectively.

The python wrapper script gsm.py can be used to generate a catalog file in makesourcedb format
and can be run as:

> gsm.py outfile RA DEC radius [vlssFluxCutoff [assocTheta]]

The input arguments are explained in Table 1.

Parameter Unit Description
outfile string Path to the makesourcedb catalog file.

If it exists, it will be overwritten.
RA, DEC degrees Central position of conical search.
radius degrees Extent of conical search.
vlssFluxCutoff Jy Minimum flux of VLSS sources in outfile.

Defaults to 4 Jy.
assocTheta degrees Search radius centred on VLSS source

for which counterparts are searched.
Defaults to 0.00278 degrees (10 arcsec, taking into account the
VLSS resolution of 80 arcsec).

Table 1: The parameters and criteria that are used for creating the initial Global Sky Model.

The gsm.py script calls the function expected fluxes in fov() in gsmutils.py that does the
actual work. It makes a connection to the GSM database and selects all the VLSS sources that

38This section was contributed by Bart Scheers.

59



fulfill the criteria. The area around every found VLSS source (out to radius assocTheta) is searched
for candidate counterparts in the other surveys. The dimensionless distance association parameter,
ρi,?, is used to quantify the association of VLSS source−candidate counterpart further. It weights
the positional differences by the postion errors of the pair and follows a Rayleigh distribution (De
Ruiter et al., 1977). A value of 3.717 corresponds to an acceptance of missing 0.1% genuine source
associations (Scheers, 2011). The dimensionless radius is not an input argument to gsm.py, but it is
to the above mentioned function. For completeness, we give its definition below:

ρi,? ≡
√

(αi cosδi−α? cosδ ?)2

σ2
αi
+σ2

α?

+
(δi−δ ?)2

σ2
δi
+σ2

δ ?

, (12)

Here the sub- and superscripts ? refers to the VLSS source and i to its candidate counterpart in one
of the other surveys.

After being associated (or not), the corresponding fluxes and frequencies are used to fit the spectral-
index and higher-order terms according to equation 6 in Section 7.3. Therefore, we use the python
numpy.poly1d() functions. If no counterparts were found a default spectral index of −0.7 is as-
sumed.

Another optional argument when calling the function expected fluxes in fov() in gsmutils.py

is the boolean storespectraplots. When true and not performance driven, this will plot all the
spectra of the sources in the catalog file, named by their VLSS name.

Special cases

There might be cases that a VLSS source has more than one WENSS counterpart. This might occur
when the mutiple subcomponents of a multicomponent WENSS source are associated to the VLSS
source. WENSS sources that are flagged as a subcomponent (’C’) are omitted in the inclusion. Only
single component WENSS sources (’S’) and multicomponent WENSS sources (’M’) are included in
the counterpart search.

7.5 Model parameters

When calibrating, we try to estimate parameters in the measurement equation. The values of these
model parameters are stored in a so-called “parmdb” (table). Usually, this parmdb is stored inside
a measurement set and is called instrument. To inspect or create a parmdb, use the command
parmdbm39. To view the contents of a parmdb, use the tool parmdbplot.py (section 7.12).

A parmdb can contain two sorts of parameters: normal parameters that are both time and frequency
dependent, and default parameters that are neither frequency nor time dependent. The default param-
eters can be used as fallback if a model parameter is not known, but they can also be used in some
schemes for transferring solutions, see section 7.14.

Before even starting the actual BBS, there need to be values in the parmdb, because they are used as
starting values by BBS. For gains (Gain and DirectionalGain), the default starting value of 0 is not
adequate. For this reason, the calibrate-stand-alone script implicitly creates a default parmdb
that contains initial values of 1 for these parameters.

In most circumstances, these defaults are fine. However, there are cases (e.g. when simulating differ-
ential Faraday rotation) in which you will want to provide BBS with your own specific default values.
For example:

39http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm

60

http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm


> parmdbm

Command: create tablename=’myparmdb’ # Note the output and make sure

Command: adddef RotationMeasure values=-42 # that it reports "values: -42"

Command: showdef RotationMeasure # to check that it worked

Command: exit

This creates a new parmdb, which is called myparmdb in this case. Differential Faraday rotation at
each station is initialized to -42.0 rad m−2. If you run BBS using the calibrate-stand-alone

script, use the --parmdb option to use this parmdb.

This way you can provide default values for parameters that you have not (yet) estimated. These same
values are used as an initial guess when you do try to estimate them. Please note that if you create your
own parmdb, you will almost always want to include the default adddef commands listed below to
set the correct defaults for Gain, DirectionalGain. Otherwise, estimating these parameters will not
work correctly. The default parameters are automatically created if you use calibrate-stand-alo-
ne with the option -f or --replace-parmdb

adddef Gain:0:0:Ampl values=1.0

adddef Gain:1:1:Ampl values=1.0

adddef Gain:0:0:Real values=1.0

adddef Gain:1:1:Real values=1.0

adddef DirectionalGain:0:0:Ampl values=1.0

adddef DirectionalGain:1:1:Ampl values=1.0

adddef DirectionalGain:0:0:Real values=1.0

adddef DirectionalGain:1:1:Real values=1.0

7.6 Model

As already mentioned, BBS consists of two parts: a part to solve equations and a part to simulation of
visibilities given a sky model. This section is about the latter. BBS uses the measurement equation,
which is an equation that describes all effects that happen to the signal that was sent by the sky, before
they are captured in your data. All these effects are Jones matrices: 2× 2 matrices that work on the
two components (the two polarizations) of your data. An important thing to note is that these Jones
matrices do not commute: the order in which they are matters.

The most commonly used effects that BBS can handle are given in Table 2, in the order that they
are applied (from sky to antenna). The direction dependent effects are different for each patch you
specify in your source model.

The two most commonly used effects, Gain and DirectionalGain, have only one option: Phasors.
When set to True (or T), the gains are expressed like A · eiφ , otherwise they are specified in the form
a+ b · i. While mathematically equivalent, this does make a difference because the solver in BBS
solves for real variables. When you are solving for phases or amplitudes only, it is necessary to
specify Phasors = True. Specify this like

Model.Gain.Phasors = T

In older versions, the option to specify the gains as amplitude/phase could only be defined for the
whole model expression as a whole, like Model.Phasors.Enable=True. This is still supported: it
sets the phasors option for all (directional and non-directional) gains in the model.

For configuration of the beam model that is used, see Section 7.6.1.

61



Effect Description
ScalarPhase A phase that is equal for both dipoles direction dependent
Rotation Faraday Rotation without frequency dependency direction dependent
FaradayRotation Faraday Rotation direction dependent
DirectionalTEC TEC (ionosphere), see 7.8.5 direction dependent
Beam The LOFAR beam model. See 7.6.1 direction dependent
DirectionalGain Directional gain direction dependent
CommonScalarPhase Scalar Phase direction independent
CommonRotation Rotation direction independent
TEC TEC (ionosphere), see 7.8.5 direction independent
Gain Gain direction independent
Clock Clock direction independent

Table 2: Effects that BBS handles. The first half are direction dependent effects (DDEs), which means
that the effect is different for each patch. The bottom effects are direction independent effects (DIEs).

The only other model parameter that has a configuration option is Clock: you can specify whether
the two dipoles in an antenna should have the same clock or a separate one. The option is Split.
By default this is false, so the dipoles are assumed to share a clock. Specify the following to use a
separate clock for each dipole:

Model.Clock.Split = T

7.6.1 Beam model

The beam model tries to emulate all kinds of distortions to the signal that are caused by the beam of
the station. These effects are split into two parts: the element beam, which is the response of a single
dipole, and the array factor, which emulates the effect of combining the signal of the many dipoles
in a station. In HBA, the array factor model also models the effect of the analog tile beam former.

To have a look at different elements of the beam, you can specifically use only the element beam or
only the array factor (if you don’t know the details, you need both the element beam and the array
factor, which is the default). The options are:

Model.Beam.Mode = ELEMENT # only element beam

Model.Beam.Mode = ARRAY_FACTOR # only array factor

Model.Beam.Mode = DEFAULT # both element beam and array factor (default)

The tile beam former in the HBA tiles forms a beam for a certain reference frequency. When modeling
this beam, the beam model should of course do this for the same frequency. Usually, this works
automatically: the reference frequency is stored in the measurement set. Things are different when
you compress a number of subbands as channels into one measurement set (usually done with DPPP).
Then each ‘channel’ was beamformed at a different reference frequency. In this case, the reference
frequency is only right for one of the ‘channels’. To handle this case well, there is an option that tells
the beam model to use the channel frequency (which is usually the center frequency of the compressed
subband). This option is:

Step.Solve.Model.Beam.UseChannelFreq = T

Note that the beam model is a direction dependent effect like any other in BBS. That means that over
a patch, the beam is assumed to be constant (it is evaluated at the centroid of the patch). This may
change in the future.

62



7.7 Solver

BBS performs parameter estimation on the measurement equation to find parameters that best match
the observed visibilities. To improve signal to noise, one can assume that the parameters are constant
for a number of time samples or a number of frequencies. In this way, there are more measurements
available to estimate the same parameter. To specify these, use Step.<name>.Solve.CellSize.Time
and Step.<name>.Solve.CellSize.Freq. The unit of CellSize.Time is number of time slots, so
CellSize.Time=1 corresponds to the correlator integration time. If CellSize.Time=0, one solution
is calculated for the entire scan.

The underlying solver is a Levenberg-Marquardt solver. Several parameters exist to this solver, how-
ever the defaults should be fine.

7.8 Example reductions

The sequence of operations that BBS will perform on the data are defined in a configuration or parset
file40. The BBS documentation on the LOFAR wiki documents all the options (see the LOFAR
wiki41), and it is highly recommended that you obtain a hardcopy of this for future reference.

A BBS parset file consists of two sections: The Strategy section, which defines the operations (or
steps) to be carried out, and the Step section, which defines the details of each step. The following
sections describe a few typical reductions along with the corresponding parset.

The parsets shown in the following sections are intentionally verbose. Often, default settings have
been included for clarity. For example, the default input column is DATA. The line
Strategy.InputColumn = DATA is therefore redundant and can be left out.

7.8.1 Simulation

Given a source catalog and (optionally) a table of model parameters, BBS can be used to compute
simulated uv-data (without noise). Simulated data can sometimes be useful as a debugging aid. Imag-
ing simulated data can provide an impression of what you would expect to see with an ideal telescope
under ideal conditions and without noise. Comparing observed data to simulated data can provide use-
ful clues, although in practice this is limited to cases where the signal to noise ratio of the observed
data is high.

Simulated data produced by BBS (or any other software package) can also be used as model data
during calibration using the same parset syntax as described in Section 7.11.

An example parset file42 to simulate uv-data for all the sources in the source catalog is shown below.
############################################################

# simulation.parset

### Strategy parameters ###

# Parameters controlling the operations to perform. These parameters

# apply for the whole calibration process.

# Input data column to process

Strategy.InputColumn = DATA

# Time range to process , all if left empty

40Examples of these files can be found in /globaldata/COOKBOOK/Parset.
41http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs
42This example can be found in /globaldata/COOKBOOK/Parset/simulation.parset.

63

http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs


Strategy.TimeRange = []

# Select a subset of the available baselines (uses CASA baseline

# selection syntax ).

Strategy.Baselines = *&

# How much data is loaded into memory in one go - useful for large

# datasets. Units are time stamps. All if zero.

Strategy.ChunkSize = 100

# List of the operations that BBS will perform. The first chunk is

# loaded and operations are performed on it. Then the second one is

# loaded and so on. These are strings that identify a Step , the names

# can be decided by the user. For instance if you want to solve and

# correct for gain and then for bandpass you can call the Steps

# solve_gain , correct_gain , solve_bp , correct_bp. In this example we

# are just simulating data according to the sky model , so we need a

# single step.

Strategy.Steps = [predict]

### Predict step parameters ###

# Parameters controlling the operation of each ’predict ’ step

# The operation to carry out on the data

Step.predict.Operation = PREDICT

# List of sources to use in model. All in sky model if left empty.

Step.predict.Model.Sources = []

# MS output column to write simulated visibilities to

Step.predict.Output.Column = MODEL_DATA

The example output of these simulations is shown in Figure 14.

(a) Amp. vs. time (b) Phase vs. time (c) Phase vs. elevation

Figure 14: Example outputs for a simulation of the SB0.MS 3C196 observations.

7.8.2 Gain calibration (direction independent)

The following parset43 describes a direction independent gain calibration. The meaning of each pa-
rameter is the same as in Section 7.8.1 unless otherwise stated. Enabling / disabling of model com-
ponents can be either done by a short-hand T and F which is equivalent to explicit True and False.

The output of the calibration on a single subband centered on 3C196 is shown in Figure 15.

43This example can be found in /globaldata/COOKBOOK/Parset/uv-plane-cal.parset.

64



############################################################

# uv -plane -cal.parset

### Strategy parameters ###

# Parameters controlling the operations to perform

# Input data column to process

Strategy.InputColumn = DATA

# Time range to process , all if left empty

Strategy.TimeRange = []

# Select a subset of the available baselines (uses CASA baseline selection

# syntax ).

Strategy.Baselines = *&

# Note that ChunkSize should be at least as big as the Cellsize.Time (or

# zero) and preferably and integer multiple of CellChunkSize * CellSize.Time

# (see below in the SOLVE step parameters ). All if zero.

Strategy.ChunkSize = 100

# Set to true (T) if a global solution will be performed (i.e. if your parset

# contains a key Step.<name >.Solve.CalibrationGroups that is set to something

# other than an empty list ([]).

Strategy.UseSolver = F

# Which steps will be carried out.

# We will be solving , and applying corrections to the data

Strategy.Steps = [solve , correct]

### Solve step parameters ###

# Parameters controlling the operations of each ’solve ’ step

Step.solve.Operation = SOLVE

# Use 3C196 as a model source from the name tags in the sky model file

Step.solve.Model.Sources = [3C196]

# Cache unaffected terms between iterations. Speeds up the computation , but

# increases memory usage.

Step.solve.Model.Cache.Enable = T

# Individual terms of the measurement equation can be enabled or disabled.

# Most are turned off here.

Step.solve.Model.Gain.Enable = T

Step.solve.Model.DirectionalGain.Enable = F

# When only estimating the diagonal elements of the Gain matrix (as in this

# example), or when the model of the target field contains multiple sources ,

# the beam model should be enabled.

Step.solve.Model.Beam.Enable = T

# Parameters to solve for: Gains for XX (0:0) and YY (1:1) polarisations.

Step.solve.Solve.Parms = ["Gain :0:0:*" , "Gain :1:1:*"]

# Parameters to exclude (subset of those selected by Step.solve.Solve.Parms ).

Step.solve.Solve.ExclParms = []

# Defines the calibration groups. For example: If you have have 6 subbands

65



# and want to solve them in 2 groups you put 3,3. If empty , do NOT use

# global calibration.

Step.solve.Solve.CalibrationGroups = []

# Data window used to compute a single estimate of the model parameters. This

# determines the "resolution" of the solution (i.e. one solution per channel ,

# per second , or one solution per all channels , per 10 minutes , etc.).

#

# CellSize.Freq is specified in number of channels , CellSize.Time in number

# of time slots. A value of zero means all , i.e. using the values given below

# a single solution will be computed per time slot using data from all

# channels.

#

# Solution cell size (no of channels)

Step.solve.Solve.CellSize.Freq = 0

# Solution cell size (no of timeslots)

Step.solve.Solve.CellSize.Time = 1

# Define how many solution cells are simultaneously processed. CellChunkSize

# is in units of time cells.

# NB. It is recommended that Strategy.ChunkSize is an integer multiple of

# CellChunkSize * CellSize.Time (or zero). Generally best to set this in the

# range 10 - 25.

Step.solve.Solve.CellChunkSize = 10

# Propagate solutions from one solution cell to the next. The fit uses the

# previous solution as a starting point for the next one. False is

# safer if there are a large number of bad calibration solutions.

Step.solve.Solve.PropagateSolutions = F

# Stop criteria , from CASA libraries -- see wiki for details.

Step.solve.Solve.Options.MaxIter = 50

Step.solve.Solve.Options.EpsValue = 1e-9

Step.solve.Solve.Options.EpsDerivative = 1e-9

Step.solve.Solve.Options.ColFactor = 1e-9

Step.solve.Solve.Options.LMFactor = 1.0

Step.solve.Solve.Options.BalancedEqs = F

Step.solve.Solve.Options.UseSVD = T

### Correct step parameters ###

# Parameters controlling the operations of the ’correct ’ step , that

# applies the solutions found above.

Step.correct.Operation = CORRECT

Step.correct.Model.Sources = [3C196]

Step.correct.Model.Gain.Enable = T

Step.correct.Model.Beam.Enable = T

Step.correct.Output.Column = CORRECTED_DATA

The CORRECT step performs a correction of the uv-data for a particular direction. This can be done
for exactly one source from the skymodel. If Model.Sources contains multiple sources, BBS will
throw an exception, because it cannot correct for more than one direction at a time.

BBS also accepts an empty source list in the CORRECT step. In that case it will correct for the phase
center direction of the MS. This does then, of course, not include direction dependent effects such
as DirectionalGain, DirectionalTEC, et cetera, which are inherently bound to a patch name and
therefore can only be corrected for if a patch name is specified. This implicit behaviour must be kept
in mind when correcting your data.

Note that a CORRECT step cannot be “undone”. If a CORRECTED DATA column is used for further

66



calibration later on, one has to be aware of the consequences. For example, if in the first correct the
beam was enabled, this prevents proper use of the beam in the following steps44.

(a) Amp. vs. time. (b) Phase vs. time.

Figure 15: 3C196 corrected amplitudes and phases, after calibration. The need for further flagging is
clear.

7.8.3 Gain calibration (direction independent, phase or amplitude only)

The parset file to perform a (direction independent) phase or amplitude calibration differs from the
parset file for regular gain calibration (see Section 7.8.2) on three important points.

Phase calibration will be used as an example. First, the complex gain parameters must be decomposed
into their amplitude, phase components instead of their real, imaginary components (the default).
This can be achieved by setting Model.Phasors.Enable = T. Second, only the phase component
should be estimated. This can be achieved by setting Solve.Parms = ["Gain:0:0:Phase:*",

"Gain:1:1:Phase:*"]. Third, amplitude differences should be ignored when computing the differ-
ence between model visibilities and observed visibilities. This can be achieved by setting Solve.Mode
= PHASE.

Amplitude calibration is specified similarly, except that in this case only the amplitude component
should be estimated (Solve.Parms = ["Gain:0:0:Ampl:*", "Gain:1:1:Ampl:*"]) and phase
differences should be ignored (Solve.Mode = AMPLITUDE).

The value of Solve.Mode controls the way in which the difference between the (complex) model
visibilities and (complex) observed visibilities is computed. The default is to take both phase and
amplitude differences into account (Solve.Mode = COMPLEX). Alternatively, Solve.Mode = PHASE

ignores amplitude differences, while Solve.Mode = AMPLITUDE ignores phase differences.

For direction independent gain, the measurement equation can be separated into an equation of am-
plitudes and an equation of phases. Therefore, it makes sense to minimize phase differences when
solving for phase only (and similarly for amplitude). This is equivalent to the phase (or amplitude)
calibration that is available in other calibration packages (e.g. CASA).

For direction dependent gain, however, the model visibilities are the vector sum of multiple compo-
nents (sources), each multiplied by its own gain term. Changing the phase of the gain of a single
component changes both the phase and the amplitude of the sum. Minimizing either phase or ampli-
tude differences is incorrect in this case, because amplitude and phase are interdependent.

44This is important when doing a self calibration. In that case only the CORRECTED DATA column should be used
for imaging, while a next calibration step should go back to take the DATA column as input to refine the calibration.

67



In summary, unless you know what you are doing, be careful setting Solve.Mode when using any-
thing other than direction independent gain.

The parset shown below is an example parset for phase calibration45.

############################################################

# uv -plane -cal -phaseonly.parset

### Strategy parameters ###

# Parameters controlling the operations to perform

# Input data column to process

Strategy.InputColumn = DATA

# Time range to process , all if left empty

Strategy.TimeRange = []

# Select a subset of the available baselines (uses CASA baseline

# selection syntax ).

Strategy.Baselines = *&

# Note that ChunkSize should be at least as big as the Cellsize.Time (or

# zero) and preferably and integer multiple of CellChunkSize * CellSize.Time

# (see below in the SOLVE step parameters ). All if zero.

Strategy.ChunkSize = 100

# Set to true (T) if a global solution will be performed (i.e. if your parset

# contains a key Step.<name >.Solve.CalibrationGroups that is set to something

# other than an empty list ([]).

Strategy.UseSolver = F

# Which steps will be carried out.

# We will be solving , and applying corrections to the data

Strategy.Steps = [solve , correct]

### Solve step parameters ###

# Parameters controlling the operations of each ’solve ’ step

Step.solve.Operation = SOLVE

# Use 3C196 as a model source from the name tags in the sky model file

Step.solve.Model.Sources = [3C196]

# Cache unaffected terms between iterations. Speeds up the computation , but

# increases memory usage.

Step.solve.Model.Cache.Enable = T

# Individual terms of the measurement equation can be enabled or disabled.

# Most are turned off here.

Step.solve.Model.Phasors.Enable = T

Step.solve.Model.Gain.Enable = T

# Minimize phase differences. Use AMPLITUDE for amplitude calibration (and

# don ’t forget to change Step.solve.Solve.Parms below ).

Step.solve.Solve.Mode = PHASE

# Estimate the phase of the gains for the XX (0:0) and YY (1:1) polarisations.

# Use ["Gain :0:0: Ampl:*", "Gain :1:1: Ampl :*"] for amplitude calibration (and

45This parset can be found in /globaldata/COOKBOOK/Parset/uv-plane-cal-phaseonly.parset.

68



# don ’t forget to change Step.solve.Solve.Mode above ).

Step.solve.Solve.Parms = ["Gain :0:0: Phase:*", "Gain :1:1: Phase :*"]

# Parameters to exclude (subset of those selected by Step.solve.Solve.Parms ).

Step.solve.Solve.ExclParms = []

# Defines the calibration groups. For example: If you have have 6 subbands

# and want to solve them in 2 groups you put 3,3. If empty , do NOT use global

# calibration.

Step.solve.Solve.CalibrationGroups = []

# Data window used to compute a single estimate of the model parameters. This

# determines the "resolution" of the solution (i.e. one solution per channel ,

# per second , or one solution per all channels , per 10 minutes , etc.).

#

# CellSize.Freq is specified in number of channels , CellSize.Time in number

# of time slots. A value of zero means all , i.e. using the values given below

# a single solution will be computed per time slot using data from all

# channels.

#

# Solution cell size (no of channels)

Step.solve.Solve.CellSize.Freq = 0

# Solution cell size (no of timeslots)

Step.solve.Solve.CellSize.Time = 1

# Define how many solution cells are simultaneously processed. CellChunkSize

# is in units of timeslots.

# NB. It is recommended that Strategy.ChunkSize is an integer multiple of

# CellChunkSize * CellSize.Time (or zero). Generally best to set this in the

# range 10 - 25.

Step.solve.Solve.CellChunkSize = 10

# Propagate solutions from one solution cell to the next. The fit uses the

# previous solution as a starting point for the next one. False is

# safer if there are a large number of bad calibration solutions.

Step.solve.Solve.PropagateSolutions = F

# Stop criteria , from CASA libraries -- see wiki for details.

Step.solve.Solve.Options.MaxIter = 50

Step.solve.Solve.Options.EpsValue = 1e-9

Step.solve.Solve.Options.EpsDerivative = 1e-9

Step.solve.Solve.Options.ColFactor = 1e-9

Step.solve.Solve.Options.LMFactor = 1.0

Step.solve.Solve.Options.BalancedEqs = F

Step.solve.Solve.Options.UseSVD = T

### Correct step parameters ###

# Parameters controlling the operations of the ’correct ’ step , that

# applies the solutions found above for the direction of <source >

Step.correct.Operation = CORRECT

Step.correct.Model.Sources = [<source >]

Step.correct.Model.Phasors.Enable = T

Step.correct.Model.Gain.Enable = T

Step.correct.Output.Column = CORRECTED_DATA

69



7.8.4 Gain calibration (direction dependent) with source subtraction

This section has been adapted from a document written by Annalisa Bonafede46. In the following, we
report the parset47 file and skymodel used for the subtraction of Cas A and Cyg A from the observation
of the radio source 3C380.

The parset includes the following steps:

• Solve for the gain in the direction of each source in the source catalog.

• Subtract the sources CygA.E, CygA.W, and CasA, each with their own individual gain.

• Correct the data for the gain in the direction of 3C380 (the target).

######################################################

#

# image -plane -cal.parset

#

Strategy.ChunkSize = 100

Strategy.Steps = [solve , subtract , correct]

Step.solve.Operation = SOLVE

Step.solve.Model.Sources = []

Step.solve.Model.DirectionalGain.Enable = T

Step.solve.Model.Cache.Enable = T

Step.solve.Solve.Parms = [" DirectionalGain :0:0:*" ," DirectionalGain :1:1:*"]

Step.solve.Solve.CellSize.Freq = 0

Step.solve.Solve.CellSize.Time = 5

Step.solve.Solve.CellChunkSize = 10

Step.solve.Solve.Options.MaxIter = 50

Step.solve.Solve.Options.EpsValue = 1e-9

Step.solve.Solve.Options.EpsDerivative = 1e-9

Step.solve.Solve.Options.ColFactor = 1e-9

Step.solve.Solve.Options.LMFactor = 1.0

Step.solve.Solve.Options.BalancedEqs = F

Step.solve.Solve.Options.UseSVD = T

Step.subtract.Operation = SUBTRACT

Step.subtract.Model.Sources = [CygA.E, CygA.W, CasA]

Step.subtract.Model.DirectionalGain.Enable = T

Step.correct.Operation = CORRECT

Step.correct.Model.Sources = [3C380]

Step.correct.Model.DirectionalGain.Enable = T

Step.correct.Output.Column = CORRECTED_DATA

The source catalog used for calibration is reported below48:

############################################################

# 3C380 -bbs.skymodel

# (Name , Type , Ra, Dec , I, ReferenceFrequency , SpectralIndex) = format

CygA.E, POINT , 19:59:29.99 , +40.43.57.53 , 4421, 73.8e6 , [-0.7]

CygA.W, POINT , 19:59:23.23 , +40.44.23.03 , 2998, 73.8e6 , [-0.7]

CasA , POINT , 23:23:24.0 , +58.48.54.0 , 20000

46a.bonafede[at]jacobs-university[dot]de
47This example can be found in /globaldata/COOKBOOK/Parset/image-plane-cal.parset.
48This source catalog is available in /globaldata/COOKBOOK/Models.

70



3C380 , POINT , 18:29:31.8 , +48.44.46.0 , 1, 178.e6, [ -0.7]

The flux of 3C380 has been set to the arbitrary value of 1 Jy. Its spectral index has been roughly
estimated by comparing VLSS and 3C flux. The subtraction can also be performed without specifying
the correct flux of the sources and determining the flux of the target source with self calibration.

The resulting image in shown in Figure 16, compared to the map obtained without subtraction.

0.2 0.4 0.6 0.8

3C380 SB1253C380 SB125

Figure 16: The radio source 3C380 imaged by LOFAR at 135 MHz (observation ID L2010 08567).
Left panel: Self calibration has been applied with directional-gain correction and subtraction of Cyg
A and Cas A. Right panel: Self calibration has been applied without correction. The lowest contour
level is at 3 mJy beam−1; subsequent contour levels are spaced by factors of

√
2. The resolution is

83.29”×59.42”. The negative contour is in red.

7.8.5 Differential TEC

The electrons in the ionosphere introduce a frequency dependent phase shift in the radio waves passing
through the atmosphere. The strength of this effect depends on the ‘total electron content’ (TEC)
along the the line between the receiving station and the source (the line of sight). Determining the
(absolute) TEC value of patches in the atmosphere is extremely difficult, and is usually based on
measuring the frequency dependent reception time of GPS signals and subsequent application of an
ionospheric model.

The determination of the differential TEC, which is the TEC value difference between two stations
on a baseline, is easier. This does not allow you to map an ionospheric phase screen, but it does
provide a rough estimate of the behaviour of the ionosphere (which can be used in later to be available
ionospheric models for LOFAR).

Differential TEC can be used to describe the frequency dependence of the phase solutions. Since

71



the effect of the ionosphere is more severe at low frequencies, this is of advantage to LBA observa-
tions. Estimating differential TEC allows for more accurate phase solution, and, when using global
parameter estimation (see Section 7.10), more subbands can be grouped together.

To include differential TEC in the model you must include the following keys in the parset:

Step.<name>.Model.TEC.Enable = T

Step.<name>.Solve.Parms = [TEC:*]

Warning: to fit TEC or directional TEC the effect of clocks needs to be sorted out. So either in a
previous calibration or in the same calibration you need to calibrate for Clock as well.

To make use of the estimated differential TEC values, subsequent steps must also include differential
TEC in the model (using Step.<name>.Model.TEC.Enable = T). The script Solution Plotter.py49

can be used to plot differential TEC solutions per baseline, when run on an MS containing TEC solu-
tions.

7.9 Tweaking BBS to run faster

BBS can take a long time to calibrate your huge dataset. Luckily, there are some ways to tune it. You
have to know a bit about how BBS works to do this.

BBS views the data as a grid of time slots times vs channels (see Figure 17). A solution cell is defined
as the number of timeslots times the number of channels on which a constant parameter solution is
computed. For example, if you specify CellSize.Freq = 1, a different solution is computed for
every channel independently. In Figure 17, the solution cells are outlined with blue lines.

Because the evaluation of the model is computationally expensive, and a lot of intermediate results
can be reused, the model is evaluated for a number of cells simultaneously. There is a trade-off here:
if one cell would converge to a solution very slowly, the model is evaluated for all the cells in the
cell chunk, even the ones that have converged. The number of cells in a cell chunk is specified by
CellChunkSize, which specifies the number of solution cells in the time direction. Dependent on the
amount of frequency cells, a value of CellChunkSize = 10 -- 25 could be good.

First, BBS loads a lot of timeslots into memory. The amount of timeslots is specified by ChunkSize.
If you specify ChunkSize = 0 then the whole MS will be read into memory, which will obviously
not work if your data is 80 Gb large. Depending on the number of baselines and channels, usually 100
is a good choice. Monitor the amount of memory that is used (for example by running top) to see if
you’re good. The ChunkSize should be an integer multiple of CellSize.Time × CellChunkSize,
so that in every chunk the same number of cell chunks are handled and all cell chunks have the same
size.

Multithreading

BBS can do a bit of multithreading. Be warned in advance that if you use N threads, BBS will most
likely not run N times faster. Again, a bit of tweaking may be necessary.

The multithreading is done on solve part, not on the model building part. So it works only on problems
that are ‘solve-dominated’. The multithreading is performed over the solution cells. For this to give
any speedup, there need to be at least as many solution cells as the number of threads. You usually get
a decent speed-up if the number of solution cells is about 5–6 times the number of threads. So if you

49Available from the LOFAR-Contributions GitHub repository at: https://github.com/
lofar-astron/LOFAR-Contributions

72

https://github.com/lofar-astron/LOFAR-Contributions
https://github.com/lofar-astron/LOFAR-Contributions


C
hu
nk
si
ze

C
el
lC
h
un
kS
iz
e

CellSize.Time
C
el
lS
iz
e.
F
re
q

timeslots
ch
an
ne
ls

Figure 17: The different solve domains and chunk parameters for BBS. In this example,
CellSize.Time=8, CellSize.Freq=8, ChunkSize=32, CellChunkSize=2 (do not use these val-
ues yourself, they are probably not good for actual use).

solve over all frequencies (the number of frequency cells is 1), CellChunkSize = 5 × nThreads

should give you some speedup.

You can instruct calibrate-stand-alone50 to run with multithreading with the parameter -t or
--numthreads:

calibrate-stand-alone --numthreads 8 <MS> <parset> <source catalog>

7.10 Global parameter estimation

BBS was designed to run on a compute cluster, calibrating across multiple subbands which reside
on separate compute nodes. BBS consists of three separate executables: bbs-controller, bbs-re-
ducer, and bbs-shared-estimator. The bbs-controller process monitors and controls a set of
bbs-reducer processes, and possibly one or more bbs-shared-estimator processes. Each sub-
band is processed by a separate bbs-reducer process. When working with calibrate-stand-alo-
ne, the script actually launches one bbs-reducer for you. To setup a calibration across subbands,
the script calibrate can be used, which sets up the appropriate processes on different nodes.

Each bbs-reducer process computes a set of equations and sends this to the bbs-shared-estimator
process assigned to the group it is part of. The bbs-shared-estimator process merges the set of
equations with the sets of equations it receives from the other bbs-reducer processes in the group.
Once it has received a set of equations from all the bbs-reducer in its group, the bbs-shared-es-

timator process computes a new estimate of the model parameters. This is sent back to all bbs-re-
ducer processes in the group and the whole process repeats itself until convergence is reached.

7.10.1 Setting up your environment

Before using the distributed version of BBS, you will have to set up a personal database. In principle,
this needs to be done only once. You only have to recreate your database when the BBS SQL code
has changed, for example to support new functionality. Such changes are kept to a minimum.

Also, on each lce or locus node that you are going to use you need to create a working directory.
Make sure you use the same path name on all the nodes . This has to be done only once.

50Currently, it is not possible to combine multithreading with a global solve or with the calibrate script.

73



The distributed version of BBS requires a file that describes the compute cluster (an example of such
a file is cep1.clusterdesc51) and a configuration or parset52 file that describes the reduction.

For each MS that we want to calibrate it is necessary to create a vds file that describes its contents and
location. This can be done by running the following command:

> makevds cep1.clusterdesc <directory>/<MS>

After this, all vds files need to be combined into a single gds file, ready for calibration and/or imaging.
This is done by typing:

> combinevds <output file>.gds <vds file 1> [<vds file 2> ...]

Instead of specifying the list of input vds files, you could type *.vds. Note that the combine step is
required even if we want to calibrate a single subband only, although normally you would calibrate a
single subband using the stand-alone version of BBS (see Section 7.2).

7.10.2 Usage

To calibrate an observation with the distributed version of BBS on the Groningen cluster, execute the
calibrate script on the command line:

> calibrate -f --key <key> --cluster-desc ~/imaging.clusterdesc --db ldb001 \

--db-user postgres <gds file> <parset> <source catalog> <working directory>

which is a single command, spread over multiple lines, as indicated by a backslash. The important
arguments provided to the calibrate script in this example are:

• <key>, which is a single word that identifies the BBS run. If you want to start a BBS run while
another run is still active, make sure that the runs have different keys (using this option).

• <gds file>, which contains the locations of all the MS (subbands) that constitute the obser-
vation. It should be given here by its full path, for example /data/scratch/<username>/<global
gds file>.

• <parset>, which defines the reduction (see Section 7.8).

• <source catalog>, which defines a list of sources that can be used for calibration (see Sec-
tion 7.3).

• <working directory>, which is the working directory where BBS processes will be run and
where the logs will be written (usually /data/scratch/<user name>). It should be created
on each compute node that you intend to use. You can use the cexec command for this (see
Section 1.2).

• The -f option, which overwrites stale information from previous runs.

51You can copy this file from /globaldata/COOKBOOK/Files.
52Examples can be found in /globaldata/COOKBOOK/Parset.

74



You can run the calibrate script without arguments for a description of all the options and the
mandatory arguments. You can also use the -v option to get a more verbose output. Note that the
arguments of calibrate are very much like53 those of calibrate-stand-alone.

The calibrate script does not show progress information, which makes it difficult to estimate how
long a BBS run will take to complete. One way around this is to log on to one of the compute
nodes where BBS is processing, change to your local working directory, and monitor one of the
bbs-reducer log files. These log files are named <key> kernel <pid>.log. The default key is
default, and therefore you will often see log files named e.g. default kernel 12345.log. The
following command will print the number of times a chunk of visibility data was read from disk:

> grep "nextchunk" default_kernel_12345.log | wc -l

You can compute the total number of chunks by dividing the total number of time stamps in the
observation by the chunk size specified in the parset (Strategy.ChunkSize). Of course, if you
make the chunk size large, it may take BBS a long time to process a single chunk and this way of
gauging progress is not so useful. Generally, it is not advisable to use a chunk size larger than several
hundreds of time samples. This will waste memory. A chunk size smaller than several tens of time
stamps is also not advisable, because it leads to inefficient disk access patterns.

7.10.3 Defining a global solve

Solving across multiple subbands can be useful if there is not enough signal in a single subband to
achieve reasonable calibration solutions, i.e. the phase and amplitude solutions look more or less
random. Basically, there should be enough source flux in the field for calibration. Of course, one first
has to verify that the sky model used for calibration is accurate enough, because using an inaccurate
sky model can also result in bad calibration solutions.

To enable global parameter estimation, include the following keys in your parset. Note that the value
of the Step.<name>.Solve.CalibrationGroups key is just an example. This key is described in
more detail below.

Strategy.UseSolver = T

Step.<name>.Solve.CalibrationGroups = [3,5]

The Step.<name>.Solve.CalibrationGroups key specifies the partition of the set of all available
subbands into separate calibration groups. Each value in the list specifies the number of subbands that
belong to the same calibration group. Subbands are ordered from the lowest to the highest starting
frequency. The sum of the values in the list must equal the total number of subbands in the gds file.
By default, the CalibrationGroups key is set to the empty list. This indicates that there are no
interdependencies and therefore each subband can use its own solver. Global parameter estimation
will not be used in this case (even if Strategy.UseSolver = T).

When using global parameter estimation, it is important to realize that drifting station clocks and the
ionosphere cause frequency dependent phase changes. Additionally, due to the global bandpass, the
effective sensitivity of the telescope is a function of frequency. Therefore, at this moment, it is not
very useful to perform global parameter estimation using more than about 1–2 MHz of bandwidth
(5–10 consecutive subbands).

A few examples of using global parameter estimation with 10 bands would be:

53Actually, both scripts use different terminology, sky-db in the one is called sourcedb in the other. This will be
fixed.

75



• Estimate parameters using all bands together:

Step.<name>.Solve.CalibrationGroups = [10]

• Estimate parameters for the first 5 bands together, and separately for the last 5 bands together:

Step.<name>.Solve.CalibrationGroups = [5,5]

• Do not use global parameter estimation (even if Strategy.UseSolver = T):

Step.<name>.Solve.CalibrationGroups = []

• Estimate parameters for band 0 separately, bands 1–3 together, bands 4–5 together, and bands
6–9 together (note that 1+3+2+4=10, the total number of subbands in our example).

Step.<name>.Solve.CalibrationGroups = [1,3,2,4]

7.11 Pre-computed visibilities

Diffuse, extended sources can only be approximately represented by a collection of point sources. Ex-
porting clean-component (CC) models from catalogues (e.g. VLSS, WENSS) or first iteration major
cycle selfcal images tend to contain many CCs, ranging up to 50,000. By using casapy2bbs.py these
can be imported into a BBS catalog file, but processing these can take long and memory requirements
might not even allow their usage at all.54

An alternative lies in (fast) Fourier transforming model images directly into uv-data columns. These
can then be used in BBS as model data. The import can be done with a tool called addUV2MS.

The first argument is the MS to which the uv-data is to be added. The second argument is a CASA
image (extension .model). The filename of the image is stripped of its leading path and file extension.
This is then the column name it is identified by in the parset, and can be seen in the MS. For example:

> addUV2MS -w 512 L24380SB030uv.MS.dppp.dppp $HOME/Images/3C196_5SBs.model

This will create a column of name 3C196 5SBs, containing the uv-data FFT’ed from this model image,
using 512 w-projection planes. You can run addUV2MS multiple times with different images, or also
with several images as additional command arguments, to create more than one uv-data column.
While this works in principle with normal images, it is advisable to use clean component model
images generated by CASA. A few notes of caution though:

• The image must have the same phase center as the MS, because the internal CASA-routine
which is used, does not do any phase shifting.

• For wide field images you should set an appropriate value for the number of w-planes used in
the w-projection term (default=128).

• Direction dependent effects cannot be handled for “large” images. This means the image has to
be small on the scale over which the direction dependent effects change.

54On CEP3, catalog files with up to ca. 10,000 CCs can be processed until the nodes run out of memory.

76



• addUV2MS temporarily overwrites the frequency in the input images to match that in the MS. It
restores the original frequency, but only one (multi-frequency channel images aren’t supported).
Aborting the run may leave you then with a model image having an incorrect frequency entry.

• Successive runs with the same input model image will overwrite the data in the respective
column.

The column name generated by addUV2MS can be used in the BBS parset as:

Step.<name>.Model.Sources = [@columnname]

You can use casabrowser to find out which data columns are available in a given MS. Be careful
about dots in the filename, and verify that your model refers to the name of the created column.
Running addUV2MS -h will give you more information about its usage.

You can use cexecms to add model uv-data to more than one MS, for example:

> cexecms "addUV2MS -w 512 <FN> $HOME/Images/3C1965_SBs.model" \

"/data/scratch/pipeline/L2011_08175/*"

7.12 Inspecting the solutions

You can inspect the solutions using the python script parmdbplot.py. To start parmdbplot.py from
the command line, you should first initialize the LofIm environment (see Section 1.3). Then you can
type, for example:

> parmdbplot.py SB23.MS.dppp/instrument/

The first thing you should see after starting the script should be the main window (see Figure 18).
Here you can select a set of parameters of the same type to be plotted together in a single plot. Note
that some features will not be available if you select multiple parameters. Parmdbplot is able to
properly handle the following solution types: Gain, DirectionalGain, CommonRotationAngle, Ro-
tationAngle, CommonScalarPhase, ScalarPhase, Clock, TEC, RM. The last three (Clock, TEC and
RM) are properly converted into a phase – they are stored differently in the parmdb internally.

The “Use resolution” option is best left unchecked. If it is checked, the plotter tries to find a resolution
that will yield a 100× 100 grid in frequency× time. Usually, you just want to use the sampling
intervals that are present in the parmdb. In that case, leave the box unchecked.

Once you click the “Plot” button, a window similar to the Figure 19 should pop up. We discuss the
controls on the top of the window from left to right. The first is a drop down box that allows you to
select the axis (frequency, time) to slice over. By default, this is set to frequency, which means that
the x-axis in the plot is time and that you can step along the frequency axis using the spin control (the
second control from the left).

The “Legend” checkbox allows you turn the legend on or off (which can be quite large and thus
obscure the plot, so it is off by default). The “Polar” checkbox lets you select if the parameter value
is plotted as amplitude/phase (the default) or real/imaginary. The “Unwrap phase” checkbox will
turn phase unwrapping on or off. The button “Block y-axis” is useful when stepping over multiple
frequency solutions: if checked, the y-scale will remain the same for all plots. “Use points” can be
checked if you want points (instead of lines) for amplitude plots.

77



Figure 18: The main window of parmdbplot.

Figure 19: The plot window of parmdbplot.

The last checkbox lets you choose the unit for the x-axis. By default, it is the sample number. If you
chose, in the main window, to use a time resolution of 2 seconds, then the number 10 on the x-axis
means 10× 2 = 20 seconds. If you enable “Values on x-axis”, it will show the number of minutes
since the start of the observation.

The “Phase reference” drop down box allows you to select the parameter used as the phase reference
for the phase plots (the phase reference is only applied in amplitude/phase mode).

When the phase reference is set, one can use the “phase sum” drop-down menu (see Fig. 20). This
menu allows the user to select among all the other parameters related to the same antenna and add
the phases to those plotted. All the selected phases are referenced to the ”phase reference” antenna.
This procedure is useful if one solves for Phase and Clock (or TEC) and wants to look at the global
phase effect. Note that the phase effects are just added together with not specific order. This is only
physically correct if the effects commute.

78



Figure 20: The plot window of parmdbplot with a phase sum

The slider on the left of the plots allows you to make an exponential zoom to the median value of
amplitude plots. This can be helpful if you have one outlier in the solution which sets the scale to
1000 when you are actually interested in the details around 0.001.

The controls on the bottom of the window are the default matplotlib controls that allow you to pan,
zoom, save the plot, and so on.

For a quick overview of solutions, and to compare lots of solutions at a glance, you can also use the
solplot.py55 script by George Heald:

>solplot.py -q *.MS/instrument/

Running the script with -h will produce an overview of possible options.

7.13 The global bandpass

This section describes estimates of the global bandpass for the LBA band and HBA bands. The band-
pass curves were estimated from the BBS amplitude solutions for several observations of a calibrator
source (Cygnus A or 3C196).

7.13.1 LBA

The global bandpass has been determined for the LBA band between 10-85 MHz by inspecting the
BBS solutions after calibration of a 10-minute observation of Cygnus A. Calibration was performed
using a 5-second time interval on data flagged for RFI (with RFIconsole), demixed, and compressed to
one channel per sub band. The LBA beam was enabled during the calibration. The bandpass was then
derived by calculating the median of the amplitude solutions for each sub band over the 10-minute
observation, after iterative flagging of outliers.

Figure 21 shows the amplitudes found by BBS for each sub band, normalized to 1.0 near the peak
at ≈ 58 MHz. The time and elevation evolution of the bandpass has also been investigated. In
general, the bandpass is approximately constant on average over the elevation range probed by these
observations, implying that the effects of the beam have been properly accounted for.

55Available at the LOFAR-Contributions GitHub repository: https://github.com/lofar-astron/LOFAR-Contributions

79

https://github.com/lofar-astron/LOFAR-Contributions


7.13.2 HBA

The global bandpass for the HBA bands was determined in the same basic way as the LBA global
bandpass. Three one-hour observations of 3C196 from April 2012 were used (one each for HBA-
low, HBA-mid, and HBA-high). No demixing was done. A two-point-source model was used for
calibration. The resulting bandpass is shown in Figure 22. Note that several frequency intervals in the
HBA-high observation were affected by severe RFI.

7.14 Gain transfer from a calibrator to the target source56

In order to calibrate a target field without an a priori model, one way forward is to observe a well-
known calibrator source, use it to solve for station gains, and apply those to the target field in order
to make a first image and begin self-calibrating. There are two tested methods for utilizing calibrator
gains in LOFAR observations. Additional methods may become possible later.

• Observe a calibrator source before a target observation, using the same frequency settings, with
a short time gap between calibrator and target. This is the same approach as is used in traditional
radio telescopes and allows using the full bandwidth in the target observation. However, it is
not suggested for long target observations, because the calibrator gains may only remain valid
for a relatively short time.

• Observe a calibrator in parallel with a target observation, using the same frequency settings for
both beams. This has the disadvantage that half of the bandwidth is lost in the target observation,
but the time variation of the station gains will be available.

The recommended approach for dealing with both of these cases is outlined below.

7.14.1 The “traditional” approach

When doing calibration transfer in the normal way, i.e. the calibrator and target are observed at differ-
ent times, some work needs to be done before the gain solutions of the calibrator can be transferred to
the target. This is because the calibrator solutions tell the gain error of the instrument at the time the
calibrator was observed, and in principle not of when the target was observed. The implicit assump-
tion of the traditional approach is that the gain solutions are constant in time. The frequencies of the
calibrator observation should in principle match those of the target.

The above means that the calibration of the calibrator should lead to only one solution in time. This
can be achieved by setting CellSize.Time to 0. After this is done, the validity of this solution
should be extended to infinity by using the export function of parmdbm. Full documentation for that
program is available on the LOFAR wiki57.

In order to achieve time independence you should use these settings in the BBS parset58:

Strategy.ChunkSize = 0 # Load the entire MS in memory

Step.<name >. Solve.CellSize.Time = 0 # Solution should be constant in time

Step.<name >. Solve.CellChunkSize = 0

Export the calibrator solutions so that they can be applied to target field (see the LOFAR wiki for
details). For example:

56George Heald (heald[at]astron[dot]nl) contributed to the writing of this section.
57http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm
58Note that these settings would be dangerous for a long observation!

80

http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm


10 20 30 40 50 60 70 80 90
Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d
e

Global Bandpass Using Median over all Stations

Figure 21: The global bandpass in LBA between 10–85 MHz.

120 130 140 150 160
Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
m

p
lit

u
d
e

(a) HBA-low

180 185 190 195 200 205 210 215
Frequency (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

A
m

p
lit

u
d
e

(b) HBA-mid

215 220 225 230 235 240 245
Frequency (MHz)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
m

p
lit

u
d
e

(c) HBA-high

Figure 22: The global bandpass for the HBA.

81



> parmdbm

Command: open tablename=’3c196_1.MS/instrument ’

Command: export Gain* tablename=’output.table ’

Exported record for parameter Gain :0:0: Imag:CS001HBA0

Exported record for parameter Gain :0:0: Imag:CS002HBA0

... more of the same ...

Exported record for parameter Gain :1:1: Real:RS307HBA

Exported record for parameter Gain :1:1: Real:RS503HBA

Exported 104 parms to output.table

Command: exit

An alternative scheme to make the solutions of the calibrator observation time independent is to have
a smaller CellSize.Time, and afterwards take the median59. This way, time cells where calibration
failed do not affect the solutions. To follow this scheme, calibrate the calibrator as you would do
normally, for example with CellSize.Time=5. To make the solutions time independent, use the tool
parmexportcal.py (see parmexportcal --help or its documentation60. For example, if you have
calibrated the calibrator and stored the solution in cal.parmdb, you can take the median amplitudes
as follows:
parmexportcal in=cal.parmdb out=cal_timeindependent.parmdb

By default, parmexportcal takes the median amplitude, and the last phase. This is because the phase
always varies very fast, and taking the median does not make sense. One can also chose not to transfer
the phase solution of the calibrator at all, by setting zerophase to false in parmexportcal.

More advanced schemes for processing calibrator solutions before transferring them to the target can
be applied using LoSoTo, see section 8. An example could be flagging the calibrator solution, and
then averaging it (instead of taking the median).

To apply the gain solutions to target field, one can use BBS. For the calibrate-stand-alone script,
use the --parmdb option. Use a BBS parset which only includes a CORRECT step. Now you should
have a calibrated CORRECTED DATA column which can be imaged.

7.14.2 The LOFAR multi-beam approach

Unlike other radio telescopes, LOFAR has the ability to observe in multiple directions at once. We
are currently experimenting with transferring station gains from one field (a calibrator) to a target
field. So far it seems to work quite well, with limitations described below. The requirements for this
technique are:

• The calibrator and target beams should be observed simultaneously, with the same subband
frequency. Future work may change this requirement (we may be able to interpolate between
calibrator subbands), but for now the same frequencies must be observed in both fields.

• Any time and/or frequency averaging performed (before these calibration steps) on one field
must be done in exactly the same way for the other field.

• The calibrator beam should not be too far from the target beam in angular distance. Little
guidance is currently available for the definition of “too far”, but it appears that a distance of
10 degrees is fine at ν = 150 MHz, while 40 degrees (at the same frequency) might well be too
far. Future experiments should clarify this limitation.

59This is the calibration scheme that the LOFAR pipelines follow.
60http://www.lofar.org/operations/doku.php?id=engineering:software:tools:

parm-export

82

http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parm-export
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parm-export
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parm-export


• In HBA, the distance limit is also driven by the flux density of the calibrator, and the attenuation
by the tile beam. For a good solution on the calibrator, ensure that the sensitivity is sufficient to
provide at least a signal-to-noise ratio of 2−3 per visibility. The tile FWHM sizes and station
SEFDs are available online.

In order to do the calibration, and transfer the resulting gains to the target field, follow these steps:

1. Calibrate the calibrator using BBS. Ensure that the beam is enabled:

Step.<name>.Model.Beam.Enable = T

The time and frequency resolution of the solutions can be whatever is needed for the best results.

2. (Optional) Perform some corrections to the calibrator solutions, for example flagging, smooth-
ing or interpolation. This is best done in LoSoTo, see section 8.

3. Apply the gain solutions to the target field. For the calibrate script, use the --instrument-db
option. For the calibrate-stand-alone script, use the --parmdb option. Use a BBS parset
which only includes a CORRECT step. Again, ensure that the beam is enabled. The source list
for the CORRECT step should be left empty:

Step.<name>.Model.Sources = []

4. Before proceeding with imaging and self-calibration, it may be advisable to flag and copy the
newly created CORRECTED DATA column to a new dataset using DPPP.

7.15 Post-processing

The calibrated data produced by BBS can contain outliers that have to be flagged to produce a decent
image. It is recommended to visually inspect the corrected visibilities after calibration. Outliers can
be flagged in various ways, for instance using AOFlagger (see Section 4) or DPPP (see Section 5).

The script CallSolFlag.py61 can also be used to flag the calibrated data. Even though the name
suggests differently, this script simply flags all the visibilities in the CORRECTED DATA column that
exceed the specified flux threshold.

> CallSolFlag.py <BAND.MS> -l <flux threshold in Jy>

7.16 Troubleshooting

• Bugs should be reported using the LOFAR issue tracker62.

• If BBS crashes for any reason, be sure to kill all BBS processes (bbs-controller, bbs-reducer,
and bbs-shared-estimator) on all of the nodes you were working on before running again.

61Available from the LOFAR-Contributions GitHub repository at: https://github.com/lofar-astron/
LOFAR-Contributions. It can also be invoked directly after having initialized the Tools packages (see Sect. 1.3).

62http://support.astron.nl/lofar_issuetracker

83

http://support.astron.nl/lofar_issuetracker
https://github.com/lofar-astron/LOFAR-Contributions
https://github.com/lofar-astron/LOFAR-Contributions
http://support.astron.nl/lofar_issuetracker


• After calibrating many frequency channels (e.g. for spectral line imaging purposes), the spec-
tral profile could show an artificial sin-like curve. This is due to the fact that BBS applied
a single solution to all the input channels. To avoid this, it is important to set the parame-
ter Step.<name>.Solve.CellSize.Freq to a value higher than 0, indicating the number of
channels that BBS will try to find a solution for (0 means one solution for all the channels). You
can inspect the solutions with parmdbplot to judge if this is required.

• The <key name>*.log files produced by BBS may provide useful information about what
went wrong. Inspect these first when BBS has crashed. The log files from bbs-reducer are
usually located on the compute nodes.

• BBS expects information about the antenna field layout to be present in the MS. The data
writer should take care of including this, but in some cases it can fail due to problems during
the observation. The program makebeamtables can be used to manually add the required
information to an existing MS. Documentation is available on the LOFAR Wiki63.

7.16.1 Common problems

In the following some error messages are reported together with the solution we have found to fix
them.

• Station <name> is not a LOFAR station or the additional information

needed to compute the station beam is missing.

Solution: Run makebeamtables on all subbands to add the information required to compute
the station beam model.

• [FAIL] error: setupsourcedb or remote setupsourcedb-part process(es)

failed

Solution: Check your source catalog file. You can run makesourcedb64 locally on your catalog
file to get a more detailed error message:

makesourcedb in=<catalog> out="test.sky" format="<"

• [FAIL] error: clean database for key default failed

Solution: Check if you can reach the database server on ldb001 and make sure that you created
your personal database correctly. When in doubt, recreate your personal database.

63http://www.lofar.org/operations/doku.php?id=engineering:software:tools:
makebeamtables

64http://www.lofar.org/operations/doku.php?id=engineering:software:tools:
makesourcedb

84

http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makebeamtables
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makebeamtables
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makebeamtables
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makesourcedb
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:makesourcedb


8 LoSoTo: LOFAR Solution Tool65

The LOFAR Solution Tool (LoSoTo) is a Python package which handles LOFAR solutions in a variety
of ways. The data files used by LoSoTo are not in the standard parmdb format used by BBS/NDPPP
(e.g. the “instrument” table). LoSoTo uses instead an innovative data file, called H5parm, which is
based on the HDF5 standard66.

WARNING: LoSoTo is still in a beta version! Please report bugs to fdg@hs.uni-hamburg.de
and drafferty@hs.uni-hamburg.de. LoSoTo will be soon integrated in the LOFAR environment
but up to that moment to use it on cep3 users have to:

source /home/fdg/scripts/losoto/tools/lofarinit.[c]sh

8.1 H5parm

H5parm is simply a list of rules which specify how data are stored inside the tables of an HDF5
compliant file. We can say that H5parm relates to HDF5 in the same way that parmdb relates to
MeasurementSet. The major advantage of using HDF5 is that it is an opensource project developed
by a large community of people. It has therefore a very easy-to-use Python interface (the pytables

module) and it has better performance than competitors.

8.1.1 HDF5 format

There are three different types of nodes used in H5parm:

Array: all elements are of the same type.

CArray: like Arrays, but here the data are stored in chunks, which allows easy access to slices of
huge arrays, without loading all data in memory. These arrays can be much larger than the
physically available memory, as long as there is enough disk space.

Tables: each row has the same fields/columns, but the type of the columns can be different within
each other. It is a database-like structure.

The use of tables to create a database-like structure was investigated and found to be not satisfactory
in terms of performance. Therefore LoSoTo is now based on CArrays organized in a hierarchical
fashion which provides enough flexibility but preserves performance.

8.1.2 Characteristics of the H5parm

H5parm is organized in a hierarchical way, where solutions of multiple datasets can be stored in
the same H5parm (e.g. the calibrator and the target field solutions of the same observation) into
different solution-sets (solset). Each solset can be thought as a container for a logically related group
of solutions. Although its definition is arbitrary, usually there is one solset for each beam and for each
scan. Each solset can have a custom name or by default it is called sol### (where ### is an increasing
integer starting from 000).

65This section is maintained by Francesco de Gasperin (fdg@hs.uni-hamburg.de).
66http://www.hdfgroup.org/HDF5/

85

http://www.hdfgroup.org/HDF5/


Each solset contains an arbitrary number of solution-tables (soltab) plus a couple of Tables with some
information on antenna locations and pointing directions. Soltabs also can have an arbitrary name.
If no name is provided, then it is by default set to the solution-type name (amplitudes, phases, clock,
tec...) plus again an increasing integer (e.g. amplitudes000, phase000...). Since soltab names are
arbitrary the proper solution-type is stated in the parmdb type attribute of the soltab node. Supported
values are: amplitude, phase, scalarphase, rotation, clock, tec, tecscreen and phase offset.

Soltabs are also just containers; inside each soltab there are several CArrays which are the real data
holders. Typically there are a number of 1-dimensional CArrays storing the axes values (see Table 3)
and two n-dimensional (where n is the number of axes) CArrays, “values” and “weights”, which
contain the solution values and the relative weights.

Soltabs can have an arbitrary number of axes of whatever type. Here we list some examples:

amplitudes : time, freq, pol, dir, ant

phases : time, freq, pol, dir, ant

clock : time, ant

tec : time, ant, dir

foobar : foo, bar...

Theoretically the values/weights arrays can be only partially populated, leaving NaNs (with 0 weight)
in the gaps. This allows to have e.g. different time resolution in the core stations and in the remote
stations (obviously this ends up in an increment of the data size). Moreover, solution intervals do
not have to be equally spaced along any axis (e.g. when one has solutions on frequencies that are
not uniformly distributed across the band). The attribute axes of the “values” CArrays states the axes
names and, more important, their order.

Axis name Format Example
time (s) float64 [4.867e+09, 4.868e+09, 4.869e+09]
freq (Hz) float64 [120e6,122e6,130e6...]
ant string (16 char) [CS001LBA]
pol string (2 char) [?XX?, ?XY?, ?RR?, ?RL?]
dir string (16 char) [?3C196?,?pointing?]
val float64 [34.543,5345.423,123.3213]
weight (0 = flagged) float32 [from 0 to 1] [0,1,0.9,0.7,1,0]

Table 3: Default names and formats for axes values.

8.1.3 Example of H5parm content

Here is an example of the content of an H5parm file having a single solset (sol000) containing a single
soltab (amplitude000).

# this is the solset

/sol000 (Group) ’’

# this is the antenna Table

/sol000/antenna (Table(36,), shuffle, lzo(5)) ’Antenna names and positions’

86



description := {

"name": StringCol(itemsize=16, shape=(), dflt=’’, pos=0),

"position": Float32Col(shape=(3,), dflt=0.0, pos=1)}

byteorder := ’little’

chunkshape := (2340,)

# this is the source Table

/sol000/source (Table(1,), shuffle, lzo(5)) ’Source names and directions’

description := {

"name": StringCol(itemsize=16, shape=(), dflt=’’, pos=0),

"dir": Float32Col(shape=(2,), dflt=0.0, pos=1)}

byteorder := ’little’

chunkshape := (2730,)

# this is the soltab

/sol000/amplitude000 (Group) ’amplitude’

# this is the antenna axis, with all antenna names

/sol000/amplitude000/ant (CArray(36,), shuffle, lzo(5)) ’’

atom := StringAtom(itemsize=8, shape=(), dflt=’’)

maindim := 0

flavor := ’numpy’

byteorder := ’irrelevant’

chunkshape := (36,)

# direction axis, with all directions

/sol000/amplitude000/dir (CArray(2,), shuffle, lzo(5)) ’’

atom := StringAtom(itemsize=8, shape=(), dflt=’’)

maindim := 0

flavor := ’numpy’

byteorder := ’irrelevant’

chunkshape := (2,)

# frequency axis, with all the frequency values

/sol000/amplitude000/freq (CArray(5,), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (5,)

# polarization axis

/sol000/amplitude000/pol (CArray(2,), shuffle, lzo(5)) ’’

atom := StringAtom(itemsize=2, shape=(), dflt=’’)

maindim := 0

flavor := ’numpy’

byteorder := ’irrelevant’

chunkshape := (2,)

# time axis

87



/sol000/amplitude000/time (CArray(4314,), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (4314,)

# this is the CArray with the solutions, note that its shape is the product of all axes shapes

/sol000/amplitude000/val (CArray(2, 2, 36, 5, 4314), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (1, 1, 10, 2, 1079)

# weight CArray, same shape of the "val" array

/sol000/amplitude000/weight (CArray(2, 2, 36, 5, 4314), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (1, 1, 10, 2, 1079)

8.1.4 H5parm benchmarks

For a typical single-SB parmdb of 37 MB the relative H5parm is around 5 MB large. A typical
H5parm for an 8 hrs observation using 244 SBs is ∼ 3 GB (LBA) and ∼ 5 GB (HBA). Reading times
between compressed and non-compressed H5parms are comparable within a factor of 2 (compressed
is slower). Compared to parmdb the reading time of the python implementation of H5parm (mid-
compression) is a factor of a few (2 to 10) faster.

This is a benchmark example:

INFO: H5parm filename = L99289-cal_SB081.h5

INFO: parmdb filename = L99289-cal_SB081.MS/instrument/

INFO: ### Read all frequencies for a pol/dir/station

INFO: PARMDB -- 1.9 s.

INFO: H5parm -- 0.28 s.

INFO: ### Read all times for a pol/dir/station

INFO: PARMDB -- 1.85 s.

INFO: H5parm -- 0.28 s.

INFO: ### Read all rotations for 1 station (slice in time)

INFO: PARMDB -- 1.94 s.

INFO: H5parm -- 0.3 s.

INFO: ### Read all rotations for all station (slice in time)

INFO: PARMDB -- 8.05 s.

INFO: H5parm -- 0.26 s.

INFO: ### Read all rotations for remote stations (slice in ant)

INFO: PARMDB -- 3.81 s.

INFO: H5parm -- 1.65 s.

88



INFO: ### Read all rotations for a dir/station and write them back

INFO: PARMDB -- 2.01 s.

INFO: H5parm -- 0.47 s.

INFO: ### Read and tabulate the whole file

INFO: parmdb -- 0.67 s.

INFO: H5parm -- 0.02 s.

8.2 LoSoTo

LoSoTo is made by several components. It has some tools used mostly to transform parmdb to
H5parm and back (see Sec. 8.2.1). A separate program (losoto.py) is instead used to perform
operations on the specified H5parm. losoto.py receives its commands by reading a parset file that
has the same syntax of BBS/NDPPP parsets (see Sec.8.2.3).

8.2.1 Tools

There are currently four tools shipped with LoSoTo:

parmdb benchmark.py provide a comparison between parmdb and H5parm for reading/writing

parmdb collector.py fetches parmdb tables from the cluster using a gds file

H5parm importer.py creates an h5parm file from an instrument table (parmdb) or a globaldb cre-
ated by hand or with parmdb collector.py

H5parm merge.py copy a solset from an H5parm files into another one

H5parm exporter.py export an H5parm to a pre-existing parmdb

The usage of these tools is described in Sec. 8.3.

8.2.2 Operations

These are the operations that LoSoTo can perform:

ABS : takes the absolute value of the solutions (probably most meaningful for amplitudes).

CLIP : clip all solutions n times above and 1/n times below the median value (only for amplitudes).

CLOCKTEC : perform clock/tec separation (code maintained by Maaijke Mevius).

FLAG : iteratively remove a general trend from the solutions and then perform noisy region detection
and outlier rejection. For phases this is done in real/imaginary space, for amplitude in log space.

FLAGEXTEND : flag a point if surrounded by enough other flags in a chosen N-dimensional space

INTERP : interpolate solutions along whatever (even multiple) axis. Typically one can interpolate
in time and/or frequency. This operation can also simply rescale the solutions to match the
median of the calibrator solution on a specific axis.

NORM : normalize solutions of an axis to have a chosen average value.

89



Figure 23: Example of phase (left and amplitude (right) solutions after the FLAG operation. Image
made with the PLOT operation. White pixels are flagged data, every plot is an antenna, X-axis is time
and Y-axis is frequency.

PLOT : plot solutions in 1D/2D plots.

PLOTTECSCREEN : plot TEC screen (code maintained by David Rafferty).

RESET : reset the solution values to 1 for all kind of solutions but for phases which are set to 0.

REWEIGHT : manually set weights to a specific values (can be used to hand-flag data, e.g. a bad
antenna/timerange).

SMOOTH : smooth solutions using a multidimensional running median. The n-dimensional surface
generated by multiple axis (e.g. time and freq) can be smoothed in one operation using a
different FWHM for each axis.

TECFIT : fit TEC values per direction and station to phase solutions (code maintained by David
Rafferty).

TECSCREEN : fit TEC screens to TEC values (code maintained by David Rafferty).

EXAMPLE : this is just an example operation aimed to help developing of new operations.

Beside these operations which require the activation through a LoSoTo parset file (see Sec. 8.2.3), one
can call losoto.py with the “-i” option passing an H5parm as argument to obtain some information
on it. Information on a specific subset of solsets can be obtained with “-i -f solset name(s)”. If “-i”
is combined with “-v” (verbose), LoSoTo will take a bit more time and outputs also the percentage of
flagged data and the values of all axes will be written in a file (e.g. file.h5-axes values.txt). Using the
“-d” options instead one can delete a chosen soltab (e.g. “losoto.py -d sol000/phase000 file.h5”).

$ losoto.py -i -v single.h5

WARNING: Axes values saved in single.h5-axes_values.txt

Summary of single.h5

Solution set ’sol000’:

======================

90



Directions: 3C196

pointing

Stations: CS001LBA CS002LBA CS003LBA CS004LBA

CS005LBA CS006LBA CS007LBA CS011LBA

CS017LBA CS021LBA CS024LBA CS026LBA

CS028LBA CS030LBA CS031LBA CS032LBA

CS101LBA CS103LBA CS201LBA CS301LBA

CS302LBA CS401LBA CS501LBA RS106LBA

RS205LBA RS208LBA RS305LBA RS306LBA

RS307LBA RS310LBA RS406LBA RS407LBA

RS409LBA RS503LBA RS508LBA RS509LBA

Solution table ’amplitude000’ (type: amplitude): 2 pols, 2 dirs, 36 ants, 5 freqs, 4314 times

Flagged data 1.131%

History:

2014-12-17 13:29:25: CREATE (by H5parm_importer.py from

lof011:/home/fdg/scripts/losoto/examples/single.globaldb)

Solution table ’rotation000’ (type: rotation): 2 dirs, 36 ants, 5 freqs, 4314 times

Flagged data 1.131%

History:

2014-12-17 13:29:25: CREATE (by H5parm_importer.py from

lof011:/home/fdg/scripts/losoto/examples/single.globaldb)

Solution table ’phase000’ (type: phase): 2 pols, 2 dirs, 36 ants, 5 freqs, 4314 times

Flagged data 1.131%

History:

2014-12-17 13:29:25: CREATE (by H5parm_importer.py from

lof011:/home/fdg/scripts/losoto/examples/single.globaldb)

8.2.3 LoSoTo parset

This is an example parset for the interpolation in amplitude:

LoSoTo.Steps = [interp]

LoSoTo.Solset = [sol000]

LoSoTo.Soltab = [sol000/amplitude000]

LoSoTo.SolType = [amplitude]

LoSoTo.ant = []

LoSoTo.pol = [XX,YY]

LoSoTo.dir = []

LoSoTo.Steps.interp.Operation = INTERP

LoSoTo.Steps.interp.InterpAxes = [freq, time]

LoSoTo.Steps.interp.InterpMethod = nearest

LoSoTo.Steps.interp.MedAxes = []

91



LoSoTo.Steps.interp.Rescale = F

LoSoTo.Steps.interp.CalSoltab = cal000/amplitude000

LoSoTo.Steps.interp.CalDir = 3C295

In the first part of the parset “global” values are defined. These are values named LoSoTo.val name.
In Table 4 the reader can find all the possible global values.

Var Name Format Example Comment
LoSoTo.Steps list of steps [flag,plot,smoothPhases,plot2] sequence of steps names in order
LoSoTo.Solset list of solset names [sol000, sol001] restrict to these solsets
LoSoTo.Soltab list of soltabs: “solset/soltab” [sol000/amplitude000] restrict to these soltabs
LoSoTo.SolType list of solution types [phase] restrict to soltab of this solution type
LoSoTo.ant antenna names [CS001 HBA] restrict to these antennas
LoSoTo.pol polarizations [XX, YY] restrict to these polarizations
LoSoTo.dira directions [pointing, 3C196] restrict to these pointing directions
LoSoTo.freq frequencies [30076599.12109375] restrict to these frequencies
LoSoTo.time times [123456789.1234] restrict to these times
LoSoTo.Ncpub integer 10 number of processes to spawn
a it is important to notice that the default direction (e.g. those related to BBS solving for anything
that is not “directional”: Gain, CommonRotationAngle, CommonScalarPhase...) has the direction

named “pointing”. b only some operations are multiprocess (see Table 5).

Table 4: Definition of global variables in LoSoTo parset.

For every stepname mentioned in the global “steps” variable the user can specify step-specific param-
eters using the syntax: LoSoTo.Steps.stepname.val name. At least one of these options must always
be present, which is the “Operation” option that specifies which kind of operation is performed by
that step among those listed in Sec. 8.2.2. All the global variables (except from the “steps” one) are
also usable inside a step to change (override) the selection criteria for that specific step. Selection can
be a string (interpreted as a regular expression), a list of values (exact match) or can have a min/max
value which is activated using the axisName.minmax sintax (e.g. LoSoTo.freq.minmax = [30e6,1e9]
to select data from 30 MHz to 1 GHz). A list of step-specific parameters is given in Table 5.

Var Name Format Default Comment
ABS
CLIP
Axes list of axes names [time] Axis name to take medians over, may be multi-

ple. Iteration will be on all other axes.
ClipLevel float 5 Factor above/below median at which to clip.

The cut is done at >ClipLevel and at
<1/ClipLevel.

CLOCKTEC
FlagBadChannels bool True detect and remove bad channel before fitting.
FlagCut float 1.5
Chi2cut float 30000.
CombinePol bool False Find a combined polarization solution.
FitOffset bool False
FLAG (multiprocess)
Axis single axis name time Axis to do statistics for flagging.
MaxCycles int 5 Max number of flagging cycles.
MaxRms float 5. Rms to clip outliers.

92



MaxRmsNoise float 5. Rms to clip noisy data region.
Window int 60 Window used to remove trends in timestamps

(e.g. seconds/Hertz).
Order 0|1|2 1 Order of the function fitted during trend re-

moval.
MaxGap int 300 Maximum gaps allowed before fitting 2 trends

in timestamps (e.g. seconds/Hertz), hardly used
for LOFAR.

Reaplce bool False Replace bad values with the interpolated ones,
instead of flagging them.

PreFlagZeros bool False Flag zeros/ones (bad solutions in BBS). They
should be flagged at import time.

EXTENDFLAG (multiprocess)
Axes list of axis names [freq,time] Axes used to find close flags.
Percent float 50 percent of flagged data around the point to flag

it.
Size int 11 Size of the window (diameter, per axis), better

if odd.
Cyles int 3 Number of independent cycles of flag expan-

sion.
INTERP
CalSoltab soltab name ” The calibrator solution table (e.g.

’cal000/amplitude000’).
CalDir dir name ” Use a specific dir (e.g. 3C295) from CalSoltab

instead that the same of the target.
InterpAxes list of axes names [time, freq] The axes along which to interpolate, can be

multiple.
InterpMethod nearest | linear |

cubic
linear Type of interpolation method.

Rescale bool False Just rescale to the median value of CalSoltab,
do not interpolate.

MedAxis axis name ” Rescale to the median of this axis.
NORM
NormVal float 1. The value to normalize the mean.
NormAxis axis name time The axis to normalize.
PLOT
Axes list of axes names [] 1- or 2-element array which says the coordi-

nates for the axes for a 2 for 3D plot respec-
tively.

MinMax [float, float] [0,0] Force a min/max value for the dependent vari-
able (0 means automatic).

TableAxis axis name ” Axis to plot on a page - e.g. ’ant’ to get all
antenna’s on one file.

ColorAxis axis name ” Axis to plot in different colours - e.g. ’pol’ to
get correlations with different colors.

ShadeAxis axis name ” Axis to plot is different shades (alpha) - e.g.
freq for a small range to compare subband to
subband solutions on one plot.

Log XYZ ” use Log=’XYZ’ to set which axes to put in Log
(e.g. Log=’XZ’ to have X and Z axis in log).

93



PlotFlag bool False Plot also flagged data (in red)?
Unwrap bool False Unwrap the selected data (1D only).
Reference antenna name ” Antenna name for referencing phases.
Prefix string ” Give a prefix to saved plots.
Add table name ” Tables to ”add” (e.g. ’sol000/tec000’) to solu-

tions, it works only for tec and clock to be added
to phases.

RESET
REWEIGHT
WeightVal float (0 to 1) 1. Set weights to this values.
FlagBad bool False Re-flag bad values.
SMOOTH
Axes list of axes names [freq, time] Axis name on which to smooth, may be multi-

ple.
FWHM list of float [10, 5] FWHM, one for each axis.
Mode runningmedian |

mean | median
runningmedian Mean/median set all the solutions to the mean/-

median.
TECFIT
Algorithm algorithm name sourcediff The algorithm to use in TEC fitting.
MinBands int 4 Minimum number of bands a source must have

to be used.
MaxStations int 26 Maximum number of stations to use.
OutSoltab soltab name ion000/tec000 the output solution table.
TECSCREEN
Height float 200e3 The height in meters of the screen.
Order int 15 The maximum order of the KL decomposition.
OutSoltab soltab name ion000/tecscreen000 the output solution table.

Table 5: Definition of step-specific variables in LoSoTo
parset.

8.3 Usage

This is a possible sequence of commands to run LoSoTo on a typical observation:

1. Collect the parmdb of calibrator and target:

parmdb_collector.py -v -d "target.gds" -c "clusterdesc" -g globaldb_tgt

parmdb_collector.py -v -d "calibrator.gds" -c "clusterdesc" -g globaldb_cal

where “[target | calibrator].gds” is the gds file (made with combinevds) of all the SB you want to
use. You need to run the collector once for the calibrator and once for the target. “Clusterdesc”
is a cluster description file as the one used for BBS (not stand-alone).

One can create the globaldb also by hand. Just create a directory, copy all the instrument
(parmdb) tables you need calling them: instrument-1, instrument-2... Then copy from one of
the MS (they are all the same) the ANTENNA, FIELD and sky tables. This directory is now a
valid globaldb.

2. Convert the set of parmdbs into an h5parm:

94



H5parm_importer.py -v tgt.h5 globaldb_tgt

H5parm_importer.py -v cal.h5 globaldb_cal

This command converts ALL the instrument tables (parmdb) inside the globaldb directories in
a single solset inside tgt.h5.

One can then merge the two h5parms in a single file (this is needed if you want to interpo-
late/rescale/copy solutions in time/freq from the cal to the tgt):

H5parm_merge.py -v cal.h5:sol000 tgt.h5:cal000

An easier approach is to directly append the second globaldb to the h5parm file of the first (note
the same name for the h5parm):

H5parm_importer.py -v tgt.h5 globaldb_tgt

H5parm_importer.py -v tgt.h5 globaldb_cal

One can create a h5parm also from a single SB:

H5parm_importer.py -v LXXXXX_3c295.h5 LXXXXX_3c295.MS

This command converts the “instrument” (parmdb) table inside the MS in a solset inside LXXXXX 3c295.h5.
Note that given the definition of globaldb above, a single-SB measurementset is a perfect valid
one.

3. Run LoSoTo using e.g. the parset given in Sec. 8.2.3:

losoto.py -v tgt.h5 losoto-interp.parset

4. Convert back the h5parm into parmdb:

H5parm_exporter.py -v -c tgt.h5 globaldb_tgt

5. Redistribute back the parmdb tables into globaldb tgt that are now updated (inspect with par-
mdbplot), there’s no automatic tool for that yet.

8.4 Developing in LoSoTo

LoSoTo is much more than a stand alone program, the user can use LoSoTo to play easily with
solutions and to experiment. The code is freely available and is already the result of the collaborative
effort of several people. If interested in developing your own operation, please have a look at: https:
//github.com/revoltek/losoto/.

In the “tools” directory the user can find all the tools described in Sec. 8.2.1 plus some other program.
All these programs are stand-alone. losoto.py is the main program which calls all the operations
(one per file) present in the “operation” directory. It relays on the h5parm.py library which deals
with reading and writing from an H5parm file and the operations lib.py library which has some
functions common to several operations.

An example operation one can use to start coding its own, is present in the “operation” directory under
the name “example.py”. That is the first point to start when interested in writing a new operation.
The most important thing shown in the example operation is the use of the H5parm library to quickly
fetch an write back solutions in the H5parm file.

95

https://github.com/revoltek/losoto/
https://github.com/revoltek/losoto/


8.5 Clock/TEC separation

In LoSoTo an algorithm is implemented with which it is possible to separate the BBS phase solutions
into a instrumental delay (clock) and an ionospheric component (TEC, a measure of the differential
ionospheric electron content). This is done using the difference in frequency dependence of both
effects: The phase shift due to a delay error goes as ν , whereas ionospheric refraction gives to first
order an phase shift proportional to 1/ν . Accordingly, one needs to have solutions over a large enough
bandwidth to be able to do the separation 67.

There are three situations for which Clock/TEC separation could be useful. The first is if one needs
to transfer from a calibrator not only the amplitudes, but also the phase solutions, eg. to be able to
combine more sub-bands before doing a phase self-calibration on the target field. Since the iono-
spheric refraction is a direction dependent effect, in most cases it does not make sense to transfer the
ionospheric phases. It is then possible to only apply the clock solutions from the calibrator to the
target field. However, one should take note that the delays between stations drift and therefore this
method is only useful if calibrator data was taken simultaneously with the target field.

A more experimental case for Clock/TEC separation is the fit of a TECscreen that can be applied
during imaging with the AWimager, to correct for the direction dependent ionospheric effects. In this
case, it is good to remove the direction independent instrumental effects as good as possible and only
use the fitted TEC as input for the TECscreen. This has only been tested in very limited cases.

Finally, the TEC solutions of the clock/TEC separation give insight in the general ionospheric con-
ditions of your observation. This could be of relevance if one wants eg. to estimate the noise due to
remaining ionospheric errors.

It is important (especially for LBA) to correct for differential Faraday rotation before attempting to do
a clock/TEC separation on the diagonal phases. The most straightforward way to do this, is to solve
in BBS for diagonal gains and a common rotation angle.

The Clock/TEC fit as it is implemented in LoSoTo, returns per timeslot and station two arrays, one
with clock errors (in s) and one with differential TEC solutions (in TEC-units). Furthermore a constant
(in time) phase offset per station can be estimated. The remaining phase errors (eg. due to cable
reflections) are of second order.

It is possible to write the clock solutions to the instrument tables and thus correct for them in BBS.

67The exact bandwidth requirements have not been tested yet, but it has been shown that on good S/N (calibrator) HBA
data, it is possible to do the clock/TEC separation with 15 solutions, evenly distributed over 60 MHz.

96



9 SAGECAL68

This chapter is a step by step description of the SAGECAL method for self-calibration of LOFAR
data. The mathematical framework of the algorithm can be found in Yatawatta et al. 2009 and
Kazemi et al. 2011. The contents are applicable to the latest version (0.3.8) of SAGECAL and older
versions are obsolete. The latest source code can be obtained from http://sagecal.sf.net.

9.1 Introduction

The acronym SAGECAL stands for Space Alternating Generalized Expectation Maximization Cal-
ibration. The Expectation Maximization is used as a solution to maximum likelihood estimation to
reduce the computational cost and speed of convergence. The commonly used Least Squared calibra-
tion method involves the inversion of a matrix corresponding to the full set of unknown parameters;
where the convergence to a local minimum impels a slow speed of convergence and significant com-
putational cost. The SAGE algorithm, on the other hand, allows to compute a direct estimation of
subsets unknown parameters, providing faster convergence and/or reduced computational costs. If K
is the number of sources and N are the stations, the computational cost scales as O((KN)2) for the
Least Squared, while is O(KN2) for the Expectation Maximization.

BBS uses the Least Squared algorithm to solve the Measurement Equation. The maximum number of
directions for which solve using directional gains with BBS is currently limited to 5 or 6 directions;
this is a consequence of the limited computing power available in CEP2 and CEP3. The typical
LOFAR Field customarily requires to solve for a number of directions generally higher than 5 or 6,
this is due to the wide field of view (FOV), variable beam pattern and ionospheric errors. SAGECAL
has been tested to solve to a maximum of 300 directions (in the GPU EoR cluster not in CEP2 or
CEP3) and 512 stations. The version installed in the CEP clusters is not optimized so that other users
can also use the same node while SAGECAL is running; e.g. a total of about 50 directions have been
successfully tested in CEP1 cluster.

9.2 Using SAGECAL

9.2.1 Data preparation

Before running SAGECAL, you need to take a few precautions. First of all, the data format is the
Measurement Set (MS), so no extra conversions are necessary. Averaging in time is not essential, but
it is definitely recommended in order to work with smaller datasets (you can average down to e.g. 10
seconds). If data have been already demixed, this step is not needed. The MS can have more than
one channel. Also it is possible to calibrate more than one MS together in SAGECAL. This might be
useful to handle situations where the data is very noisy. An interesting note about SAGECAL: If the
conventional demixing could not be performed on your data (e.g. if the A-team was too close to the
target source) you will be able to successfully remove the A-team sources using this new algorithm
by working on averaged data(!)
Another procedure you will need apply to your data before SAGECAL is to calibrate them in the
standard way with BBS, solving for the four G Jones elements as well as for the element beam. After
BBS, you will need to flag the outliers using DPPP. You are now ready to start the algorithm.

All the programs related to the SAGECAL can be found in /opt/cep/sagecal/bin/ or see /home/saro-
d/bin for the latest build.

68The authors of this chapter are Emanuela Orrú (e.orru[at]astro[dot]rug[dot]nl) and Sarod Yatawatta
(yatawatta[at]astron[dot]nl).

97



9.2.2 Model

Make an image of your MS (using casapy or awimager). You can use Duchamp to create a mask
for the image. To create a sky model, you can adopt buildsky for point sources and shapelet gui in
case of extended emission (see Chapter 14) . Note that you are free to use any other source finder
(like PyBDSM - see (Chapter 11)) if you feel more confident with it. A new functionality has been
implemented to transform the the BBS model into the model format used by SAGECAL (Chapter 14.
The important is that in the sky model any source name starting with ’S’ indicates shapelet, ’D’ a
disk, ’R’ a ring, ’G’ a Gaussian, while others keys are point sources. In the following, we report a few
useful sky models examples:

## name h m s d m s I Q U V spectral_index RM extent_X(rad) extent_Y(rad)

## pos_angle(rad) freq0

P1C1 0 12 42.996 85 43 21.514 0.030498 0 0 0 -5.713060 0 0 0 0 115039062.0

P5C1 1 18 5.864 85 58 39.755 0.041839 0 0 0 -6.672879 0 0 0 0 115039062.0

# A Gaussian mjor,minor 0.1375,0.0917 deg diameter, pa 43.4772 deg

G0 5 34 31.75 22 00 52.86 100 0 0 0 0.00 0 0.0012 0.0008 -2.329615801 130.0e6

# A Disk radius=0.041 deg

D01 23 23 25.67 58 48 58 80 0 0 0 0 0 0.000715 0.000715 0 130e6

# A Ring radius=0.031 deg

R01 23 23 25.416 58 48 57 70 0 0 0 0 0 0.00052 0.00052 0 130e6

# A shapelet (’S3C61MD.fits.modes’ file must be in the current directory)

S3C61MD 2 22 49.796414 86 18 55.913266 0.135 0 0 0 -6.6 0 1 1 0.0 115000000.0

Note that it is also possible to have sources with 3rd order spectra (with -F 1 option). Here is such an
example:

## name h m s d m s I Q U V spectral_index0 spectral_index1 spectral_index2

## RM extent_X(rad) extent_Y(rad) pos_angle(rad) freq0

PJ1C1 18 53 33.616 86 10 19.559 0.008594 0 0 0 -5.649676 -2.0 -60.0 0 0 0 0 \

152391463.2

But all the sources should have either 1st order or 3rd order spectra, mixing is not allowed.

The number of directions you want to solve for are described in the cluster file. In here, one or more
sources corresponding to the patch of the skymodel you need to correct for are combined together as
the following example:

## cluster_id chunk_size source1 source2 ...

0 1 P0C1 P0C2

1 3 P11C2 P11C1 P13C1

2 1 P2C1 P2C2 P2C3

Note: comments starting with a ’#’ are allowed for both sky model and cluster files.

98



9.2.3 SAGECAL

SAGECAL will solve for all directions described in the cluster file and will subtract the sources listed
in the sky model. Note that if you are not interested in the residual data, putting negative values for
cluster id will not subtract the corresponding sources from data. Run SAGECAL as follows:

sagecal -d my.MS -s my_skymodel -c my_clustering -t 120 -p my_solutions

This will read the data from the DATA column of the MS and write the calibrated data to the COR-
RECTED DATA column. If these columns are not present, you have to create them first. If you need
to calibrate more than one MS together, first create a text file with all the MS names, line by line.
Then run

sagecal -f MS_names.txt -s my_skymodel -c my_clustering -t 120 -p my_solutions

Running sagecal -h will provide the additional options, some of them are:

-F sky model format: 0: LSM, 1: LSM with 3 order spectra : default 0

-I input column (DATA/CORRECTED_DATA) : default DATA

-O ouput column (DATA/CORRECTED_DATA) : default CORRECTED_DATA

-e max EM iterations : default 3

-g max iterations (within single EM) : default 2

-l max LBFGS iterations : default 10

-m LBFGS memory size : default 7

-n no of worker threads : default 6

-t tile size : default 120

-x exclude baselines length (lambda) lower than this in calibration : default 0

Advanced options:

-k cluster_id : correct residuals with solution of this cluster : default -99999

-j 0,1,2... 0 : OSaccel, 1 no OSaccel, 2: OSRLM, 3: RLM: 4: RTR, 5: RRTR: default 0

Use a solution interval (e.g. -t 120) that is big enough to get a decent solution and not too big to make
the parameters vary too much (about 20 minutes per solution is a reasonable value).
In case of both bright and faint sources in the model, you might need to use different solution intervals
for different clusters. In order to do that you need to define the values of the second column of the
cluster file in such a way that the cluster with the longest solution interval is 1. While the cluster with
shorter solution interval will be equal to n, where n is the number of times the longer solution interval
is divided. This means that if -t 120 is used to select 120 timeslots, cluster 0 will find a solution using
the full 120 timeslots, while cluster 1 will solve for every 120/3=40 timeslots. The option -k will
allow to correct the residuals using the solutions calculated for a specific direction which is defined
by the cluster id. The -k option is analogue to the correct step in BBS. See the simulations section
later in this chapter for more detailed use of this.

You are now ready to image the residual data. Successively, run “restore” (see Sect. 14) on the residual
image before updating the sky model and starting another loop of SAGECAL. SAGECAL cycles can
be done till you are satisfied by the end product.

9.2.4 Robustness

Many have experienced flux loss of weaker background sources after running any form of directional
calibration. There is a new algorithm in SAGECAL that minimizes this. To enable this, use -j 2 option

99



while running SAGECAL. The theory can be found in Kazemi and Yatawatta, 2013. Also for best
speed and robustness, it is recommended to use -j 5. Also for number of stations greater than 64, -j 5
option is faster and less memory consuming.

9.3 Simulations

After running SAGECAL, you get solutions for all the directions used in the calibration. Using these
solutions, it is possible to correct the data for each direction and make images of that part of the
sky. This will in theory enable to image the full field of view with correct solutions applied to each
direction. This is a brief description on how to do it. We will use an example to illustrate this. Assume
you have run SAGECAL as below:

sagecal -d my.MS -s my_skymodel -c my_clustering -t 120 -p my_solutions

Now you have the my solutions file that contains solutions for all the directions given in my clustering
file. The -a 1 option or -a 2 option enables simulation mode in SAGECAL. If -a 1 is given, the sky
model given by my skymodel and my clustering is simulated (with gains taken from solutions if -p
my solutions is given) and written to the output data. If -a 2 is given, the model given by my skymodel
and my clustering is simulated (with the gains if -p my solutions is given), and then added to the input
data (-I option) and written to the output data (-O option).

There is one additional thing you can do while doing a simulation: correction for any particular
direction. By using -k cluster id , you can select any cluster number from the my clustering file to
use as the solutions that are used to correct the data. If the cluster id specified is not present in the
my clustering file, no corrections will be applied.

Simulating the full sky model back to the data might be too much in some cases. It is also possible
to simulate only a subset of clusters back to the data. This is done by specifying a list of clusters to
ignore during the simulation, using -z ignore list option. Here, ignore list is a text file with the cluster
numbers (one per line) to ignore. Note also that even while clusters are ignored, their solutions can
still be used to correct the data (so these options are independent from each other).

Thus, by cleverly using the -a, -k and -z options, you can get an image that is fully corrected (using
SAGECAL solutions) for all directional errors and moreover, simulations take only a fraction of the
time taken for calibration.

9.4 Distributed Calibration

It is possible to use SAGECAL to calibrate a large number of subbands, distributed across many
computers. This is done by using OpenMPI and SAGECAL together and see sagecal-mpi -h for
further information.

References

S. Yatawatta et al., “Radio interferometric calibration using the SAGE algorithm,” IEEE DSP, Marco
Island, FL, Jan. 2009.

S. Kazemi and S. Yatawatta et al., “Radio interferometric calibration using the SAGE algorithm,”
MNRAS, 414-2, 2011.

100



S. Kazemi and S. Yatawatta, “Robust radio interferometric calibration using the T-distribution,” MN-
RAS, 2013.

101



10 The AW imager69

10.1 Introduction

In this section we will describe the necessary steps needed to perform successful imaging of LOFAR
data using the AWimager70.

Note that the AWimager is still in the development phase, therefore this documentation is very dy-
namic and it is currently meant to provide the basic instructions on how to use the code.

In particular, a new version of the AWImager is scheduled for mid 2015. This new version will have
more features, like multi-frequency clean. The options for AWImager2 are different (more intuitive)
than that of AWImager. It will be documented in the next release of the Cookbook.

10.2 Background

The AWimager is specially adapted to image wide fields of view, and imaging data produced by
non-coplanar arrays, where the W term in the measured visibilities is not negligible. Furthermore,
AWimager corrects for direction dependent effects (LOFAR beam and ionosphere) varying in time
and frequency. The used algorithm is A-projection.

The algorithm is implemented using some CASA libraries.

10.3 Usage

To run AWimager, you first need to setup your environment using:

use Lofar

Before running AWimager, it is necessary to calibrate the dataset and correct the visibilities towards
the phase center of the observation. This can now be done by not specifying any direction in the
correct step of BBS.

Step.correct.Model.Sources = []

AWimager can run in a parallel fashion. The number of processing cores (n) to be used during imaging
can be specified:

export OMP_NUM_THREADS=n

If not specified, all cores will be used.
AWimager is quite memory hungry, so the number of cores should be limited in case it fails due a
’bad alloc’ error.

69This Chapter is maintained by Bas van der Tol (tol[at]astron[dot]nl).
70Cyril Tasse, Bas van der Tol, Joris van Zwieten, Ger van Diepen, Sanjay Bhatnagar 2013, Applying full polarization

A-Projection to very wide field of view instruments: An imager for LOFAR. A&A, 553, A105

102



10.4 Output files

AWimager creates several image output files. Note that in the following list <image> is the image
name given using the image parameter.

• <image>.model is the uncorrected dirty image.

• <image>.model.corr is the dirty image corrected for the average primary beam.

• <image>.restored and <image>.restored.corr are the restored images.

• <image>.residual and <image>.residual.corr are the residual images.

• <image>.psf is the point spread function.

• <image>0.avgpb is the average primary beam.

Furthermore, a few other files might be created for AWimager’s internal use.

10.5 Parameters

An extensive list of the parameters that can be used by the AWimager can be obtained by typing:

awimager -h

Eventually, to run the imager, you can type:

awimager ms=test.MS image=test.img weight=natural wprojplanes=64 npix=512

cellsize=60arcsec data=CORRECTED_DATA padding=1. niter=2000

timewindow=300 stokes=IQUV threshold=0.1Jy operation=csclean

which is one command spread over multiple lines.

It is also possible to specify these parameters in a parset and run it like:

awimager parsetname

Many parameters can be set for the AWimager. Several of them are currently being tested by the
commissioners. The most important parameters are listed below.

10.5.1 Data selection

These parameters specify the input data.

• ms

The name of the input MeasurementSet.

• data

The name of the data column to use in the MeasurementSet. The default is DATA.

• antenna

Baseline selection following the CASA baseline selection syntax

103



• wmax

Ignore baselines whose w-value exceeds wmax (in meters).

• uvdist

Ignore baselines whose length (in wavelengths) exceed uvdist.

• select

Only use data matching this TaQL selection string. For example, sumsqr(UVW[:2])<1e8 se-
lects baselines with length <10km.

10.5.2 Image properties

These parameters define the properties of the output image.

• image

The name of the image.

• npix

The number of pixels in the RA and DEC direction

• cellsize

The size of each pixel. An unit can be given at the end. E.g. 30arcsec

• padding

The padding factor to use when imaging. It can be used to get rid of effects at the edges of the
image. If, say, 1.5 is given, the number of pixels used internally is 50% more.

• stokes

The Stokes parameters for which an image is made. If A-projection is used, it must be IQUV.

10.5.3 weighting

These parameters select the weighting scheme to be used.

• weight

Weighting scheme (uniform, superuniform, natural, briggs (robust), briggsabs, or radial)

• robust

Robust weighting parameter.

10.5.4 Operation

This parameter selects the operation to be performed by awimager.

• operation

The operation to be performed by the AWimager.

– csclean = make an image and clean it (using Cotton-Schwab).
– multiscale = use multiscale cleaning
– image = make dirty image only.
– predict = fill the data column in the MeasurementSet by predicting the data from the

image.
– empty = make an empty image. This can be useful if only image coordinate info is needed.

104



10.5.5 Deconvolution

These parameters control the deconvolution algorithm. Only those parameters that are applicable to
the selected operation will be used.

• niter

The number of clean iterations to be done. The default is 1000.

• gain

The loop gain for cleaning. The default is 0.1.

• threshold

The flux level at which to stop cleaning. The default is 0Jy.

• uservector

Comma separated list of scales (in pixels) to be used by multiscale deconvolution

10.5.6 Gridding

These parameters control the AW-projection algorithm.

• wprojplanes

The number of W projection planes to use.

• maxsupport

The maximum of W convolution functions. The default is 1024.

• oversample

The oversampling to use for the convolution functions. The default is 8.

• timewindow

The width of the time window (in sec) where the AW-term is assumed to be constant. Default
is 300 sec. The wider the window, the faster the imager will be.

• splitbeam

Evaluate station beam and element beam separately? The default is true. AWimager will work
much faster if the correction for the station and element beam can be applied separately. This
should only be done if the element beam is the same for all stations used.

For more details, the user can refer to the Busy Wednesday comissioning reports71 (specifically those
from September 28 and October 26 2011).

71http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays

105

http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays
http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays


11 Source detection and sky model manipulation: PyBDSM and
LSMTool72

11.1 Source detection: PyBDSM

11.1.1 Introduction

PyBDSM (Python Blob Detection and Source Measurement) is a Python source-finding software
package written by Niruj Mohan, Alexander Usov, and David Rafferty. PyBDSM can process FITS
and CASA images and can output source lists in a variety of formats, including makesourcedb (BBS),
FITS and ASCII formats. It can be used interactively in a casapy-like shell or in Python scripts. The
full PyBDSM manual is located at http://tinyurl.com/PyBDSM-doc.

11.1.2 Recent Changes

Changes to PyBDSM since the last version of the cookbook include:

• New output option (bbs patches = ’mask’) to allow patches in an output BBS sky model to
be defined using a mask image (set with the bbs patches mask option).

• Many minor bug fixes (use help changelog for details).

11.1.3 Setup

The latest version of PyBDSM is installed on the CEP clusters. To initialize your environment for
PyBDSM, run:

> use Lofar

After initialization, the interactive PyBDSM shell can be started with the command pybdsm and
PyBDSM can be imported into Python scripts with the command from lofar import bdsm.

11.1.4 Usage

The following describes how to run an analysis using the PyBDSM interactive interface. For details
on using PyBDSM directly in Python scripts, see Section 11.1.6.

After initialization (see above), the PyBDSM interactive shell is started from the prompt with the
command pybdsm. Upon startup, the version number and a brief overview of the available commands
and tasks are shown:

> pybdsm

PyBDSM version 1.8.3 (LOFAR revision 30100)

========================================================================

PyBDSM commands

inp task ............ : Set current task and list parameters

par = val ........... : Set a parameter (par = ’’ sets it to default)

72This section is maintained by David Rafferty (drafferty[at]hs[dot]uni-hamburg[dot]de).

106

http://tinyurl.com/PyBDSM-doc


Autocomplete (with TAB) works for par and val

go .................. : Run the current task

default ............. : Set current task parameters to default values

tput ................ : Save parameter values

tget ................ : Load parameter values

PyBDSM tasks

process_image ....... : Process an image: find sources, etc.

show_fit ............ : Show the results of a fit

write_catalog ....... : Write out list of sources to a file

export_image ........ : Write residual/model/rms/mean image to a file

PyBDSM help

help command/task ... : Get help on a command or task

(e.g., help process_image)

help ’par’ .......... : Get help on a parameter (e.g., help ’rms_box’)

help changelog ...... : See list of recent changes

________________________________________________________________________

A standard analysis is performed using the process image task. This task reads in the input image,
calculates background rms and mean images, finds islands of emission, fits Gaussians to the islands,
and groups the Gaussians into sources. Use inp process image to list the parameters:

BDSM [1]: inp process_image

--------> inp(process_image)

PROCESS_IMAGE: Find and measure sources in an image.

================================================================================

filename ................. ’’: Input image file name

adaptive_rms_box ..... False : Use adaptive rms_box when determining rms and

mean maps

advanced_opts ........ False : Show advanced options

atrous_do ............ False : Decompose Gaussian residual image into multiple

scales

beam .................. None : FWHM of restoring beam. Specify as (maj, min, pos

ang E of N) in degrees. E.g., beam = (0.06, 0.02,

13.3). None => get from header

flagging_opts ........ False : Show options for Gaussian flagging

frequency ............. None : Frequency in Hz of input image. E.g., frequency =

74e6. None => get from header. For more than one

channel, use the frequency_sp parameter.

interactive .......... False : Use interactive mode

mean_map .......... ’default’: Background mean map: ’default’ => calc whether to

use or not, ’zero’ => 0, ’const’ => clipped mean,

’map’ => use 2-D map.

multichan_opts ....... False : Show options for multi-channel images

output_opts .......... False : Show output options

polarisation_do ...... False : Find polarisation properties

psf_vary_do .......... False : Calculate PSF variation across image

rms_box ............... None : Box size, step size for rms/mean map calculation.

Specify as (box, step) in pixels. E.g., rms_box =

(40, 10) => box of 40x40 pixels, step of 10

pixels. None => calculate inside program

rms_map ............... None : Background rms map: True => use 2-D rms map;

107



False => use constant rms; None => calculate

inside program

shapelet_do .......... False : Decompose islands into shapelets

spectralindex_do ..... False : Calculate spectral indices (for multi-channel

image)

thresh ................ None : Type of thresholding: None => calculate inside

program, ’fdr’ => use false detection rate

algorithm, ’hard’ => use sigma clipping

thresh_isl ............. 3.0 : Threshold for the island boundary in number of

sigma above the mean. Determines extent of

island used for fitting

thresh_pix ............. 5.0 : Source detection threshold: threshold for the

island peak in number of sigma above the mean. If

false detection rate thresholding is used, this

value is ignored and thresh_pix is calculated

inside the program

Standard autocompletion of command, task, and parameter names and values is available with the
<TAB> key. As in casapy, inp prints the parameter names and their current values, as well as a short
description of each parameter. Full information about a parameter is available with the help com-
mand (e.g., help ’mean map’). Once parameters are set, the analysis can be run with the command
go. The progress of the fit is printed to the screen, and a log file (named as the input image name
with “.pybdsm.log” appended) with additional information about the fit will be saved in the current
directory.

Once processing has finished, the results of the fit may be inspected using the show fit task:

BDSM [1]: inp show_fit

--------> inp(show_fit)

SHOW_FIT: Show results of fit.

================================================================================

broadcast ............ False : Broadcast Gaussian and source IDs and coordinates

to SAMP hub when a Gaussian is clicked?

ch0_flagged .......... False : Show the ch0 image with flagged Gaussians (if

any) overplotted

ch0_image ............. True : Show the ch0 image. This is the image used for

source detection

ch0_islands ........... True : Show the ch0 image with islands and Gaussians (if

any) overplotted

gmodel_image .......... True : Show the Gaussian model image

gresid_image .......... True : Show the Gaussian residual image

mean_image ............ True : Show the background mean image

pi_image ............. False : Show the polarized intensity image

psf_major ............ False : Show the PSF major axis variation

psf_minor ............ False : Show the PSF minor axis variation

psf_pa ............... False : Show the PSF position angle variation

pyramid_srcs ......... False : Plot the wavelet pyramidal sources

rms_image ............. True : Show the background rms image

smodel_image ......... False : Show the shapelet model image

source_seds .......... False : Plot the source SEDs and best-fit spectral

indices (if image was processed with

108



spectralindex_do = True). Sources may be chosen

by ID with the ’c’ key or, if ch0_islands = True,

by picking a source with the mouse

sresid_image ......... False : Show the shapelet residual image

Internally derived images (e.g, the Gaussian model image) can be exported to FITS files using the
export image task:

BDSM [1]: inp export_image

--------> inp(export_image)

EXPORT_IMAGE: Write one or more images to a file.

================================================================================

outfile ............... None : Output file name. None => file is named

automatically; ’SAMP’ => send to SAMP hub (e.g.,

to TOPCAT, ds9, or Aladin)

clobber .............. False : Overwrite existing file?

img_format ........... ’fits’: Format of output image: ’fits’ or ’casa’

img_type ....... ’gaus_resid’: Type of image to export: ’gaus_resid’,

’shap_resid’, ’rms’, ’mean’, ’gaus_model’,

’shap_model’, ’ch0’, ’pi’, ’psf_major’,

’psf_minor’, ’psf_pa’, ’psf_ratio’,

’psf_ratio_aper’, ’island_mask’

mask_dilation ............ 0 : Number of iterations to use for island-mask

dilation. 0 => no dilation

pad_image ............ False : Pad image (with zeros) to original size

Lastly, the positions, fluxes, etc. of the fitted Gaussians may be written in a number of formats to a
file using the write catalog task:

BDSM [1]: inp write_catalog

--------> inp(write_catalog)

WRITE_CATALOG: Write the Gaussian, source, or shapelet list to a file.

================================================================================

outfile ............... None : Output file name. None => file is named

automatically; ’SAMP’ => send to SAMP hub (e.g.,

to TOPCAT, ds9, or Aladin)

bbs_patches ........... None : For BBS format, type of patch to use: None => no

patches. ’single’ => all Gaussians in one patch.

’gaussian’ => each Gaussian gets its own patch.

’source’ => all Gaussians belonging to a single

source are grouped into one patch. ’mask’ => use

mask file specified by bbs_patches_mask

bbs_patches_mask ...... None : Name of the mask file (of same size as input

image) that defines the patches if bbs_patches =

’mask’

catalog_type .......... ’srl’: Type of catalog to write: ’gaul’ - Gaussian

list, ’srl’ - source list (formed by grouping

Gaussians), ’shap’ - shapelet list (FITS format

only)

clobber .............. False : Overwrite existing file?

correct_proj .......... True : Correct source parameters for image projection

109



(BBS format only)?

format ............... ’fits’: Format of output catalog: ’bbs’, ’ds9’, ’fits’,

’star’, ’kvis’, ’ascii’, ’csv’, ’casabox’, or

’sagecal’

incl_chan ............ False : Include flux densities from each channel (if

any)?

incl_empty ........... False : Include islands without any valid Gaussians

(source list only)?

srcroot ............... None : Root name for entries in the output catalog (BBS

format only). None => use image file name

The information included in the output varies depending on the format used: with the ASCII and
FITS formats, all Gaussian or source parameters are included; with the other formats, only a subset of
parameters are included. See the PyBDSM manual (http://tinyurl.com/PyBDSM-doc) for details.
Additionally, in the BBS output file, sources with sizes smaller than the beam are denoted as point
sources.

Upon the successful completion of any task, all parameters are saved to the file “pybdsm.last” in the
current directory and may be reloaded using the command tget. The current parameters may also be
saved to “pybdsm.last” at any time using tput. If a file name is given to the tput or tget commands
(e.g., tput ’3C196.sav’), the parameters are saved to or loaded from the given file.

11.1.5 Examples

This section gives examples of using PyBDSM on the following: an image that contains only fairly
simple sources and no strong artifacts, an image with strong artifacts around bright sources, and
an image with complex diffuse emission. It is recommended that interactive mode (enabled with
interactive=True) be used for initial runs on a new image, as this allows the user to check the
background mean and rms images and the islands found by PyBDSM before proceeding to fitting.
Also, if a very large image is being fit, it is often helpful to run on a smaller (but still representative)
portion of the image (defined using the trim box parameter) to verify that the chosen parameters are
appropriate before fitting the entire image.

11.1.5.1 Simple Example A simple example of using PyBDSM on a LOFAR image (an HBA
image of 3C61.1) is shown below. In this case, default values are used for all parameters. Generally,
the default values work well on images that contain relatively simple sources with no strong artifacts.

BDSM [1]: inp process_image

BDSM [2]: filename = ’sb48.fits’

BDSM [3]: go

--------> go()

--> Opened ’sb48.fits’

Image size .............................. : (256, 256) pixels

Number of channels ...................... : 1

Beam shape (major, minor, pos angle) .... : (0.002916, 0.002654, -173.36) degrees

Frequency of averaged image ............. : 146.497 MHz

Blank pixels in the image ............... : 0 (0.0%)

Flux from sum of (non-blank) pixels ..... : 29.565 Jy

Derived rms_box (box size, step size) ... : (61, 20) pixels

--> Variation in rms image significant

110

http://tinyurl.com/PyBDSM-doc


--> Using 2D map for background rms

--> Variation in mean image significant

--> Using 2D map for background mean

Min/max values of background rms map .... : (0.05358, 0.25376) Jy/beam

Min/max values of background mean map ... : (-0.03656, 0.06190) Jy/beam

--> Expected 5-sigma-clipped false detection rate < fdr_ratio

--> Using sigma-clipping thresholding

Number of islands found ................. : 4

Fitting islands with Gaussians .......... : [====] 4/4

Total number of Gaussians fit to image .. : 12

Total flux in model ..................... : 27.336 Jy

Number of sources formed from Gaussians : 6

BDSM [4]: show_fit

--------> show_fit()

========================================================================

NOTE -- With the mouse pointer in plot window:

Press "i" ........ : Get integrated fluxes and mean rms values

for the visible portion of the image

Press "m" ........ : Change min and max scaling values

Press "0" ........ : Reset scaling to default

Click Gaussian ... : Print Gaussian and source IDs (zoom_rect mode,

toggled with the "zoom" button and indicated in

the lower right corner, must be off)

________________________________________________________________________

The figure made by show fit is shown in Figure 24. In the plot window, one can zoom in, save the
plot to a file, etc. The list of best-fit Gaussians found by PyBDSM may be written to a file for use in
other programs, such as TOPCAT or BBS, as follows:

BDSM [5]: write_catalog

--------> write_catalog()

--> Wrote FITS file ’sb48.pybdsm.srl.fits’

The output Gaussian or source list contains source positions, fluxes, etc. BBS patches are also sup-
ported.

11.1.5.2 Image with Artifacts Occasionally, an analysis run with the default parameters does not
produce good results. For example, if there are significant deconvolution artifacts in the image, the
thresh isl, thresh pix, or rms box parameters might need to be changed to prevent PyBDSM
from fitting Gaussians to such artifacts. An example of running PyBDSM with the default parameters
on such an image is shown in Figure 25. It is clear that a number of spurious sources are being
detected. Simply raising the threshold for island detection (using the thresh pix parameter) would
remove these sources but would also remove many real but faint sources in regions of low rms.
Instead, by setting the rms box parameter to better match the typical scale over which the artifacts
vary significantly, one obtains much better results. In this example, the scale of the regions affected
by artifacts is approximately 20 pixels, whereas PyBDSM used a rms box of 63 pixels when run
with the default parameters, resulting in an rms map that is over-smoothed. Therefore, one should set
rms box=(20,10) so that the rms map is computed using a box of 20 pixels in size with a step size

111



0 50 100 150 200 250
0

50

100

150

200

250

Original Image
(arbitrary logarithmic scale)

0 50 100 150 200 250
0

50

100

150

200

250

0

1

2

3

Islands (hatched boundaries) and
Best-fit Gaussians (ellipses)

0 50 100 150 200 250
0

50

100

150

200

250

Model Image

0 50 100 150 200 250
0

50

100

150

200

250

Residual Image

Figure 24: Output of show fit, showing the original image with and without sources, the model
image, and the residual (original minus model) image. Boundaries of the islands of emission found by
PyBDSM are shown in light blue. The fitted Gaussians are shown for each island as ellipses (the sizes
of which correspond to the FWHMs of the Gaussians). Gaussians that have been grouped together
into a source are shown with the same color. For example, the two red Gaussians of island #1 have
been grouped together into one source, and the nine Gaussians of island #0 have been grouped into 4
separate sources. The user can obtain information about a Gaussian by clicking on it. Additionally,
with the mouse inside the plot window, the display scaling can be modified by pressing the “m” key,
and information about the image flux, model flux, and rms can be obtained by pressing the “i” key.

112



of 10 pixels (i.e., the box is moved across the image in 10-pixel steps). See Figure 26 for a summary
of the results of this call.

11.1.5.3 Image with Extended Emission If there is extended emission that fills a significant
portion of the image, the background rms map will likely be biased high in regions where ex-
tended emission is present, affecting the island determination (this can be checked during a run
by setting interactive=True). Setting rms map=False and mean map=’const’ or ’zero’ will
force PyBDSM to use a constant mean and rms value across the whole image. Additionally, set-
ting atrous do=True will fit Gaussians of various scales to the residual image to recover extended
emission missed in the standard fitting. Depending on the source structure, the thresh isl and
thresh pix parameters may also have to be adjusted as well to ensure that PyBDSM finds and fits
islands of emission properly. An example analysis of an image with significant extended emission is
shown in Figure 27.

11.1.6 Usage in Python scripts

PyBDSM may also be used non-interactively in Python scripts (for example, to automate source
detection in a large number of images for which the optimal analysis parameters are known). To
use PyBDSM in a Python script, import it by calling from lofar import bdsm inside your script.
Processing may then be done using bdsm.process image() as follows:

img = bdsm.process_image(filename, <args>)

where filename is the name of the image (in FITS or CASA format) or PyBDSM parameter save file
and <args> is a comma-separated list of arguments defined as in the interactive environment (e.g.,
beam = (0.033, 0.033, 0.0), rms map=False). If the fit is successful, PyBDSM will return an
“Image” object (in this example named “img”) which contains the results of the fit (among many
other things). The same tasks used in the interactive PyBDSM shell are available for examining the
fit and writing out the source list, residual image, etc. These tasks are methods of the Image object
returned by bdsm.process image() and are described below:

img.show fit() This method shows a quick summary of the fit by plotting the input image with the
islands and Gaussians found, along with the model and residual images.

img.export image() Write an internally derived image (e.g., the model image) to a FITS file.

img.write catalog() This method writes the Gaussian or source list to a file.

The input parameters to each of these tasks are the same as those available in the interactive shell. See
the PyBDSM documentation (http://tinyurl.com/PyBDSM-doc) for more details and scripting
examples.

11.2 Sky model manipulation: LSMTool

11.2.1 Introduction

LSMTool is a Python package which allows for the manipulation of sky models in the makesourcedb
format (used by BBS). Such models include those output by PyBDSM, those made by gsm.py, and
CASA clean-component models (after running casapy2bbs.py).

113

http://tinyurl.com/PyBDSM-doc


0 50 100 150 200
0

50

100

150

200

250

Original Image
(arbitrary logarithmic scale)

0 50 100 150 200
0

50

100

150

200

250

0

1

2

3

4

5

6 7

8
9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

Islands (hatched boundaries) and
Best-fit Gaussians (ellipses)

0 50 100 150 200
0

50

100

150

200

250
Model Image

0 50 100 150 200
0

50

100

150

200

250
Residual Image

Figure 25: Example fit with default parameters of an image with strong artifacts around bright sources.
A number of artifacts near the bright sources are picked up as sources. The background rms map for
the same region (produced using show fit) is shown in the lower panel: the rms varies fairly slowly
across the image, whereas ideally it would increase more strongly near the bright sources (reflecting
the increased rms in those regions due to the artifacts).

114



0 50 100 150 200
0

50

100

150

200

250

Original Image
(arbitrary logarithmic scale)

0 50 100 150 200
0

50

100

150

200

250

0

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Islands (hatched boundaries) and
Best-fit Gaussians (ellipses)

0 50 100 150 200
0

50

100

150

200

250
Model Image

0 50 100 150 200
0

50

100

150

200

250
Residual Image

Figure 26: The same as Figure 25, but with rms box=(20,10). The rms map now varies on scales
similar to that of the regions affected by the artifacts, and both bright and faint sources are recovered
properly.

115



50 0 50 100 150 200 250 300
0

50

100

150

200

250

Original Image
(arbitrary logarithmic scale)

50 0 50 100 150 200 250 300
0

50

100

150

200

250

Islands (hatched boundaries) and
Gaussians (red = wavelet)

50 0 50 100 150 200 250 300
0

50

100

150

200

250
Gaussian Residual Image

50 0 50 100 150 200 250 300
0

50

100

150

200

250
Gaussian Model Image

Figure 27: Example fit of an image of Hydra A with rms map=False, mean map=’zero’, and
atrous do=True. The values of thresh isl and thresh pix were adjusted before fitting (by set-
ting interactive=True) to obtain an island that enclosed all significant emission.

11.2.2 Setup

To initialize your environment for LSMTool, users on CEP2 and CEP3 should run the following
commands:

use LofIm

source ~rafferty/init_lsmtool

11.3 Basic Usage

The command-line version of LSMTool can be run as follows:

Usage: lsmtool <skymodel> <parset> [<beam MS>]

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

-q Quiet

-v Verbose

The parset specifies the operations to perform and their parameters. These are described in the next
sections.

116



11.4 Operations

These are the operations that LSMTool can perform:

SELECT : Select sources by source or patch properties

REMOVE : Remove sources by source or patch properties

TRANSFER : Transfer a patch scheme from one sky model to another

GROUP : Group sources into patches

UNGROUP : Remove patches

MOVE : Move a source or patch position

MERGE : Merge two or more patches into one

CONCATENATE : Concatenate two sky models

ADD : Add a source

SETPATCHPOSITIONS : Calculate and set patch positions

PLOT : Plot a simple representation of the sky model

COMPARE : Compare source fluxes and positions of two sky models

11.5 The Parset File

As with NDPPP and LoSoTo, LSMTool can be run with a parset that specifies the operations to
perform and their parameters.

Below is an example parset that filters on the flux, adds a source, and then groups the sources into
patches:

LSMTool.Steps = [selectbright, addsrc, grp, setpos]

# Select only sources above 1 mJy

LSMTool.Steps.selectbright.Operation = SELECT

LSMTool.Steps.selectbright.FilterExpression = I > 1.0 mJy

# Add a source

LSMTool.Steps.addsrc.Operation = ADD

LSMTool.Steps.addsrc.Name = new_source

LSMTool.Steps.addsrc.Type = POINT

LSMTool.Steps.addsrc.Ra = 277.4232

LSMTool.Steps.addsrc.Dec = 48.3689

LSMTool.Steps.addsrc.I = 0.69

# Group using tessellation to a target flux of 50 Jy

LSMTool.Steps.grp.Operation = GROUP

LSMTool.Steps.grp.Algorithm = tessellate

LSMTool.Steps.grp.TargetFlux = 50.0 Jy

117



LSMTool.Steps.grp.Method = mid

# Set the patch positions to their midpoint and write final skymodel

LSMTool.Steps.setpos.Operation = SETPATCHPOSITIONS

LSMTool.Steps.setpos.Method = mid

LSMTool.Steps.setpos.OutFile = grouped.sky

In the first line of this parset the step names are defined. Steps are applied sequentially, in the same
order defined in the list of steps. A list of step-specific parameters is given in Table 6.

Var Name Format Example Comment
Operation string SELECT An operation among those defined in Sec. 11.4
OutFile string out sky model.sky Name of output file
SELECT and REMOVE
FilterExpression string I > 10.0 Jy Filter for selection
Aggregate bool False Filter by aggregated patch property
ApplyBeam bool True If true, apparent fluxes will be used
TRANSFER
PatchFile string sky model with patches.sky File with patches that will be transferred
GROUP
Algorithm string tessellate One of tessellate, cluster, single, every, or a CASA mask filename
TargetFlux string 10.0 Jy Target total flux of patches (tessellate only)
NumClusters int 100 Number of clusters (cluster only)
Threshold float 0.1 Island threshold from 0 to 1 (threshold only)
FWHM string 60 arcsec FWHM of Gaussian for smoothing before thresholding (threshold only)
ApplyBeam bool True If true, apparent fluxes will be used
UNGROUP
MOVE
Name string src1 Name of source or patch to move.
Position list of floats [12.3, 23.4] RA and Dec in degrees to move to
Shift list of floats [0.001, 0.0] RA and Dec in degrees to shift by
MERGE
Patches list of strings [bin1, bin2, bin3] Patch names to merge
Name string merged patch Name of new merged patch
SETPATCHPOSITIONS
Method string mid Set patch positions to mid, mean, or wmean positions
CONCATENATE
Skymodel2 string in sky model2.sky Name of second sky model to concatenate
MatchBy string position Identify duplicates by position or name
Radius string 30 arcsec Radius within which matches are identified
Keep string all If two sources match, keep: all, from1, or from2
InheritPatches bool False Matches inherit patches from parent sky model
ADD
Name string src1 Name of source; required
Type string POINT Type; required
Patch string new patch Patch name; required if sky model has patches
RA float or string 12:45:30.4 RA; required
Dec float or string +76.45.02.48 Dec; required
I float 0.69 Flux in Jy; required
AnyValidColumnName value Any valid column name can be specified
PLOT
LabelBy string patch Label points by: source or patch
COMPARE
OutDir string comparison plots/ Output directory for plots
SkyModel2 string in sky model2.sky Name of second sky model
Radius string 10 arcsec Radius within which matches are identified
LabelBy string patch Label plot points by source or patch
ExcludeMultiple bool True Exclude sources with multiple matches
IgnoreSpec float -0.7 Ignore any source in SkyModel2 with this spectral index

Table 6: Definition of variables in the LSMTool parset.

11.6 Interactive use and scripting

LSMTool can also be used interactively (in IPython, for example) or in Python scripts without the
need for a parset. To use LSMTool in a Python script or interpreter, import it as follows:

>>> import lsmtool

A sky model can then be loaded with, e.g.:

>>> LSM = lsmtool.load(’skymodel.sky’)

All of the operations described in Section 11.4 are available as methods of the resulting sky model
object (with the same name as the corresponding operation). For example, the following commands
which duplicate the steps done in the example parset given in Section 11.5:

118



>>> LSM.select(’I > 1.0 mJy’)

>>> LSM.add({’Name’:’new_source’, ’Type’:’POINT’, ’Ra’:277.4232, ’Dec’:48.3689,

’I’:0.69})

>>> LSM.group(algorithm=’tesselate’, targetFlux=’10.0 Jy’)

>>> LSM.setPatchPositions(method=’mid’)

In many cases, the methods accept parameters with the same names as those used in a parset (see the
source-code documentation for details). The sky model can then written to a new file with:

>>> LSM.write(’grouped.sky’)

Additionally, sky models can be written out as ds9 region files and kvis annotation files (as well as all
the formats supported by the astropy.table package, such at VOTable, HDF5, and FITS):

>>> LSM.write(’outskymodel.reg’, format=’ds9’)

>>> LSM.write(’outskymodel.ann’, format=’kvis’)

>>> LSM.write(’outskymodel.fits’, format=’fits’)

>>> LSM.write(’outskymodel.hdf5’, format=’hdf5’)

>>> LSM.write(’outskymodel.vo’, format=’votable’)

In addition to the operations described above, a number of other methods are available:

LSM.copy() : Return a copy of the sky model object

LSM.info() : Print information about the sky model

LSM.more() : Print the sky model to the screen, using more-like controls

LSM.broadcast() : Send the sky model to other applications using SAMP

LSM.getColNames() : Returns a list of the column names in the sky model

LSM.getColValues() : Returns a numpy array of column values

LSM.getRowIndex() : Returns the row index or indices for a source or patch

LSM.getRowValues() : Returns a table or row for a source or patch

LSM.getPatchPositions() : Returns patch RA and Dec values

LSM.getDefaultValues() : Returns column default values

LSM.getPatchSizes() : Returns an array of patch sizes

LSM.getDistance() : Returns an array of angular distances to given position

LSM.setColValues() : Sets column values

LSM.setRowValues() : Sets row values

LSM.setDefaultValues() : Sets default column values

For details on these methods, please see the source-code documentation.

119



12 Automated Self-Calibration73

The standard technique of self-calibration (iterative updates of both sky model and direction-independent
instrumental gains) is available in the form of a python script that automatically utilizes BBS, DPPP,
awimager, and PyBDSM in a pre-defined loop algorithm. Further development of the python script
into an operational form that can be run by the Radio Observatory is underway. It is assumed that
before attempting to perform self-calibration, the LOFAR data set has been flux calibrated (e.g. by
the Radio Observatory using the Standard Imaging Pipeline).

This section provides a brief guide to using selfcal.py on a LOFAR dataset, and details the internal
procedures. The script is written to be completed without user interaction and in a consistent man-
ner; therefore, there are very few options that can be set at runtime. Additional details are available at:

http://www.lofar.org/operations/doku.php?id=commissioning:selfcal

12.1 Overview

The goal of the self-calibration (selfcal) process is to improve the quality of the final image, through
an iterative process. At each iteration, a calibration step is performed74 to update the instrumental
gain table. An image of the full field of view is then created at a particular angular resolution, and
the source finder is used to update the sky model that is then used for the next calibration round. In
early iterations, the data are imaged at low angular resolution. In each iteration, the image resolution
is improved such that successive models have an increasing level of detail, and the calibration of the
remote stations progressively improves. The iterative process is continued until the image resolution
obtained is the best resolution possible with the data (taking into account the observing frequency and
longest available baseline). In figure 29, the highlighted segments of the pipeline correspond to the
ones used within the selfcal process (including the loop itself).

12.2 Availability

Work is in progress to implement the selfcal procedure within the Standard Imaging Pipeline. At
present, the stand-alone selfcal version is available on CEP2, CEP3 and on Flits (ASTRON Astron-
omy Group cluster). On CEP2 and CEP3, the stand-alone selfcal.py is included in the daily build.
On Flits, the most recent version of the stand-alone selfcal.py is maintained by N. Vilchez.

To utilize the stand-alone selfcal.py at your own facility, the LOFAR trunk must be installed
(selfcal.py is included in the LOFAR trunk available through svn, not in releases yet). To ob-
tain the LOFAR trunk software, LOFAR svn access is required. Installation details are available at:

http://www.lofar.org/wiki/doku.php?id=engineering:software:lofar-cmake

73This section is maintained by Nicolas Vilchez (vilchez[at]astron[dot]nl) and George Heald
(heald[at]astron[dot]nl).

74In the current version, the automatic script performs phase calibration only.

120

http://www.lofar.org/operations/doku.php?id=commissioning:selfcal
http://www.lofar.org/wiki/doku.php?id=engineering:software:lofar-cmake


Figure 28: Illustration of the selfcal process in the Standard Imaging Pipeline.

12.3 Selfcal: the stand-alone version

12.3.1 Usage

On CEP2 and CEP3 the latest version of selfcal.py is installed, but you need to setup your envi-
ronment by typing75:

> use LofIm

in order to make use of the daily build from the LOFAR trunk. Alternatively, you may add LofIm to
the .mypackages file in your home directory.

Note that the LofIm package conflicts with the LUS package (especially for awimager). To use
selfcal.py, you must disable LUS from your environment (i.e. erase LUS from the .mypackages

file in your $HOME directory).

The self-calibration procedure is initiated by typing selfcal.py at the command prompt. To access
usage information, type selfcal.py -h and the following will appear:

Usage: selfcal.py PATH/parsetFile

OR

Usage: selfcal.py --obsDir= --outputDir= [Options: --skyModel=

--nbCycle= --outerfovclean= --VLSSuse= --annulusRadius= --startResolution=

--endResolution= --resolutionVector= --mask= --UVmin= --startingFactor= --FOV=

--nofPixelPerBeam= --robust= --maskDilation=]

and a detailed list of parameters.

Only “obsDir” and “outputDir” (which specify the input and the output directories) are required for a
successful selfcal.py run. All other parameters have sensible default values as determined through

75On Flits, selfcal.py is directly installed, no use command is required.

121



commissioning.

The selfcal.py parameters are:

• Required Parameters:

1. obsDir (string): This is the observation directory which contains data (or frequency
merged data generated by mergeSB.py; see § 12.3.2)
Data must contain the same number of subbands, have the same frequency range and the
same pointing centre. Checks are done internally. The obsDir must contain ONLY data,
no additional files. Due to this, if the outputDir is in the obsDir tree, the code will crash.
The full path must be provided.

2. outputDir (string): This is the output directory where the selfcal process will be exe-
cuted. If it doesn’t exist, it will be created automatically.
The full path must be provided.

• Optional Parameters:

1. skyModel (string, default:‘none’): This option allows the user to provide a skymodel
instead of using the VLSSuse option. The skymodel must be BBS compatible. The full
path of the file must be provided.
NB: If the skyModel option is used, the VLSSuse parameter must be not set.

(a) Case 1: VLSSuse=yes: GSM sky model (VLSS) is used for initial calibration
(b) Case 2: VLSSuse=no: low resolution (90 arcsec) skymodel is used for initial calibra-

tion (generated with first-pass image from the input data)
(c) Case 3: skyModel is specified (and VLSSuse=no): your own skymodel is used for

initial calibration

2. nbCycle (int, default:10): This is the number of selfcal cycles to perform. It must be
between 5 and 20. The selfcal process will start at 15 times the best possible resolution
and decrease the resolution at each cycle in linear steps.

3. outerfovclean (string, default:‘no’): accepts ‘yes’ or ‘no’. If this option is activated, a
preprocessing cleaning to subtract sources from outside the field of view will be applied
before the selfcal process.
A first low resolution image will be generated (using core stations only) to obtain a
sky model. This preliminary image has 30arcsec pixel size and a larger field of view
(fov=FOV+2×annulusRadius degrees). A skymodel is extracted and separated into an
‘annulus’ skymodel (containing sources with angular distance >FOV/2 deg from the tar-
get) and a ‘centre’ skymodel (containing sources with angular distance <FOV/2 deg from
the target). The ‘annulus’ skymodel is then subtracted from the visibilities. This cleaning
is an iterative process and will continue until there are less than 10% of sources from the
original annulus skymodel (typically 2-3 iterations are needed).

4. VLSSuse (string, default:yes): accepts ‘yes’ or ‘no’: Use the VLSS-based skymodel for
the first iteration of selfcal (as generated by gsm.py).
If the user does not want to use VLSS skymodel (VLSSuse=no), the code will create
a preliminary image (see the outerfovclean parameter described above), and use the
‘center’ skymodel as the input skymodel.

5. annulusRadius (float, default:1): In degrees; if outerfovclean=yes, you can select the
radius of the outer annulus from which sources will be subtracted. By default, the value is
1 deg, i.e. the field of view will be 5+2×1 = 7 deg, and all sources which are less than
1 degree of the edge of the field of view will be subtracted.

122



6. startResolution (float, default:15× the best resolution available from the data): The
resolution to use in the first selfcal cycle. If not set, the starting resolution is automatically
computed in arcseconds, using
Starting Resolution = 15×λ/max(baseline).
NB: the startResolution option conflicts with resolutionVector and startingFactor
parameters.
NB: if startResolution is provided, endResolution must also be provided.

7. endResolution (float, default:best resolution available in the data): The resolution to use
in the final selfcal cycle. If not set, the best resolution available is calculated using:
Best Resolution = λ/max(baseline)
NB: the endResolution option conflicts with resolutionVector parameter, but not
with startingFactor

NB: if endResolution is provided, startResolution does not need to be provided.

8. resolutionVector (list of float: e.g. resolutionVector=x1, x2, x3 (do not use
parentheses), default:[none]): Select the resolution for each cycle. Format: list of float in
arcseconds.
NB: the resolutionVector option conflicts with startResolution, endResolution
and startingFactor parameters.

9. mask (string, default:‘yes’): accepts ‘yes’ or ‘no’: Use clean masks when imaging.

10. maskDilation (integer, default:0): If mask is used (generated a from PyBDSM-extracted
sky model), it is possible to dilate it. 0 means no dilation, 1 means extend the mask regions
by 1 pixel in all directions, etc.
For more details see the PyBDSM export image documentation.

11. UVmin (float, default:0 or 0.1 in klambda): Set the awimager parameter UVmin for each
imaging run. If unset, UVmin=0.1 will be used for observations with declinations below
35 degrees, otherwise UVmin=0. It is recommended to use UVmin=0 if the user is interested
in imaging extended or diffuse emission.

12. startingFactor (int, default:15): The resolution of the initial selfcal cycle is set by
startingFactor × Best Resolution, or startingFactor × endResolution.
NB: the startingFactor option conflicts with startResolution and resolutionVector
parameters, but not with endResolution

13. FOV (float, default:5): Select the image size (in degrees).

14. nofPixelPerBeam (float, default:4): Number of pixels per synthesized beam.

15. robust (float, default:none): If the robust parameter is specified, it will be kept constant
for all selfcal cycles. If unset, the robust parameter varies iteratively from 1 to -2. Must
be in the interval: [2;-2]

• Future Parameters:

1. catalogType (string, default:‘none’): accepts ‘GSM’ or ‘PYBDSM’: catalogType is
used together with the peeling and DDC options. It is required to be able to select in the
initial catalog the brightest source (or sources) to peel.

2. peeling (string, default:‘no’): accepts ‘yes’ or ‘no’: If peeling=yes, the brightest
source (or sources) in the initial catalog will be peeled.
NB: the peeling and DDC options conflict. Do not use both at the same time.

3. DDC (string, default:‘no’): accepts ‘yes’ or ‘no’: Same as peeling option, except that the
subtraction is not applied, just the Direction Dependent Calibration.

123



4. nofDirections (int, default:1): Number of directions (i.e. brightest sources) required to
peel or to apply the Direction Dependent Calibration.

The output directory will be automatically created if it does not exist. If the output directory already
exists, it is advisable to delete the output of any previous runs to avoid conflicts. Note that if the
selfcal process crashes, it is not possible to resume from the point where the crash occurred; a new
run (starting from scratch) would be required.

12.3.2 Required Data Format

To process visibility data with the selfcal.py script, flux-calibrated data must be written in the
CORRECTED DATA column of your Measurement Sets. Selfcal currently only performs phase calibra-
tion. Flux calibration is assumed to have been completed (e.g. by the Observatory using the Standard
Imaging Pipeline) before running selfcal.py; additional amplitude calibration is not performed
(yet) by the self-calibration procedure.

The self-calibration routine assumes that the input visibility data have been grouped in sets of con-
tiguous subbands, where the sets typically are made of 10-20 subbands. To facilitate the grouping of
subbands and to ensure that the input visibility data are formatted in the way expected by selfcal.py,
a helper function is provided and should be used before running self-calibration.

The script, called mergeSB.py, accepts intermediate or final visibility (MS) data from the Radio
Observatory pipeline. These datasets are named following a specific convention. Therefore the names
of the MS visibility datasets follow a specific pattern:

• Intermediate data: L123456 SAP123 SB123 uv.MS.dppp

• Final data: L123456 SB123 uv.dppp.MS

These visibility datasets are equivalent and may be used interchangeably for mergeSB.py and
selfcal.py.

If the names of your visibility datasets are different, but you still feel that they are prepared properly
for use in the self-calibration routine, then you will have to manually change the name of the Mea-
surement Sets to conform with one of the two naming conventions provided above. In addition, please
be aware that the Measurement Sets will be grouped alphabetically (using the ls order); therefore be
sure that the subband numbers are given as 001, 002, etc.

For the input to selfcal.py, the names of the frequency merged Measurement Sets do not need to
follow any convention (except that the chronological order of a set of snapshots must somehow be
reflected in the alphabetical order of the MS names). The procedures in selfcal.py will always
work on the CORRECTED DATA column, which is created by mergeSB.py. To avoid confusion it is
highly recommended to use the two scripts together, unless you want to work on only one subband.

To combine subbands, type mergeSB.py at the command prompt. If you provide no arguments (or
type mergeSB.py -h) then the required parameters are listed:

MISSING Parameters

Usage: mergeSB.py --obsDir= --outputDir= --column2Merge= Optional:

--nofChannelPerSubband= --checkNames]

If nofChannel2Merge is not provided, the default behavior is to merge the data to a frequency reso-
lution corresponding to 1 channel per subband. The default value for checkNames is yes.

124



• Required Parameters:

1. obsDir (string): This parameter specifies a directory containing only a set of single-
subband Measurement Sets (MS) that should be merged (per time chunk). This directory
should contain the Measurement Sets for all available time chunks, and all subbands per
time chunk, that the user wants to merge. For example if you want to use selfcal.py on
a dataset that consists of 10 time chunks and one group of 5 contiguous subbands, then
the obsDir must contain 10× 5 = 50 MSs. It is often the case that one or more Mea-
surement Sets are missing. This is acceptable, because DPPP (which is used to merge the
subbands) will fill missing frequency values with flagged data, corresponding to missing
Measurement Sets. This is true as long as the first and the last subband are present for all
time chunks.
The path given for --obsDir must be a full path.

2. outputDir (string): This parameter specifies the output directory for merged Measure-
ment Sets. In this directory, two subdirectories will be created. The first one, named
Merged-Data, will contain the merged time chunks. This subdirectory should be used
afterwards as the --obsDir parameter for selfcal.py. The second subdirectory, named
DPPP Parset, will contain the parsets that are used for merging the subbands. The user
can inspect these parsets to find out how the subbands have been merged by mergeSB.py.
The path given for --outputDir must be a full path.

3. column2Merge (string): This is the name of the column to merge. Usually CORRECTED DATA

is used (awimager will only use the CORRECTED DATA column).
Usually, this should be set to either DATA or CORRECTED DATA.

• Optional parameters:

1. nofChannelPerSubband (int, default:1): This is the number of channels per subband
required after the subband concatenation. By default, mergeSB.py averages to 1 channel
per subband.

2. checkNames (string, default:‘yes’): [OPTION NOT ACTIVATED AT THE MOMENT]
mergeSB.py checks the names of the MSs (to verify that they are either intermediate or
final pipeline data products, see documentation). If checkNames is set to ‘no’, a warning
appears if the input MS names do not respect the expected nomenclature, but mergeSB.py
will continue without exiting.

12.3.3 Selfcal implementation details

The self-calibration process consists of a set of individual tasks. These are run in a sequence which
is looped, and at each cycle (iteration) the image resolution is increased to improve the sky model,
allowing a better phase calibration to be performed at the next step.

The individual tasks that are combined within a single iteration are:

1. Calibration with a skymodel using calibrate-stand-alone (BBS)

2. Flagging using DPPP

3. Imaging using awimager

4. Sky model extraction using the PyBDSM source finder.76

125



Figure 29: Illustration of the iterations performed by the selfcal process.

The diagram in Figure 29 shows an example of the self-calibration process. Within a cycle, each time
chunk is calibrated separately using BBS, then each of them is flagged using DPPP. It is necessary
to calibrate and flag them separately because it is not possible (at the moment) to calibrate non-
continuous time-concatenated MSs using BBS. After this step (which is parallelized on 8 cores), the
MSs are concatenated in time using the msconcat command from the pyrap.tables python module.

76The PyBDSM manual is available at http://tinyurl.com/PyBDSM-doc (html version) or
ftp://ftp.strw.leidenuniv.nl/pub/rafferty/PyBDSM/PyBDSM-1.8 manual.pdf (pdf version).

126



Figure 30: Results of selfcal process with an example HBA dataset at approximately 140 MHz.
There are clear improvements in the image noise after performing self-calibration. The noise levels
in the three images are 30, 10, and 2 mJy/beam for the cases of: no phase calibration (left panel),
standard GSM-based phase calibration (middle), and self-calibration (right panel). The thermal noise
is estimated to be approximately 0.7 mJy/beam for this dataset.

Next, awimager images the time concatenated MS with specific parameters. To finish, a sky model
is extracted using pybdsm on the newly created image.

The algorithm is designed to improve the angular resolution in each cycle. This means that selfcal
must include longer baselines at each iteration. Moreover, the robust parameter is also changed in each
iteration to give additional weight to longer baselines. The default behavior is to start at robust=1
(nearly natural weighting) at low resolution (15 times the best resolution) and end at robust=-2
(uniform weighting) when including all available baselines. As described in § 12.3, the progression
of imaging parameters from one iteration to the next can be modified by the user.

12.3.4 Selfcal examples

In Figure 30, an example of the self-calibration process is shown for HBA-low. The example dataset
had the following properties:

• 31 time chunks

• 10 contiguous subbands

• Best beam resolution = 5′′

An example of using self-calibration on an example LBA dataset is shown in Figure 31. This LBA
dataset contains 10 subbands and the total duration of the observation was 4.5 h. Ionospheric effects
become very strong on baselines longer than about 20 km (in this particular example), so the direction
independent strategy does not improve the data quality for angular resolution less than about 50′′

in this particular case. If this example is representative, then selfcal can be expected to improve
calibration on baselines out to approximately 20 km, depending on ionospheric conditions at the time.
Further improvements will require direction dependent calibration. At present, with both HBA and
LBA datasets, the selfcal process typically manages to obtain a final image noise about 2-3 times the
theoretical thermal noise.

127



Figure 31: Results of selfcal process with LBA (∼60 MHz). The noise levels in the image is 22
mJy/beam. The thermal noise is estimated to be approximately 11 mJy/beam for this dataset.

128



13 Faraday Rotation Measure Synthesis77

Firstly described by Burn (1966) and then extended and implemented by Brentjens & de Bruyn (2005)
Faraday Rotation Measure (RM)-synthesis is a powerful detection technique. for interpreting polar-
ized emission data in order to separate the contributions of different sources lying on the same line of
sight. In this chapter, we provide a brief overview of the principles and the available tools suitable for
imaging multiple polarized structures along the line of sight.

13.1 Overview

Synchrotron emission radiated by relativistic electrons accelerated by magnetic fields is linearly po-
larized, the (intrinsic) plane of polarization being orthogonal to the component of the magnetic field
in the plane of the sky. Moreover the polarization angle (χ) can be rotated when propagating through
a magnetised plasma, the amount of rotation being a function of wavelength (λ ). This effect is called
Faraday rotation and the amount of rotation is described by the Faraday depth (φ ) as:

φ = 0.81
∫ observer

source
ne~Bd~s (13)

, with ne being the electron density measured in cm−3, ~B the magnetic field measured in µG and the
path-length~s is expressed in parsecs.

Synchrotron radiation can be probed by polarimetric radio observations. In the simplest case of
emission and rotation regions being separated (and beam depolarization can be neglected), the amount
of rotation of the polarisation plane and the φ are characterised by:

χ = χ0 +λ
2
φ (14)

and the amount of rotation φ can be found as the slope of a polarization angle versus wavelength
squared plot. In such a case the Faraday depth is equal to the rotation measure (RM) at all wavelengths.

However polarization angle often does not depend linearly on λ 2, thus making a linear fit inappro-
priate. RM-Synthesis is based on the fact that the complex polarized intensity (P) can be calculated
as a Fourier transform of the Faraday dispersion function (F) in Faraday space with the coordinate φ

which is the Faraday depth, i.e.:

P(λ ) =
∫

∞

−∞

F(φ)e2iφλ 2
dφ (15)

. Performing the inverse Fourier transform of P one obtains F which is the polarized intensity emerg-
ing from a region with Faraday depth φ .

Therefore RM-Synthesis is a Fourier transformation of Stokes U and Q maps, performing a de-
rotation of Faraday rotated emission using a set of assumed φ values. Unfortunately, the inversion of
equation 15 is limited in practice by the fact that P can be measured only for λ 2 > 0 and in only in a
finite spectral band (Brown et al. 2009). The lower bound λmin limits the detection of objects which
are extended in Faraday space, while the upper bound λmax suppresses the detection of small-scale
structures of the object in Faraday space. Moreover the lack of negative λ 2 affects the reconstruction
of the intrinsic polarization angle. Finally, a poor sampling within the observed bandwidth prevent
the reconstruction of objects at large Faraday depths. As a result, the resolution in φ -space depends
on λ 2 coverage and resolution.

Note that the reconstructed Faraday dispersion function is the convolution of the actual Faraday dis-
persion function with the “RM Spread Function” (RMSF), corresponding to a point spread function

77This chapter is maintained by M. Iacobelli, iacobelli[at]astron[dot]nl.

129



Figure 32: Rotation measure spread function (RMSF) of a test observation with smooth λ 2 coverage
(bad channels were flagged). In this example the resolution in Faraday depth space is: RMSFFWHM =
3.00 rad m−2 and sidelobes are not prominent.

(PSF) in φ -space. Thus, the FWHM of the RMSF determines the precision with which one can de-
termine the φ at the peak of a Faraday dispersion function (see e.g. Fig. 32). In case of a complex
and/or poor reconstructed Faraday dispersion function, RMSF sidelobes can make the interpretation
difficult thus requiring a deconvolution operation (Heald 2009).

To summarise, RM-Synthesis can disentangle emission and rotation layers. However in case of mixed
emitting and Faraday-rotating region an incomplete λ 2 coverage will result in loss of sensitivity with
poor or no detection. To be applied, RM-Synthesis requires wide-band polarimetry with the λ 2 cov-
erage and resolution determining its basic parameters: resolution in φ , sensitivity to extended φ -
structures, the highest φ value detectable. Inputs of RM-Synthesis are Stokes U and Q maps obtained
from carefully calibrated Measurement Sets (MS). Main outputs of the RM-Synthesis are:

• the computed RMSF (users should check it carefully).

• data cubes mapping polarised intensity / polarisation angle as a function of spatial coordinates,
the third dimension being the Faraday depth.

Therefore, RM-Synthesis frames show the distributions of polarized intensity / polarisation angle in
the plane of the sky at various Faraday depths. The output cubes can be displayed by using a FITS
viewer (e.g. DS9,kvis).

130



13.1.1 Tools

Currently, two different python implementation of RM-synthesis are available78:

• RMSynthesis (in CEP3 activate with use RMSynthesis). This Python script perform a basic
(no RMclean) RM-synthesis, provided a FITS cube with Stokes Q images, a FITS cube with
Stokes U images, and a text file containing the frequencies of these images. To check options
just execute rmsynthesis in your terminal.

• Pyrmsynth (in CEP3 activate with use RMSynthesis and execute rm synthesis.py. This
script performs RM-synthesis, either simply by Fourier transformation (to produce a dirty im-
age) or using the RMCLEAN method as described by Heald (2009). The software reads in a
parameter file. The code works on sets of FITS files containing images from a single sub-band,
or some other subset of the observed frequencies. As a default, the code assumes all Stokes
parameters to be saved in one FITS file. There is an additional option that allows for the han-
dling of separately save Q and U FITS files. User defined frequency weights can be included by
providing a text file in which each line contains a weight to be applied to each frequency. The
name of this file must be “weight.txt”. Additionally output files are: a plot of the RMSF and
a Stokes V cube. Also available is library rm tools (use import rm tools within a python
script). To check options execute rm synthesis.py --help in your terminal.

78They are installed on the CEP3 cluster (see Chapter 1) and can also be downloaded at RMSynthesis and Pyrmsynth

131

http://www.astron.nl/~brentjens/
https://github.com/mrbell/pyrmsynth


14 Sky Model Construction Using Shapelets79

In this chapter, we give a tutorial overview of sky model construction using shapelets and other source
types suitable for self calibration. Note that shapelets decomposition should be used in the case we
are dealing with extended sources.

14.1 Introduction

In this tutorial, we present construction of accurate and efficient sky models for calibration of LOFAR
data, using shapelets. However, we do not present any theoretical material on shapelets and their
strengths and weaknesses for use in self calibration. We refer the reader to Yatawatta (2010; 2011)
for a more mathematical presentation on these subjects.

We always work with FITS images for our model construction. Therefore, it is assumed that you
already have an image of the sky that is being observed, which is good enough to create a sky model
from. You can obtain a FITS image of the sky that is being observed in many ways. For example,
you can use images made by other instruments (at a probably different frequency/resolution) and one
such source is Sky View80. You can also do a rough calibration of the data and make a preliminary
image of the sky. And if you are hardcore, you can also manipulate an empty FITS file to create the
shape that you want to model (we shall discuss this later).

The FITS file contains more information than that is shown as the image. Since we are dealing with
images made with radio interferometers, almost all images have been deconvolved (e.g. by CLEAN).
The Point Spread Function (PSF) plays an important role in deconvolution. Most FITS files have
information about the approximate PSF that we will be using a lot. This information is stored in the
header of the FITS file with the keywords BMAJ,BMIN, and BPA. The BMAJ and BMIN keywords give
the PSF width as the major and minor axes of a Gaussian. The BPA keyword gives the position angle
(or the rotation) of the Gaussian. We will learn how to manipulate these keywords (or add them if
your FITS file is without them) later.

Throughout this tutorial, we will calibrate an observation of Virgo-A around 50 MHz. In Fig. 33, we
have shown an image of Virgo-A made by the VLA at 74 MHz. The red circle on top right corner
shows the PSF for this image. Although the frequency and resolution does not match the LOFAR
observation, we will be using this image to build a sky model.

Looking closer at Fig. 33, we see that there is bright compact structure at the center and weak diffuse
structure surrounding it. You should always keep in mind the golden rule in source modeling: A point
source is best modeled by a point source and nothing else. Almost always, you will have images with
both compact structure (best modeled by point sources) and extended structure (best modeled using
shapelets). In our example, we need to model the central compact structure as point sources and the
remainder as shapelets. See Yatawatta (2010) for a theoretical explanation.

14.2 Software Overview

There are several steps needed in building a good sky model. You can skip some steps depending
on particular requirements (and if you can use other software to do the same). We give a general
overview of various tools used in different stages of sky model construction. All the software is
installed in /opt/cep/sagecal/bin in the CEP clusters.

79The author of this chapter is Sarod Yatawatta (yatawatta[at]astron[dot]nl).
80http://skyview.gsfc.nasa.gov/cgi-bin/skvadvanced.pl

132

http://skyview.gsfc.nasa.gov/cgi-bin/skvadvanced.pl


Figure 33: Virgo-A image made by the VLA at 74 MHz. The red circle on top right corner is the PSF.

14.2.1 modkey

The program modkey is used to modify keywords in FITS files. For example, if you want to modify
the BMAJ keyword in the example.fits FITS file

modkey -f example.fits -k BMAJ -d 0.1

will set the value of BMAJ to 0.1. If this key does not exist, it will be created. Try using

modkey -h

for more usage examples.

14.2.2 fitscopy

Most FITS files will be too large to work with. The sources that you want to model will be only in
small areas of the large FITS file. The program fitscopy will create a smaller FITS file by selecting
a smaller rectangle from the larger FITS file. For example, if you want to select the area given by the
pixels [x0,y0] bottom left hand corner and [x1,y1] top right hand corner of the file large.fits

fitscopy large.fits small.fits x0 y0 x1 y1

will do the trick.

14.2.3 ds9 and kvis

We use both ds9 and kvis to display FITS file as well as display regions (ds9) and annotations
(kvis).

133



14.2.4 Duchamp

The source extraction program Duchamp is written by Matthew Whiting81. We will only be using
Duchamp to create a mask file for a given FITS image. A mask is a FITS file with the same size as the
original image, but with zeros everywhere except at the selected pixels. Here is a simple configuration
file for creating a mask for example.fits FITS file

##########################################

imageFile example.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

minPix 5

flagATrous 0

snrRecon 10.

snrCut 5.

threshold 0.030

minChannels 3

flagBaseline 0

flagKarma 1

karmaFile duchamp.ann

flagnegative 0

flagMaps 0

flagOutputMask 1

flagMaskWithObjectNum 1

flagXOutput 0

############################################

The threshold for pixel selection is given by the threshold parameter which is 0.03 in the above
example. After creating the configuration file, and saving it as myconf.txt, you can run Duchamp as

Duchamp -p myconf.txt

This will create a mask file called example.MASK.fits which we will be using at later stages.

NOTE: Only versions later than 1.1.9 produce the right output.

14.2.5 buildsky

We mentioned before that whenever we have compact structure, it is best modeled by using point
sources. The program buildsky creates a model with only point sources for a given image. However,
we must have a mask file. So if we have example.fits image and example.MASK.fits mask file,
the simplest way of using this is

buildsky -f example.fits -m example.MASK.fits

This will create a file called example.fits.sky.txt that can be used as input for BBS. It also
creates a ds9 region file called example.fits.ds9.reg that you can use to check your sky model.

You can see other options by typing

buildsky -h

81http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/

134

http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/


14.2.6 restore

We use restore to restore a sky model onto a FITS file. The sky model can be specified in two
different ways. It can directly read a BBS sky model like:

# Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation,

# ReferenceFrequency, SpectralIndex= with ’[]’

# NOTE: no default values taken, for point sources

# major,minor,orientation has to be all zero

# Example:

# note: bmaj,bmin, Gaussian radius in degrees, bpa also in degrees

Gtest1, GAUSSIAN, 18:59:16.309, -22.46.26.616, 100, 100, 100, 100,

0.222, 0.111, 100, 150e6, [-1.0]

Ptest2, POINT, 18:59:20.309, -22.53.16.616, 100, 100, 100, 100, 0,

0, 0, 140e6, [-2.100]

and also it can read an LSM sky model like (see chapter on SAGECAL for more information)

## this is an LSM text (hms/dms) file

## fields are (where h:m:s is RA, d:m:s is Dec):

## name h m s d m s I Q U V spectral_index RM

## extent_X(rad) extent_Y(rad) pos_angle(rad) freq0

P1C1 1 35 29.128 84 21 51.699 0.061585 0 0 0 0 0 0 0 0 1000000.0

using -o 0 for BBS and -o 1 or -o 1 for LSM. Note that buildsky will now (version 0.0.6)
only produce LSM with 3rd order spectra. Spectral indices use natural logarithm, exp(ln(I0)+ p1 ∗
ln( f/ f0)+ p2∗ ln( f/ f0)

2 + . . .) so if you have a model with common logarithms like
10(log(J0)+q1∗log( f/ f0)+q2∗log( f/ f0)2+...) then, conversion is I0 = J0, p1 = q1, p2 = q2/ln(10), p3 =
q3/(ln(10)2) and so on.

As you can see, both above sky models are the same. In addition, the LSM sky model can be used
to represent Gaussians (name starting with G), disks (name starting with D) and rings (name starting
with R).

Once you have such a sky model (text file sky.txt), and a FITS file called example.fits, you can
do many things:

restore -f example.fits -i sky.txt

will replace the FITS file with the sky model, so the original image will be overwritten;

restore -f example.fits -i sky.txt -a

will add the sky model to the image; and

restore -f example.fits -i sky.txt -s

will subtract the sky model from the FITS file.

You can also use solutions obtained by SAGECal when you restore a sky model:

restore -f example.fits -i sky.txt -c sagecal_cluster.txt -l sagecal_sky.txt

135



will use the solution file sagecal sky.txt and the cluster file sagecal cluster.txt while restor-
ing the sky model. New solution files created by SAGECal has 3 additional lines at the beginning.
Newer versions (0.0.10) of restore will properly handle this.

As before, you can see more options by typing

restore -h

14.2.7 shapelet gui

The GUI used in decomposing FITS file to shapelets is called shapelet gui. Once you run this
program you will be seeing the GUI as in Fig. 34.

Figure 34: The shapelet gui initial screen.

The essential parameters can be changed by using View->Change Options menu item. Once you
select this, you will see the dialog as in Fig. 35. We will go through the options in Fig. 35 one by one.

• Cutoff This parameter is used to select the rectangle of pixels where most of the flux in the
image is concentrated. A cutoff of 0.9 will select all the pixels above 0.1 of the peak flux. By
using cutoff of 1.0, the whole image is selected.

• max If this value is not 0, pixels above this value will be truncated to this value.

• min If this value is not 0, pixels below this value will be truncated to 0.

• Max Modes The maximum number of shapelet basis functions used. If you enter 100 here, a
10× 10 array of shapelet modes will be used. Use a small number here to save memory. The
default value of −1 makes the program determine this automatically.

• Scale This is the scale (or β ) of the shapelet basis. The default value of −1 makes the program
determine this automatically.

136



Figure 35: The options dialog for shapelet decomposition.

• Use Mask Instead of using a cutoff, we can also use a mask to select the pixels for shapelet
modeling. The mask can be created using Duchamp. If this option is enabled, for the image
example.fits FITS file, you must have the example.MASK.fits mask file in the same loca-
tion. Note: make sure that flagMaskWithObjectNum 0 is used for the input for Duchamp.

• a, b, theta These parameters are used in linear transforms. It is possible to scale and rotate your
image before you do a shapelet decomposition. This is not yet implemented in BBS.

• p, q Normally, the center of the shapelet basis is selected to be the center of the FITS file.
However, you can give any arbitrary location of your FITS file as the center by changing p and
q. These have to be in pixels.

• Convolve modes with PSF As we mentioned before, almost all images will have a PSF. If the
PSF is larger than the pixel size, it is useful to enable this option. The PSF is obtained by using
the BMAJ,BMIN,BPA keywords of the FITS file.

• Use FITS PSF It is also possible to give another FITS file as the PSF. This generally has to be
much smaller than the image.

• Use L1 regularized LS Instead of using normal L2 minimization to find the shapelet decom-
position, you can also use L1 regularization. The difference in results is negligible in most
cases.

It is advised to always enable Use Mask and Convolve modes with PSF options to get best perfor-
mance. You can also get more information on all these options by clicking the Help button.

Finally, after fine tuning your options, you can select File->Open to select your FITS file and it
will produce an output like Fig. 36. If you are not satisfied with the result, you can go back and
View->Change Options to re-tune your parameters. Once you have done that, you can decompose
the same FITS file by selecting View->Decompose from the menu.

Apart from displaying the output, each time you decompose a FITS file, shapelet gui will produce
several files. Most importantly, for your input example.fits image, it will produce
example.fits.modes text file that can be used in BBS. Here is an extract of one such file:

23 23 27.273176 58 49 1.217289

137



Figure 36: Output of shapelet modelling: (top left) original image (top right) shapelet modes (bottom
left) residual image (bottom right) shapelet model.

9 1.255970e-03

0 1.864041e+01

1 5.311269e+00

2 3.354807e+01

3 7.081891e+00

4 3.743916e+01

5 1.209364e+01

6 2.458361e+01

7 7.033823e+00

8 8.411157e+00

-- many more rows --

# BBS format:

## NAME shapelet 23:23:27.273176 58.49.1.217289 1.0 thisfile.fits.modes

The thing to note from the above listing is the last line. It shows you exactly how to enter this into
BBS. You have to create a text file such as

#

FORMAT = Name Type RA Dec I IShapelet

Ex1 shapelet 23:23:27.273176 58.49.1.217289 1.0 example.fits.modes

where we have copied the last line, changing the source name to whatever we like (in this case Ex1)
and changing the last field to example.fits.modes.

138



14.2.8 convert skymodel.py

This script converts sky models in BBS format to LSM format and vice versa.

Usage: convert_skymodel.py [options]

Options:

-h, --help show this help message and exit

-i INFILE, --infile=INFILE

Input sky model

-o OUTFILE, --outfile=OUTFILE

Output sky model (overwritten!)

-b, --bbstolsm BBS to LSM

-l, --lsmtobbs LSM to BBS

14.3 Step by Step Example

In this section, we will use most of the programs described before to calibrate a LOFAR observation
of Virgo-A. We will use Fig. 33 (FITS file vira-cen.fits) to build the initial sky model.

14.3.1 Initial point source model

As we mentioned in section 14.1, the central compact part in Fig. 33 is best modeled using point
sources. Therefore, we create the following as input to Duchamp

imageFile vira-cen.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

minPix 5

flagATrous 0

snrRecon 10.

snrCut 5.

threshold 10.010

minChannels 3

flagBaseline 0

flagKarma 1

karmaFile duchamp.ann

flagnegative 0

flagMaps 0

flagOutputMask 1

flagMaskWithObjectNum 1

flagXOutput 0

After running Duchamp with this input file, we select only the bright compact center (that is the reason
for using 10.01 as threshold) as seen on Fig. 37. Now we run buildsky to build the sky model for
this as

buildsky -f vira-cen.fits -m vira-cen.MASK.fits

139



Figure 37: Compact center indicated by the red curve.

This will create the first part of the sky model for BBS (file vira-cen.fits.sky.txt):

# (Name, Type, Ra, Dec, I, Q, U, V,

ReferenceFrequency=’60e6’, SpectralIndexDegree=’0’,

SpectralIndex:0=’0.0’, MajorAxis, MinorAxis, Orientation) = format

# The above line defines the field order and is required.

P1C1, POINT, 12:30:45.93, +12.23.48.07, 172.155091, 0.0, 0.0, 0.0

P1C2, POINT, 12:30:47.39, +12.23.51.92, 141.518663, 0.0, 0.0, 0.0

P1C3, POINT, 12:30:47.34, +12.23.31.64, 173.054910, 0.0, 0.0, 0.0

P1C4, POINT, 12:30:48.90, +12.23.40.67, 177.304557, 0.0, 0.0, 0.0

P1C5, POINT, 12:30:48.75, +12.23.21.23, 155.029319, 0.0, 0.0, 0.0

Using ds9 we can also see our sky model as in Fig. 38.

14.3.2 Initial shapelet model

Next, we need to model the extended structure inf Fig. 33. However, before we do this we have to
subtract our point source model from this figure. We use restore to do this

restore -f vira-cen.fits -i vira-cen.fits.sky.txt -s

which gives us the new image as in Fig. 39. Note that the bright central part in Fig. 39 is almost
subtracted. It is not completely gone, and some parts of it is negative. Nevertheless, this is all right for

140



Figure 38: Compact center modeled by two point sources (green circles).

now because we are only building an approximate sky model. Now we need to create another mask
for this image for the diffused structure. We use to following file for Duchamp.

imageFile vira-cen.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

minPix 5

flagATrous 0

snrRecon 10.

snrCut 5.

threshold 1.010

minChannels 3

flagBaseline 0

flagKarma 1

karmaFile duchamp.ann

flagnegative 0

flagMaps 0

flagOutputMask 1

flagMaskWithObjectNum 0

flagXOutput 0

Note that we have used a lower threshold (1.01) this time, compared to the previous value. Once
running Duchamp, we get the mask as indicated by Fig. 40.

Now we are ready to build the shapelet model. We first change some parameters using View->Change

Options. We set Cutoff to 1.0, Max Modes to 200, and the center p to 75 and q to 74 to move the
origin of the shapelets a bit. Furthermore, we enable Use Mask and Convolve Modes with PSF

options. Then we use File->Open to select vira-cen.fits as input. After a few seconds, we get
the result as in Fig. 41.

We can easily create an input to BBS for this shapelet model as follows:

#

141



Figure 39: Diffused structure after subtracting the center.

Figure 40: Mask for the diffused structure.

FORMAT = Name Type RA Dec I IShapelet

142



Figure 41: Shapelet model of the diffused structure.

VirAD shapelet 12:30:48.317433 12.23.27.999947 1.0 vira-cen.fits.modes

14.3.3 Using both shapelets and point sources together

Here is the complete sky model using both point sources and shapelets:

# (Name, Type, Patch, Ra, Dec, I, Q, U, V, ReferenceFrequency=’60e6’,

SpectralIndex=’[0.0]’, Ishapelet) = format

# The above line defines the field order and is required.

, , CENTER, 12:30:45.00, +12.23.48.00

P1C1, POINT, CENTER, 12:30:45.93, +12.23.48.07, 172.155091, 0.0, 0.0, 0.0

P1C2, POINT, CENTER, 12:30:47.39, +12.23.51.92, 141.518663, 0.0, 0.0, 0.0

P1C3, POINT, CENTER, 12:30:47.34, +12.23.31.64, 173.054910, 0.0, 0.0, 0.0

P1C4, POINT, CENTER, 12:30:48.90, +12.23.40.67, 177.304557, 0.0, 0.0, 0.0

P1C5, POINT, CENTER, 12:30:48.75, +12.23.21.23, 155.029319, 0.0, 0.0, 0.0

VirAD, shapelet, CENTER, 12:30:48.317433, 12.23.27.999947, 1.0, , , ,

vira-cen.fits.modes

Note that the above model gives CENTER as the patch direction.

14.3.4 Simulation

Once we have the point source and shapelet sky models, we can run BBS. After this is done, you are
free to do whatever you like with these sky models.

143



First and foremost, it is advised to do a simulation with your sky model and the measurement set that
you need to calibrate to make sure your sky model is correct. Moreover, this is also useful to check
if there are any errors in flux scales. For a point source, there cannot be any error in flux. However,
for an extended source, the flux will be slightly lower than your model in the image. This is because
the Fourier transform preserves the integral of flux and not the peak value. So, it is urged to do a
simulation first before doing any calibration. We have shown the simulated image in Fig. 42.

Figure 42: Simulated image of Virgo-A. The red ellipse is the PSF.

By looking at Fig. 42, we do not see any major discrepancy in our sky model (although we have lower
resolution) so we go ahead with calibration.

14.3.5 Calibration

You can use the normal calibration procedure you adopt with any other LOFAR observation here. So
we will not go into details. We have shown the image made after calibration in Fig. 43.

NOTE: It is advised to use uniform weights to compare the calibrated image to the model image.

Using Fig. 43, we can repeat our sky model construction to get a better result. This of course depends
on your science requirements.

14.3.6 Residual

A better way to check the accuracy of your sky model is to subtract this model from the calibrated
data and make an image of the residual. In Fig. 44, we have shown the residual for two subbands
of 1.5 hour duration at 55 MHz. We clearly see an off center source (about 2 Jy) on top right hand
corner.

144



Figure 43: Calibrated image of Virgo-A (uniform weights).

Figure 44: Residual image of Virgo-A. An off center source is present on top right hand corner.

145



14.3.7 Recalibration

Once you have the residual image, you can also include to off center sources and update the sky model
to re-calibrate the data.

14.4 Conclusions

We have given only a brief overview of the software and techniques in extended source modeling using
shapelets. There are many points that we have not covered in this tutorial. However, we hope you (the
user) will experiment and explore all available possibilities. Questions/Comments/Bug reports can be
sent to yatawatta[at]astron[dot]nl.

References

S. Yatawatta, “Fundamental limitations of pixel based image deconvolution in radio astronomy,” in
proc. IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Jerusalem, Israel,
pp. 69–72, 2010.

S. Yatawatta, “Radio astronomical image deconvolution using prolate spheroidal wave functions,”
IEEE International Conference on Image Processing (ICIP) 2011, Brussels, Belgium, Sep. 2011.

S. Yatawatta, “Shapelets and Related Techniques in Radio-Astronomical Imaging,” URSI GA, Istan-
bul, Turkey, Aug. 2011.

146



15 Practical examples82

In this Chapter, examples of how to inspect and analyze LOFAR data are given. The aim of these
exercises is for the User to become familiar with the software used to process LOFAR data and to
be able to apply this knowledge to other data sets. Please note that each LOFAR data set is different
and special care should be taken when directly applying the methods given in these exercises to other
LOFAR data sets.

It is assumed here that the User has already gone through the “Getting Started” procedure described
in Chapter 1. Note, where NDPPP is used in this chapter, the reader should read DPPP.

15.1 3C 295 – A bright source at the centre of the field

In this exercise, the user will calibrate LBA and HBA datasets for 3C 295. By the end of the exercise
the User should be able to

• inspect raw LOFAR data,

• automatically and manually flag data with NDPPP, including demix the LBA data,

• calibrate the data with BBS,

• produce maps with AWimager,

• create a sky model from the data, and,

• subtract bright sources using BBS

Log into one of the compute nodes above, and make a new directory, for example,

> ssh -Y lof019

> cd /data/scratch/<username>/

> mkdir tutorial/

> mkdir tutorial/3c295/

> cd tutorial/3c295

You will be using the LOFAR software tools. To initialise these use

> use LofIm

15.2 HBA

The raw data set for this exercise can be found in

/globaldata/COOKBOOK/Tutorial/3c295/data/L74759/

The unique LOFAR observation number is L74759 and there are two sub-bands, SB000 and SB001.
The data set is in Measurement Set (MS) format and the filenames are respectively

82The author of this Chapter is Wendy WIlliams (wwilliams[at]strw[dot]leidenuniv[dot]nl). Contribution was also
given by many commissioners: Alicia Berciano Alba, Valentina Vacca, Poppy Martin, Maciej Ceglowski, and Carmen
Toribio.

147



L74759_SAP000_SB000_uv.MS

L74759_SAP000_SB001_uv.MS

for the two sub-bands.

To copy it to your current working directory use:

cp -r /globaldata/COOKBOOK/Tutorial/3c295/data/L74759/L74759_SAP000_SB00[01]_uv.MS .

15.2.1 Inspecting the raw data

It is always useful to find out what the details of the observation are (frequency, integration time,
number of stations) before starting on the data reduction. This is done using the command,

> msoverview in=L74759_SAP000_SB000_uv.MS verbose=T

msoverview: Version 20110407GvD

================================================================================

MeasurementSet Name: /data2/wwilliams/tutorial/3c295/work/hba/L74759_SAP000_SB000_uv.MS MS Version 2

================================================================================

This is a raw LOFAR MS (stored with LofarStMan)

Observer: unknown Project: 2012LOFAROBS

Observation: LOFAR

Antenna-set: HBA_DUAL_INNER

Data records: 5337090 Total integration time = 3599 seconds Observed from 12-Nov-2012/12:47:00.0 to 12-Nov-2012/13:46:59.0 (UTC)

Fields: 1

ID Code Name RA Decl Epoch nRows

0 BEAM_0 14:11:20.500000 +52.12.10.00000 J2000 5337090

Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)

SpwID Name #Chans FrameCh1(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) Corrs

0 SB-0 64 TOPO 118.849 3.052 195.3 118.9453 XX XY YX YY

Antennas: 54:

ID Name Station Diam. Long. Lat. Offset from array center (m) ITRF Geocentric coordinates (m)

East North Elevation x y z

0 CS001HBA0LOFAR 31.3 m +006.52.07.1 +52.43.34.7 -0.0006 -0.1627 6364571.5626 3826896.235000 460979.455000 5064658.203000

1 CS001HBA1LOFAR 31.3 m +006.52.02.2 +52.43.31.8 -0.0013 -0.1634 6364571.8531 3826979.384000 460897.597000 5064603.189000

2 CS002HBA0LOFAR 31.3 m +006.52.07.6 +52.43.46.8 -0.0006 -0.1598 6364569.5445 3826600.961000 460953.402000 5064881.136000

3 CS002HBA1LOFAR 31.3 m +006.52.08.0 +52.43.48.2 -0.0005 -0.1595 6364569.4094 3826565.594000 460958.110000 5064907.258000

...

...

...

42 CS501HBA0LOFAR 31.3 m +006.51.57.9 +52.44.29.9 -0.0019 -0.1495 6364565.1209 3825568.820000 460647.620000 5065683.028000

43 CS501HBA1LOFAR 31.3 m +006.51.59.7 +52.44.25.8 -0.0017 -0.1504 6364565.4869 3825663.508000 460692.658000 5065607.883000

44 RS106HBALOFAR 31.3 m +006.59.05.6 +52.41.21.6 0.0598 -0.1945 6364586.2658 3829205.598000 469142.533000 5062181.002000

45 RS205HBALOFAR 31.3 m +006.53.50.8 +52.40.17.6 0.0143 -0.2098 6364593.2751 3831479.670000 463487.529000 5060989.903000

...

...

...

52 RS508HBALOFAR 31.3 m +006.57.13.3 +53.03.21.7 0.0436 0.1214 6364441.3265 3797136.484000 463114.447000 5086651.286000

53 RS509HBALOFAR 31.3 m +006.47.04.7 +53.13.30.1 -0.0443 0.2670 6364384.0353 3783537.525000 450130.064000 5097866.146000

The MS is fully regular, thus suitable for BBS

nrows=5337090 ntimes=3594 nbands=1 nbaselines=1485 (54 autocorr)

From this, you should see that HBA DUAL mode was used, i.e. the core stations are split in two
HBA sub-fields, giving a total of 54 stations. The observation was ∼ 1 hour (3599 seconds) with
3594 timestamps so the time resolution is ∼ 1 s. There are 64 spectral channels and the frequency is
118.849 MHz for SB000 and 119.044 MHz for SB001, and the total bandwidht for each subband is
∼ 0.2 MHz.

15.2.2 Flagging and data compression

The data set that we are using is uncompressed and unflagged; the total size of each MS is 11 Gb. The
data flagging and compression are carried out using NDPPP (see Chapter 5 for details). Typically, ini-
tial RFI flagging and averaging will be done by the averaging pipeline run by the Radio Observatory.
Note that the limitation on the compression in frequency is set by the size of the field you wish to
image and the amount of bandwidth smearing at the edges of the field. The time averaging is limited
not only by the amount of time smearing you will allow but also by the changes in the ionosphere.

148



In this example we are flagging the data using the aoflagger algorithm within NDPPP. Here we will
compress the sub-band to 4 channels in frequency and 5 s in time. The parset file for the flagging and
compression should be copied to your working directory,

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP_HBA_preprocess.parset .

> cat NDPPP_HBA_preprocess.parset

msin = L74759_SAP000_SB000_uv.MS

msin.autoweight=TRUE

msin.datacolumn=DATA

msout = L74759_SAP000_SB000_uv.MS.avg.dppp

msout.datacolumn=DATA

steps=[preflagger0,preflagger1,aoflagger,averager]

preflagger0.chan=[0,1,62,63]

preflagger0.type=preflagger

preflagger1.corrtype=auto

preflagger1.type=preflagger

aoflagger.autocorr=F

aoflagger.timewindow=0

aoflagger.type=aoflagger

averager.freqstep=16 # compresses from 64 to 4 channels

averager.timestep=5 # compresses 5 time-slots, i.e. 5s

averager.type=averager

This parset file will take the data set, flag and compress and then make a new copy in your working
area. If necessary, edit the msin and msout fields to point at your working directory, using your
favourite editor (e.g. vim, nano, nedit). To run NDPPP use,

> NDPPP NDPPP_HBA_preprocess.parset > log.ndppp.flagavg 2>&1 &

The 2>&1 pipes both the stdout and stderr to the log file and the & runs the task in the background so
you can continue working on the terminal.

Depending on the use of the cluster, it will take about ∼ 5−10 minutes to flag and average the data.
The progress bar reports the stage of the initial NDPPP steps, not the entire NDPPP run, so it will
keep running several minutes after the progress bar reaches 100%. Note that it is normal to get the
following warning:

log4cplus:WARN Property configuration file "parmdbm.log_prop" not found.

log4cplus:WARN Using basic logging configuration.

You can inspect the output log file by using,

> cat log.ndppp.flagavg

149



The log file lists the input and output parameters, the level of flagging at each step and the total amount
of data flagged. You will see that the total data flagged for each of the flagging steps is 4.7%, 3.4%
and 2.7% respectively.

Edit the msin and msout fields of the parset to do the same for the second sub-band.

The flagged and compressed data set should now be in your working directory and each MS should
have a total size of 87 Mb, which is much more manageable than before. You can use msoverview to
look at a summary of this data set using.

> msoverview in=L74759_SAP000_SB000_uv.MS.avg.dppp verbose=True

15.2.3 Post-compression data inspection and flagging

We will use the CASA task plotms to inspect the data. Only limited information for using plotms is
given here, the User is directed to the CASA cookbook83 for full details,

> use Casa

> casaplotms

Figure 45 shows the Amp. vs. time and Amp. vs. UV distance (wavelengths) for SB000.

By inspection of the amplitude vs. uv-distance plots, antenna’s CS302HBA0 (blue) and CS302HBA1
(purple) have clearly low amplitudes compared to the other baselines. We will leave them for now
and see how they perform after calibration.

15.2.4 Calibration with BBS

Black Board Self-calibration is a highly flexible calibration software developed for LOFAR that is
capable of carrying out direction dependent gains (solutions for different parts of the image) and the
time-dependent corrections for the LOFAR beam. In this example, we will go through the process of
a single direction solution with the beam correction.

Here we will use the stand-alone version of BBS84 to calibrate single sub-bands. The stand-alone
version can be run using the following command

> calibrate-stand-alone <MS> <parset> <source catalog>

So before we can run the calibration, we need an initial sky model for correcting the data and a parset
file to direct the calibration. Since 3C 295 is a well-known calibrator source, we already have a good
model for it. The sky model consists of two point sources and can be copied to your working area
using,

> cp /globaldata/COOKBOOK/Tutorial/3c295/models/3C295TWO.skymodel .

> cat 3C295TWO.skymodel

# (Name, Type, Patch, Ra, Dec, I, ReferenceFrequency=’150.e6’, SpectralIndex) = format

, , 3c295, 14:11:20.64, +52.12.09.30

3c295A, POINT, 3c295, 14:11:20.49, +52.12.10.70, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

3c295B, POINT, 3c295, 14:11:20.79, +52.12.07.90, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

83http://casa.nrao.edu/Doc/Cookbook/casa cookbook.pdf
84BBS is described in Chapter 7

150

http://casa.nrao.edu/Doc/Cookbook/casa_cookbook.pdf


Figure 45: SB000. Top: Plotting the visibility amplitude against time. Bottom: Plotting the visibility
amplitude against UV distance in wavelengths. (The colour scheme ‘Antenna1’ is used here.)

151



Here you can see that the two point-source components on 3C 295 have been grouped in a single
‘patch’. Note that there are other sources visible within the field of view, but 3C 295 should be
sufficiently bright to dominate the field.

ASIDE: Usually one makes an initial sky model based on what we think the sky looks like at the
frequency and resolution that we are interested in. This means constructing a model from good image
we have at a different frequency/resolution, or in the case of self-calibration, the image we have just
made (see for example Chapter 10). Alternatively, a sky model can be created using the gsm.py tool.
This tool extracts sources in a cone of a given radius around a given position on the sky from the
Global Sky Model or GSM. The GSM contains all the sources from the VLSS, NVSS, and WENSS
survey catalogs. See Sections 6.4 and 6.5 for more information about the GSM and gsm.py.

Running gsm.py without any arguments will show you the correct usage (help).

> gsm.py

Insufficient arguments given; run as:

/opt/cep/LofIm/daily/Tue/lofar_build/install/gnu_opt/bin/gsm.py outfile RA

DEC radius [vlssFluxCutoff [assocTheta]] to select using a cone

outfile path-name of the output file

It will be overwritten if already existing

RA cone center Right Ascension (J2000, degrees)

DEC cone center Declination (J2000, degrees)

radius cone radius (degrees)

vlssFluxCutoff minimum flux (Jy) of VLSS sources to use

default = 4

assocTheta uncertainty in matching (degrees)

default = 0.00278 (10 arcsec)

So now we can construct the command to make a model for the 3C 295 field:

> gsm.py 3c295_field.model 212.835495 52.202770 3.0

Sky model stored in source table: 3c295_field.model

For now, we will return to using the simple two point source model of 3C 295.

The parset file for BBS can be found at,

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/bbs.parset .

> cat bbs.parset

Strategy.ChunkSize = 500

Strategy.Steps = [solve, correct]

Step.solve.Operation = SOLVE

Step.solve.Model.Sources = [3c295]

Step.solve.Model.Gain.Enable = T

Step.solve.Model.Beam.Enable = T

Step.solve.Model.Beam.UseChannelFreq = T

Step.solve.Model.Cache.Enable = T

Step.solve.Solve.Parms = ["Gain:0:0:*","Gain:1:1:*"]

152



Step.solve.Solve.CellSize.Freq = 0

Step.solve.Solve.CellSize.Time = 1

Step.solve.Solve.CellChunkSize = 50

Step.solve.Solve.Options.MaxIter = 500

Step.solve.Solve.Options.EpsValue = 1e-9

Step.solve.Solve.Options.EpsDerivative = 1e-9

Step.solve.Solve.Options.ColFactor = 1e-9

Step.solve.Solve.Options.LMFactor = 1.0

Step.solve.Solve.Options.BalancedEqs = F

Step.solve.Solve.Options.UseSVD = T

Step.correct.Operation = CORRECT

Step.correct.Model.Sources = [3c295]

Step.correct.Model.Gain.Enable = T

Step.correct.Model.Beam.Enable = T

Step.correct.Model.Beam.UseChannelFreq = T

Step.correct.Output.Column = CORRECTED_DATA

This is a very simple parset file that solves and corrects the data. To run BBS, use the following
command,

> calibrate-stand-alone -f L74759_SAP000_SB000_uv.MS.avg.dppp \

bbs.parset 3C295TWO.skymodel > log.bbs.gaincal_sb000 2>&1 &

Note that using the redirect “> log.bbs.gaincal sb000” command allows you to save and inspect the
output of BBS and using the “&” at the end runs BBS in the background allowing you to continue
with other tasks, e.g. you can simultaneously run a similar command for the second sub-band. The
calibration process should be completed in about 10 minutes. There is currently no progress bar in-
corporated into calibrate-stand-alone. However, you can (somewhat primitively!) follow the progress
by checking the log file, in particular by inspecting how many of the data chunks have been processed.
Do a ‘grep Time log.bbs.gaincal sb000’. Alternatively, using the ‘top’ command will allow you to
see when the process is complete.

Once complete it is useful to look at the calibrated data with parmdbplot.py:

> parmdbplot.py L74759_SAP000_SB000_uv.MS.avg.dppp/instrument/

It is useful to de-select the ‘use resolution’ option as this will plot all of the solutions that we solved
for. After de-selecting the ‘use resolution’ option select a few stations and look at the solutions.
Figure 46 shows some solution plots for SB000.
ASIDE: While parmdbplot.py is very useful and diverse, sometimes you want a quick look at all the
solutions. In python you can use lofar.parmdb to read and plot the solutions. This example script
plots all the phase and amplitude solutions in a single image (see Fig. 47):

> python /globaldata/COOKBOOK/Tutorial/3c295/scripts/plot_solutions_all_stations.py -p -a \

L74759_SAP000_SB000_uv.MS.avg.dppp/instrument/ hba_sb000_gains

> display hba_sb000_gains_amp.png

> display hba_sb000_gains_phase.png

Or use George Heald’s solplot.py (see Chapter 6: inspecting the solutions).

We can also inspect the corrected data with casaplotms. Go to the axes tab and plot the amplitude
against time for the corrected data by selecting “Data Column: corrected” and plot only the XX

153



Figure 46: Top left: The parmdb window. Use this to select the stations for which you want to
inspect the solutions, and to change the resolution that is used to display the solutions. Top right: The
solutions for CS003HBA1. Bottom left: The solutions for CS302HBA0. Bottom right: The solutions
for RS406HBA.

154



Figure 47: Top: Phase solutions for all stations for SB000 (polarizations in different colours). Bottom:
Amplitude solutions for all stations for SB000.

155



and YY correlations. Figures 48 and 49 show these plots for SB000 and SB001 respectively. For
SB000, it is clear that the solutions for CS302HBA are still very noisy. For both sub-bands, baselines
RS508HBA&RS509HBA (visible in orange) and RS208HBA&RS509HBA (in green) look bad and
for SB001, CS302HBA0&CS302HBA1 (in blue) also looks bad.

Figure 48: SB000. Top: Plotting the visibility amplitude against UV distance. Bottom: Excluding
antenna CS302HBA.

We will flag all of these bad baselines now with NDPPP. Leaving the msout field blank means NDPPP
will update the flags in the input measurement set. The NDPPP parsets are:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.flag.sb000.parset .

> cat NDPPP.flag.sb000.parset

msin = L74759_SAP000_SB000_uv.MS.avg.dppp

msin.startchan = 0

msin.nchan = 1

msin.datacolumn = DATA

156



Figure 49: SB001. Plotting the visibility amplitude against UV distance.

msout =

steps = [flag]

flag.type=preflagger

flag.baseline=[[RS508HBA&RS509HBA], [RS208HBA&RS509HBA], [CS302HBA*]]

> NDPPP NDPPP.flag.sb000.parset > ndppp.flag0.txt &

and likewise for the other subband:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.flag.sb001.parset .

> cat NDPPP.flag.sb001.parset

msin = L74759_SAP000_SB001_uv.MS.avg.dppp

msin.startchan = 0

msin.nchan = 1

msin.datacolumn =

msout.datacolumn = DATA

steps = [flag]

flag.type=preflagger

flag.baseline=[[RS508HBA&RS509HBA], [RS208HBA&RS509HBA], [CS302HBA*]]

> NDPPP NDPPP.flag.sb001.parset > ndppp.flag1.txt &

Next we will re-do the calibration (it’s probably a good idea after removing some bad data):

> calibrate-stand-alone -f L74759_SAP000_SB000_uv.MS.avg.dppp.flag bbs.parset \

3C295TWO.skymodel > log.bbs.gaincal2_sb000 &

The amplitude against time for the flagged corrected data is plotted in 50.

157



Figure 50: Plotting the visibility amplitude against UV distance for SB000 after flagging.

15.2.5 Imaging

Here we will use the AWimager85 to do the deconvolution. While 3C 295 is the dominant source
at the centre of the field we can actually image the large field and find other sources exploiting the
wide-field imaging techniques built into the AWimager. The list of parameters along with a brief
description of each can be shown with

> awimager -h

Note that the first time you run it, you are likely to get a “Cannot read table of Observatories”. Should
this happen, you can resolve the issue by correcting your “.casarc” file to look like this (there should
be no space at the end on the line)

> cat ~/.casarc

measures.directory: /opt/cep/casacore/data

We will use a parameter file for awimager. At 120 MHz the LOFAR (NL Remote) field of view is 4.5
deg and the resolution should be around 8′′ First, to make a dirty image, set niter to 0:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/awimger.sb000.parms .

> cat awimger.sb000.parms

ms=L74759_SAP000_SB000_uv.MS.avg.dppp

image=L74759_SAP000_SB000.dirty.img

data=CORRECTED_DATA

weight=briggs

85see Chapter 8

158



robust=0

npix=4096

cellsize=5.5arcsec

padding=1.2

stokes=I

operation=mfclark

wmax=20000

UVmin=0.08

UVmax=18

niter=0

If you have run the imager before, it is advisable to remove any existing images:

> rm -rf L74759_SAP000_SB000.dirty.img*

To run awimager call

> awimager awimger.sb000.parms > log.awim.sb000 2>&1

this will take a few minutes to run. Note that in order to make a dirty image set “operation=mfclark” and “niter=0” so
that it does 0 iterations of cleaning86. The last few lines of the output will look like (timestamps have been removed for
clarity)

ImageSkyModel::makeApproxPSFs bmaj: 30.3401", bmin: 23.855", bpa: 96.0219 deg

MFCleanImageSkyModel::solve Final maximum residual = 99.094

MFCleanImageSkyModel::solve Model 0: max, min residuals = 99.094, -16.3156 clean flux 0

imager::clean() Threshhold not reached yet.

imager::clean() Fitted beam used in restoration: 30.3401 by 23.855 (arcsec) at pa 96.0219 (deg)

Final normalisation

clean 162.27 real 401.19 user 8.74 system

awimager normally ended

AWImager produces a lot of images as output, including

L74759_SAP000_SB000.dirty.img.model # uncorrected model image

L74759_SAP000_SB000.dirty.img.model.corr # corrected model image

L74759_SAP000_SB000.dirty.img.restored # restored (residual + convolved model) image

L74759_SAP000_SB000.dirty.img.residual # residual image

L74759_SAP000_SB000.dirty.img.residual.corr # corrected residual image

L74759_SAP000_SB000.dirty.img.psf # point spread function

The image we wish to look at now is the “restored” image. This can be done with casaviewer:

> casaviewer L74759_SAP000_SB000.dirty.img.restored

the dirty image should look like a single strong point source convolved with the psf (See Fig. 51).

Now we will do some cleaning. If you look at George Heald’s beta noise calculator for LOFAR87,
with 21 core and 9 remote split HBA stations, we should expect a noise of a few mJy for an hour’s
observation at 120 MHz. Initially though, we will just clean over the entire image down to a relatively
high threshold of 0.1 Jy.

86setting “operation=image” does not work to make a dirty image with this version of the imager.
87http://www.astron.nl/~heald/test/sens.php

159

http://www.astron.nl/~heald/test/sens.php


Figure 51: Left: The dirty image for 3C 295 (SB000). Right: Zoom in 4x. The data range is set to
[-2, 20].

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/awimger.sb000.clean.parms .

> cat awimger.sb000.clean.parms

ms=L74759_SAP000_SB000_uv.MS.avg.dppp

image=L74759_SAP000_SB000.img

data=CORRECTED_DATA

weight=briggs

robust=0

npix=4096

cellsize=5.5arcsec

padding=1.2

stokes=I

operation=mfclark

wmax=20000

UVmin=0.08

UVmax=18

niter=1000

> rm -rf L74759_SAP000_SB000.clean.img*

> awimager awimger.sb000.clean.parms > log.clean.awim.sb000 2>&1

AWimager will run for ∼ 20 minutes and will produce a lot of output to the log file for each major
cycle.

The output from AWimager consists of several images:

L74759_SAP000_SB000.img.model # uncorrected dirty image

L74759_SAP000_SB000.img.residual # residual image

L74759_SAP000_SB000.img.psf # point spread function

L74759_SAP000_SB000.img.restored # restored image

L74759_SAP000_SB000.img.restored.corr # corrected restored image

L74759_SAP000_SB000.img.model.corr # corrected model image

L74759_SAP000_SB000.img.residual.corr # corrected residual image

160



Figure 52 shows the cleaned corrected image (“restored.corr”). One can see 3C 295 at the centre of
the field and even though only 3C 295 was in our calibration model there are clearly about thirty other
sources visible in the field.

Figure 52: Left: The cleaned image for 3C 295 (SB000). Right: A zoom-in of the source in the lower
right corner. The data range is set to [-2, 20].

15.2.6 Combining Measurement Sets

It is often useful to combine calibrated Measurement Sets for separate sub-bands into a single Mea-
surement Set, both to allow faster processing in subsequent BBS runs and also to allow a single image
of the combined data to be made.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.combineMS.parset .

> cat NDPPP.combineMS.parset

msin = L74759_SAP000_SB*_uv.MS.avg.dppp

msin.datacolumn = DATA

msout = 3C295_BAND0.MS

steps = []

The wild card in line one of this very simple parset means that all sub-bands of the observation will
be combined. Line two means that the DATA column from the input MSs will be written to the DATA
column in the output. Here we only have two subbands to combine but the method works for many.
If you do msoverview now you will see that there are 8 spectral channels. At this point you need to
redo the calibration because we have copied the DATA column.

> calibrate-stand-alone -f 3C295_BAND0.MS bbs.parset

3C295TWO.skymodel > log.bbs.gaincal 2>&1 &

You may wish to change “Solve.CellSize.Freq = 0” to 1 or 2 to solve for every channel or to combine
every 2 channels. 3C 295 is bright enough that there is enough signal to do this.

Now we can make a single image of the combined data set:

161



> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/awimger.band0.clean.parms .

> cat awimger.band0.clean.parms

ms=3C295_BAND0.MS

image=3C295_BAND0.img

data=CORRECTED_DATA

weight=briggs

robust=0

npix=4096

cellsize=5.5arcsec

padding=1.2

stokes=I

operation=mfclark

wmax=20000

UVmin=0.08

UVmax=18

niter=5000

threshold=0.1Jy

> rm -rf 3C295_BAND0.img*

> awimager awimger.band0.clean.parms > log.clean.awim.band0 2>&1

15.2.7 Subtraction of 3C 295

3C 295 is the dominant source at the center of the field. In order to image the rest of the field we will
subtract it using BBS. In this specific case this is easy because we already have a very good model for
this calibrator source so we will use that instead of making a model from the image.
We require a parset that includes a subtract step for the source 3C 295. We have already done a solve
step to obtain our gain solutions so we will simply subtract the source using those solutions:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/bbs_subtract3c295.parset .

> cat bbs_subtract3c295.parset

Strategy.ChunkSize = 500

Strategy.InputColumn = DATA

Strategy.TimeRange = []

Strategy.Baselines = *&

Strategy.Steps = [subtract]

Step.subtract.Operation = SUBTRACT

Step.subtract.Model.Sources = [3c295]

Step.subtract.Model.Beam.Enable = T

Step.subtract.Model.Beam.UseChannelFreq = T

Step.subtract.Model.Gain.Enable = T

Step.subtract.Model.Cache.Enable = T

Step.subtract.Output.Column = 3C295_SUBTRACTED

> calibrate-stand-alone 3C295_BAND0.MS bbs_subtract3c295.parset > log.bbs.gaincalsubtract 2>&1 &

The Model.Gain is enabled in the subtract step to make sure we subtract 3C 295 with the appropriate
solutions. Note the different call to calibrate-stand-alone. We no longer use the ‘-f’ option as this
expands to ‘–replace-parmdb’, ‘–replace-sourcedb’ which will cause your gain solutions in the in-
strument table to be overwritten. Moreover, we do not need to supply a skymodel as this is already

162



contained in the sourcedb “3C295 BAND0.MS.sub/sky” from our last calibration. This should take
∼ 10 minutes to run.

We will now copy the subtracted data to a new measurement set:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.copysub.parset .

> cat NDPPP.copysub.parset

msin = 3C295_BAND0.MS

msin.datacolumn = 3C295_SUBTRACTED

msout = 3C295_BAND0.MS.sub

msout.datacolumn = DATA

steps = []

> NDPPP NDPPP.copysub.parset

Now, we still need to apply the gain solutions to the rest of the field and do a beam correction before
imaging the CORRECTED DATA. Remember that what is in the DATA column of this measurement
set is the uncorrected data with 3C 295 subtracted out.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/bbs_correct3c295.parset

> cat bbs_correct3c295.parset

Strategy.ChunkSize = 500

Strategy.InputColumn = DATA

Strategy.TimeRange = []

Strategy.Baselines = *&

Strategy.Steps = [correct]

Step.correct.Operation = CORRECT

Step.correct.Model.Sources = []

Step.correct.Model.Gain.Enable = T

Step.correct.Model.Beam.Enable = T

Step.correct.Model.Beam.UseChannelFreq = T

Step.correct.Output.Column = CORRECTED_DATA

> calibrate-stand-alone --parmdb 3C295_BAND0.MS/instrument 3C295_BAND0.MS.sub

bbs_correct3c295.parset > log.bbs.gaincalcorrect 2>&1 &

Here we need to specify where the solution table is (still in the old measurement set) and we do not
need to give a sourcedb as we are only applying the solutions for the centre of the field.

The 3C 295-subtracted visibility amplitudes are plotted against time in 53.

We can make an image of the subtracted data

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/awimger.sub.clean.parms .

> cat awimger.sub.clean.parms

ms=3C295_BAND0.MS.sub

image=3C295_BAND0.sub.img

data=CORRECTED_DATA

weight=briggs

robust=0

npix=4096

cellsize=5.5arcsec

padding=1.2

stokes=I

operation=mfclark

163



Figure 53: Plotting the visibility amplitude against UV distance after flagging.

wmax=20000

UVmin=0.08

UVmax=18

niter=1000

threshold=30mJy

> rm -rf 3C295_BAND0.sub.img*

> awimager awimger.sub.clean.parms > log.clean.awim.sub.band0 2>&1

15.3 LBA

The raw LBA data set for this exercise can be found in,

/globaldata/COOKBOOK/Tutorial/3c295/data/L74762/

The unique LOFAR observation number is L74762 and there are two sub-bands, SB000 and SB001.
The data set is in Measurement Set (MS) format and the filenames are respectively

L74762_SAP000_SB000_uv.MS

L74762_SAP000_SB001_uv.MS

for the two sub-bands.

164



Figure 54: Left: The cleaned image for 3C 295 (SB000) after 3C 295 has been subtracted. Right: A
zoom-in of the source in the lower right corner. The data range is set to [-0.1, 1].

15.3.1 Inspecting the raw data

Use msoverview again to find out the details of the observation (frequency, integration time, number
of stations):

> msoverview in=L74762_SAP000_SB000_uv.MS verbose=T

msoverview: Version 20110407GvD

================================================================================

MeasurementSet Name: L74762_SAP000_SB000_uv.MS MS Version 2

================================================================================

This is a raw LOFAR MS (stored with LofarStMan)

Observer: unknown Project: 2012LOFAROBS

Observation: LOFAR

Antenna-set: LBA_OUTER

Data records: 1897632 Total integration time = 3597.99 seconds

Observed from 12-Nov-2012/14:06:00.5 to 12-Nov-2012/15:05:58.5 (UTC)

Fields: 1

ID Code Name RA Decl RefType

0 BEAM_0 14:11:20.5167 +52.12.09.9276 J2000

(nVis = Total number of time/baseline visibilities per field)

Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)

SpwID #Chans Frame Ch1(MHz) ChanWid(kHz)TotBW(kHz) Ref(MHz) Corrs

0 64 TOPO 59.4741821 3.05175781 195.3125 59.5703125 XX XY YX YY

Antennas: 32:

ID Name Station Diam. Long. Lat.

0 CS001LBALOFAR 86.0 m +006.52.03.5 +52.43.34.0

165



1 CS002LBALOFAR 86.0 m +006.52.11.4 +52.43.47.4

...

...

...

30 RS508LBALOFAR 86.0 m +006.57.11.4 +53.03.19.2

31 RS509LBALOFAR 86.0 m +006.47.07.0 +53.13.28.2

The MS is fully regular, thus suitable for BBS

nrows=1897632 ntimes=3594 nbands=1 nbaselines=528 (32 autocorr)

From this, you should see that 32 stations were used for this observation, that the observation was∼ 1
hour that there are 64 spectral channels and the frequency is 59.474 MHz for SB000 and 59.669 MHz
for SB001. This gives a useful first look at the data, but we will take a closer look after the data have
been converted from the raw correlator visibilities to a proper Measurement Set.

15.3.2 Flagging and demixing

As with the HBA, the data set is uncompressed and unflagged; the total size of each MS is 3.9 Gb.
The data flagging and compression are carried out using NDPPP (see Chapter 5 for details). We
will compress the sub-band to 1 channel in frequency and 10 s in time. Note that the limitation on
the compression in time is set by the changes in the ionosphere. For LBA data it is almost always
necessary to demix the data to remove the bright radio sources from the data. Demixing is described
in detail in Chapter 6 and has been implemented in NDPPP. Usually this will be performed by the
Radio Observatory but we include it here so you can learn how to do it.

To see which A-team sources need to be demixed use the plot Ateam elevation python script,

> plot_Ateam_elevation.py L74762_SAP000_SB000_uv.MS

the output of which is shown in Fig.55. From this we can see that CygA and CasA are over 40 deg
elevation for the duration of the observation and should be demixed. They are also both about 60
deg away from the pointing centre (the distances of the A-team sources from the pointing centre are
indicated in the legend).

The parset file for the flagging88 and demixing should be copied to your working directory. Note that
the demixing outputs the compressed data.

A sky model containing the sources to be demixed is also required

> cp -r /globaldata/COOKBOOK/Tutorial/3c295/models/Ateam_LBA_CC.sky .

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_preprocess.parset .

> cat NDPPP_LBA_preprocess.parset

msin = L74762_SAP000_SB000_uv.MS

msin.autoweight=TRUE

msin.datacolumn=DATA

msout = L74762_SAP000_SB000_uv.MS.dem.dppp

msout.datacolumn=DATA

88using the aoflagger algorithm.

166



Figure 55: A-team elevation for the LBA observation.

steps=[preflagger0,preflagger1,aoflagger,demixer]

preflagger0.chan=[0,1,62,63]

preflagger0.type=preflagger

preflagger1.corrtype=auto

preflagger1.type=preflagger

aoflagger.autocorr=F

aoflagger.count.save=FALSE

aoflagger.keepstatistics=T

aoflagger.memorymax=0

aoflagger.memoryperc=0

aoflagger.overlapmax=0

aoflagger.overlapperc=-1

aoflagger.pedantic=F

aoflagger.pulsar=F

aoflagger.timewindow=0

aoflagger.type=aoflagger

demixer.freqstep=64 # compresses to 1 channel

demixer.timestep=10 # compresses 10 time-slots, i.e. 10s

demixer.skymodel=Ateam_LBA_CC.sky

demixer.subtractsources=[CasA, CygA] # which sources to demix

demixer.type=demixer

> NDPPP NDPPP_LBA_preprocess.parset > log.ndppp.demix 2>&1 &

167



Depending on the use of the cluster, it will take about ∼ 10−12 minutes to demix and flag the data
(see the percentage progress bar). Inspecting the log file, you will see that the total data flagged for
each of the flagging steps is 4.7%, 5.6% and 1.2% respectively.

Edit the msin and msout fields of the parset to do the same for the second sub-band.

The flagged and demixed data set should now be in your working directory and each MS should have
a total size of 32 Mb, which is much more manageable than before. You can use msoverview to look
at a summary of this data set using.

> msoverview in=L74762_SAP000_SB000_uv.MS.dem.dppp verbose=True

Some of the tasks that are used will make changes to the MS file, so let’s make a copy of the com-
pressed data set for safety,

> cp -rf L74762_SAP000_SB000_uv.MS.dem.dppp L74762_SAP000_SB000_uv.MS.dem.dppp.copy

15.3.3 Post-compression data inspection and flagging

We will use the CASA task plotms to inspect the data. Figure 56 shows the Amp. vs Time and Amp.
vs UV distance (wavelengths) for SB000. We can see that there are a few short baselines with large
fluctuating amplitudes. We will do some limited flagging for now.

Plotting amplitude against baseline we see that the amplitudes for all baselines to RS305LBA are too
low. Also CS302LBA seems to have unusually large amplitudes on most of its baselines. We will
also clip the higher amplitudes (above 0.3).

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_flag1.parset .

> cat NDPPP_HBA_preprocess.parset

msin = L74762_SAP000_SB000_uv.MS.dem.dppp

msin.datacolumn=DATA

msout =

steps=[flag1, clip]

flag1.type=preflagger

flag1.baseline = [ [CS302LBA], [RS305LBA] ]

clip.type=preflagger

clip.amplmax=0.3

15.3.4 Combining Measurement Sets

Once you have done the initial flagging and demixing for the second subband, you can combine the
two subbands

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP.combineMS.parset .

> cat NDPPP.combineMS.parset

168



Figure 56: SB000. Top: Plotting the visibility amplitude against time. Bottom: Plotting the visibility
amplitude against UV distance in wavelengths. Colourise by ‘Antenna2’ to obtain these colours.

169



msin = L74762_SAP000_SB00[01]_uv.MS.dem.dppp

msin.datacolumn = DATA

msout = 3C295_LBA_BAND0.MS

steps = []

15.3.5 Calibration with BBS

Here we will use the stand-alone version of BBS89 to calibrate single sub-bands. The stand-alone
version can be run using the following command

> calibrate-stand-alone -f <MS> <parset> <source catalog>

We use the same sky model as before:

> cp /globaldata/COOKBOOK/Tutorial/3c295/models/3C295TWO.skymodel .

> cat 3C295TWO.skymodel

# (Name, Type, Patch, Ra, Dec, I, ReferenceFrequency=’150.e6’, SpectralIndex) = format

, , 3c295, 14:11:20.64, +52.12.09.30

3c295A, POINT, 3c295, 14:11:20.49, +52.12.10.70, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

3c295B, POINT, 3c295, 14:11:20.79, +52.12.07.90, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

The parset file can be found at,

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/bbs.parset .

> cat bbs.parset

Strategy.ChunkSize = 100

Strategy.Steps = [solve, correct]

Step.solve.Operation = SOLVE

Step.solve.Model.Sources = [3c295]

Step.solve.Model.Gain.Enable = T

Step.solve.Model.Beam.Enable = T

Step.solve.Model.Beam.UseChannelFreq = T

Step.solve.Model.Cache.Enable = T

Step.solve.Solve.Parms = ["Gain:0:0:*","Gain:1:1:*"]

Step.solve.Solve.CellSize.Freq = 0

Step.solve.Solve.CellSize.Time = 4

Step.solve.Solve.CellChunkSize = 10

Step.solve.Solve.Options.MaxIter = 1000

Step.solve.Solve.Options.EpsValue = 1e-9

Step.solve.Solve.Options.EpsDerivative = 1e-9

Step.solve.Solve.Options.ColFactor = 1e-9

Step.solve.Solve.Options.LMFactor = 1.0

Step.solve.Solve.Options.BalancedEqs = F

Step.solve.Solve.Options.UseSVD = T

Step.correct.Operation = CORRECT

89BBS is described in Chapter 7

170



Step.correct.Model.Sources = [3c295]

Step.correct.Model.Gain.Enable = T

Step.correct.Model.Beam.Enable = T

Step.correct.Model.Beam.UseChannelFreq = T

Step.correct.Output.Column = CORRECTED_DATA

This is a very simple parset file that solves and corrects the data. To run BBS, use the following
command:

> calibrate-stand-alone -f 3C295_LBA_BAND0.MS bbs.parset 3C295TWO.skymodel \\

> log.bbs.solve 2>&1 &

The calibration process should be completed in about 10 minutes. You can simultaneously run a
similar command for the second sub-band.

When BBS is complete we can look at the calibrated data with parmdbplot.py. After de-selecting the
“use resolution” option select a few stations and look at the solutions. Figures 57 and 58 shows some
solution plots for SB000. It is clear that there are a few spikes in the solutions.

> python /globaldata/COOKBOOK/Tutorial/3c295/scripts/plot_solutions_all_stations.py -p -a \

3C295_LBA_BAND0.MS/instrument/ lba_sb000_gains

> display lba_sb000_gains_amp.png

> display lba_sb000_gains_phase.png

Figure 57: Top: The solutions for CS003LBA. Bottom: The solutions for RS406LBA.

Once again, we can inspect the corrected data with casaplotms. Figure 59 shows the corrected Amp.
vs. Time plots for both sub-bands. From this we see again that there are some scans with bad

171



Figure 58: Top: Phase solutions for all stations for SB000 (polarizations in different colours). Bottom:
Amplitude solutions for all stations for SB000.

172



solutions and there is a lot of scatter overall to high amplitudes. Now we will do some basic flagging
with NDPPP using the aoflagger on the CORRECTED DATA. Figure 60 shows the Amp. vs UV
distance plots for both sub-bands after flagging.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_flag.parset .

> cat NDPPP_HBA_preprocess.parset

msin = 3C295_LBA_BAND0.MS

msin.datacolumn=CORRECTED_DATA

msout =

steps=[aoflagger]

aoflagger.autocorr=F

aoflagger.timewindow=0

aoflagger.type=aoflagger

> NDPPP NDPPP_LBA_flag.parset > log.ndppp.flag 2>&1 &

15.3.6 Imaging

Here we will also use the AWimager90 to do the deconvolution.

We will use a parameter file for awimager. At 60 MHz the LOFAR (NL Remote) field of view is 4.5
deg and the resolution should be around 8′′ First, to make a dirty image:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/awimger.b0.parms .

> cat awimger.b0.parms

ms=3C295_LBA_BAND0.MS

image=3C295_LBA_BAND0.dirty.image

data=CORRECTED_DATA

padding=1.2

cellsize=6arcsec

npix=2048

stokes=I

weight=briggs

robust=0.

operation=mfclark

niter=0

> awimager awimger.b0.parms

And then a cleaned image:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/awimger.b0.clean.parms .

> cat awimger.b0.clean.parms

ms=3C295_LBA_BAND0.MS

90see Chapter 9

173



Figure 59: Top: Plotting the visibility amplitude against time for SB000. Bottom: SB001.

174



Figure 60: Top: Plotting the visibility amplitude against UV distance for SB000 after flagging. Bot-
tom: SB001.

175



image=3C295_LBA_BAND0.dirty.image

data=CORRECTED_DATA

padding=1.2

cellsize=6arcsec

npix=2048

stokes=I

weight=briggs

robust=0.

operation=mfclark

niter=0

niter=500

threshold=0.5Jy

> awimager awimger.b0.clean.parms

Figure 61 shows the dirty image and Fig. 62 shows the cleaned corrected image.

Figure 61: The dirty LBA image for 3C 295 (SB000).

Figure 62: The cleaned LBA image for 3C 295. The scale is set to [-1,10].

176



16 Useful resources91

16.1 Webpages

The LOFAR wiki is a key resource, and you need an account to access the software areas. You can reg-
ister for an account here: http://www.lofar.org/operations/doku.php?id=start&do=register

Essential pages on the wiki are:

Main imaging wiki page: http://www.lofar.org/wiki/doku.php?id=software:standard_imaging_
pipeline

DPPP: http://www.lofar.org/wiki/doku.php?id=engineering:software:tools:ndppp

BBS: http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs

BBS parset parameters: http://www.lofar.org/operations/doku.php?id=engineering:software:
tools:bbsconfigurationsyntax

16.2 Useful analysis scripts

A compilation of some practical python scripts is available at the LOFAR-Contributions GitHub
repository:

https://github.com/lofar-astron/LOFAR-Contributions

The scripts provided are92:

• autoflagger.py: flags autocorrelations in a Measurement Set

• average.py: averages images from multiple sub bands together

• average weights.py: averages images weighting them by the inverse of their variance.

• baseline.py: plots amplitude/phase vs time/uvdistance/elevation

• CallSolFlag.py: flags calibrated data

• closure.py: prints closure phase vs time/elevation for selected antennas

• coordinates mode.py: routines to work with astronomical coordinates

• plot.py: inspect gain solutions

• solfetch.py: modules required for solflag.py

• solflag.py: carries out solution-based flagging

• solplot.py: modules required for solflag.py

91This Chapter is maintained by R. F. Pizzo, pizzo[at]astron[dot]nl
92If you have other scripts that could be useful for other commissioners, please contact Roberto A. Shulevski at

shulevski[at]astron[dot]nl

177

http://www.lofar.org/operations/doku.php?id=start&do=register
http://www.lofar.org/wiki/doku.php?id=software:standard_imaging_pipeline
http://www.lofar.org/wiki/doku.php?id=software:standard_imaging_pipeline
http://www.lofar.org/wiki/doku.php?id=engineering:software:tools:ndppp
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbsconfigurationsyntax
http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbsconfigurationsyntax
https://github.com/lofar-astron/LOFAR-Contributions


• uvcoverage.py: plots the uv coverage for a Measurement

• plot flags.py: plots “images” of frequency versus time on a baseline-by-baseline basis, with the
pixel values equal to the visibility amplitudes

• img2fits.py: converts CASA images to fits images

• compare gaincal.py: plots CASA and BBS gain solutions against each other for comparison.
It can also plot CASA vs CASA and BBS vs BBS. Only supports gain solutions, and only if a
solution was computed for each integration time

• traces.py: plots L,M tracks for the zenith, azimuth and elevation of the NCP, CasA, CygA, and
the target against time for a given MS or time range. Observer location is fixed to Dwingeloo.
It is easy to add other sources of interest, or to modify the observer location, but it does require
editing the Python code. The script is useful to check the elevation of possible interfering
sources like CasA and CygA

• casapy2bbs: written by Joris van Zwieten. Converts a clean component image produced by
casa into a skymodel file readable by BBS. See also modelclip.py.

• embiggen.csh: increases the size of plotted points in postscript files. Useful when producing ps
output from e.g. uvplot.py.

• lin2circ.py: given a Measurement Set with a DATA column given in XX,XY,YX,YY corre-
lations, converts to circular correlations RR,RL,LR,LL and writes them to a column in the
Measurement Set.

• modelclip.py: sorts a skymodel file with respect to Stokes I flux, and truncates the list of sources
such that N% of the total flux is kept in the model (where N is specified on the command line).
Useful for clean component skymodels produced by e.g. casapy2bbs.

• msHistory.py: prints information from the HISTORY table of a Measurement Set. Useful for
obtaining a quick listing of the parset values used in e.g. DPPP.

• plotElevation.py: given a Measurement Set, plots the elevation of the target source as a function
of time

• split ms by time.py: extracts part of a Measurement Set (selected by timerange) and writes out
to a new Measurement Set. Optionally excludes selected antennas.

• uvcov.py: plots uv coverage for one or more Measurement Sets. If all Measurement Sets are
for the same source at the same time (in other words are different subbands of the same ob-
servation), then use the ’-s’ option to save a lot of time. Do NOT use that option if the input
Measurement Sets are not coincident in time.

• uvplot.py: plots data from a Measurement Set in several combinations, in a per-baseline fashion.
Not as flexible as casaplotms, but should be faster.

• uvrms.py: performs RM Synthesis on the data in a Measurement Set.

• fixlofaruvw.py: corrects the faulty UVW column header. Use this on all data sets recorded
before 20/03/2011 to get the astrometry correct. This script changes the MEASINFO.Ref label
in the UVW column to J2000.

• plot Ateam elevation.py: it makes plots of the elevation and angular distance of the Ateam and
other sources (Sun, Jupiter) given a Measurement Set.

178



• do demixing.py: applies the demixing routine from Bas vdTol to the data to get rid of the
A-team sources. The instructions are at the top of the file.

• CutBeamFromSkyModel.py: given a skymodel, it produces two sub-skymodels, the first con-
taining all the components within a particular radius from a given coordinate, the second all the
rest.

• modskymodel.py: it can shift skymodels by a given angular amount. It can manipulate sky-
models also in other ways, like masking them and updating their spectral index values.

• listr v2.py: it is a clone of the old AIPS matrix listing of data files. For the data or corrected-
data column, it lists amplitudes (or phases) averaged by baseline over a specified time interval.
It does also cross-hands and identifies the antennas.

• fromsky.py: it converts a BBS skymodel file into the MODEL DATA column of a visibility
dataset.

• flagnancorrected.py: it searches CORRECTED DATA column for NaN and flags them.

• flagnandata.py: it searches DATA column for NaN and flags them.

• Solution Plotter.py: it plots amplitude, phase solutions per antenna and the differential TEC on
a baseline.

• skymodel to ds9reg.py: it plots the output of gsm.py with ds9.

16.3 Contact points

Some key contact points are listed below:

• LOFAR Imaging Cookbook - Aleksandar Shulevski (shulevski[at]astron[dot]nl)

• DPPP - Ger van Diepen (diepen[at]astron[dot]nl), Tammo Jan Dijkema
(dijkema[at]astron[dot]nl, and David Rafferty
(rafferty[at]strw[dot]leidenuniv[dot]nl)

• AOFlagger - André Offringa (offringa[at]astron[dot]nl)

• BBS - Tammo Jan Dijkema (dijkema[at]astron[dot]nl), Vishambhar Nath Pandey
(pandey[at]astron[dot]nl)

• AWImager - Tammo Jan Dijkema
(dijkema[at]astron[dot]nl), and Bas van der Tol (tol[at]astron[dot]lnl)

• Selfcal - Nicolas Vilchez - (vilchez[at]astron[dot]nl) and George Heald (heald[at]astron[dot]nl)

• Pyrap/CASA - Ger van Diepen (diepen[at]astron[dot]nl)

• SAGECAL, Shapelets - Sarod Yatawatta (yatawatta[at]astron[dot]nl)

• PyBDSM, LSMTool - David Rafferty (rafferty[at]strw[dot]leidenuniv[dot]nl)

• RM Synthesis - Marco Iacobelli (iacobelli[at]astron[dot]nl)

179



16.4 Commissioning reports

The development of software for LOFAR data reduction is favor by the commissioning ac-
tivities, which push forward the improvement of the instrument. All the reports of the tests
performed by the commissioners on the different aspects of the LOFAR reduction softwares are
available on the LOFAR Wiki93.

93http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays

180

http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays
http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays


17 Acknowledgments

To this cookbook many commissioners and software developers have contributed. As the routines,
the hardware, and the software needed for LOFAR develop very quickly, what is reported in this
manual might be sometimes incorrect. We try to keep it as up to date as possible, but we surely need
your feedback to improve its quality. Please send comments and suggestions of improvements to
Aleksandar Shulevski (shulevski[at]astron[dot]nl) using the LOFAR issue tracker94.

The contact points for the various versions of the LOFAR Imaging Cookbook are listed below.

• Version 1.0: Timothy Garn

• Version 1.1: Louise Ker

• Version 1.2: Annalisa Bonafede

• Version 2.0: Emanuela Orru’ & Fabien Batejat

• Version 2.1: Roberto Francesco Pizzo

• Version 2.2: Roberto Francesco Pizzo

• Version 2.3: Roberto Francesco Pizzo

• Version 3.0: Roberto Francesco Pizzo

• Version 4.0: Roberto Francesco Pizzo

• Version 5.0: Roberto Francesco Pizzo

• Version 5.1: Roberto Francesco Pizzo

• Version 6.0: Roberto Francesco Pizzo, Laura Birzan, Ger van Diepen, Sven Duscha, John
McKean, André Offringa, David Rafferty, Cyril Tasse, Bas van der Tol, Reinout van Weeren,
and Joris van Zwieten

• Version 7.0: Roberto Francesco Pizzo, Laura Birzan, Ger van Diepen, Sven Duscha, John
McKean, André Offringa, David Rafferty, Cyril Tasse, Bas van der Tol, Reinout van Weeren,
Sarod Yatawatta, and Joris van Zwieten

• Version 8.0: Roberto Francesco Pizzo, Laura Birzan, Ger van Diepen, Sven Duscha, John
McKean, André Offringa, David Rafferty, Aleksandar Shulevski, Cyril Tasse, Bas van der Tol,
Reinout van Weeren, Sarod Yatawatta , and Joris van Zwieten

• Version 9.0: Roberto Francesco Pizzo, Laura Birzan, Ger van Diepen, Sven Duscha, Geaorge
Heald, John McKean, André Offringa, David Rafferty, Cyril Tasse, Bas van der Tol, Reinout
van Weeren, Sarod Yatawatta , and Joris van Zwieten

• Version 10.0 - 12.0: Roberto Francesco Pizzo, Laura Birzan, Ger van Diepen, Sven Duscha,
George Heald, John McKean, André Offringa, Emanuela Orrú, David Rafferty, Cyril Tasse,
Bas van der Tol, Reinout van Weeren, Sarod Yatawatta , and Joris van Zwieten

94https://proxy.lofar.eu/redmine

181

https://proxy.lofar.eu/redmine
https://proxy.lofar.eu/redmine


• Version 13.0: Roberto Francesco Pizzo, Ger van Diepen, Tammo Jan Dijkema, John McKean,
André Offringa, Emanuela Orrú, David Rafferty, Cyril Tasse, Bas van der Tol, Valentina Vacca,
Reinout van Weeren, Wendy Williams, Sarod Yatawatta , and Joris van Zwieten

• Version 14.0: Roberto Francesco Pizzo, Ger van Diepen, Tammo Jan Dijkema, G. Heald,
Francesco de Gasperin, John McKean, Maaijke Mevius, André Offringa, Emanuela Orrú, David
Rafferty, Cyril Tasse, Bas van der Tol, Valentina Vacca, Nicolas Vilchez, Reinout van Weeren,
Wendy Williams and Sarod Yatawatta,

• Version 15.0: Roberto F. Pizzo, Ger van Diepen, Tammo Jan Dijkema, G. Heald, Francesco de
Gasperin, M. Iacobelli, John McKean, Maaijke Mevius, André Offringa, Emanuela Orrú, David
Rafferty, Cyril Tasse, Bas van der Tol, Valentina Vacca, Nicolas Vilchez, Reinout van Weeren,
Wendy Williams and Sarod Yatawatta

• Version 16.0: Roberto F. Pizzo, Ger van Diepen, Tammo Jan Dijkema, G. Heald, Francesco de
Gasperin, M. Iacobelli, John McKean, Maaijke Mevius, André Offringa, Emanuela Orrú, David
Rafferty, Cyril Tasse, Bas van der Tol, Valentina Vacca, Nicolas Vilchez, Reinout van Weeren,
Wendy Williams and Sarod Yatawatta

• Version 17.0: Roberto F. Pizzo, Ger van Diepen, Tammo Jan Dijkema, G. Heald, Francesco de
Gasperin, M. Iacobelli, John McKean, Maaijke Mevius, André Offringa, Emanuela Orrú, David
Rafferty, Cyril Tasse, Bas van der Tol, Valentina Vacca, Nicolas Vilchez, Reinout van Weeren,
Wendy Williams and Sarod Yatawatta

• Version 18.0: Roberto F. Pizzo, Ger van Diepen, Tammo Jan Dijkema, G. Heald, Francesco
de Gasperin, M. Iacobelli, John McKean, Maaijke Mevius, André Offringa, Emanuela Orrú,
David Rafferty, Cyril Tasse, Bas van der Tol, T. J. Dijkema, Valentina Vacca, Nicolas Vilchez,
Reinout van Weeren, Wendy Williams and Sarod Yatawatta

182



A GNU screen

For some long running processes, as the flagging (DPPP, see Sect. 5), the calibration (BBS, see
Sect. 7) or creating a large image, it can be handy to have a session running on one of the cluster
nodes, and then leave that running the background overnight. This can be done by putting the task in
the background and use a command like disown. Sometimes, however, it is more convenient to have
a program running the in the foreground. In such a case, it is difficult to log out without killing the
process. GNU screen to the rescue.

GNU screen (short: screen) is a utility that creates a virtual terminal that stands on its own, and can
be put in the background or foreground at will. Multiple terminals (“tabs”) are also possible. A
disadvantage of GCN screen is that it will not use with X-windows (forwarding) and scrolling back
for previous output does not always work. For a long-during command line task, however, it is very
useful.

Have a first look at screen using the help option:

screen -help

Use: screen [-opts] [cmd [args]]

or: screen -r [host.tty]

Options:

-a Force all capabilities into each window’s termcap.

-A -[r|R] Adapt all windows to the new display width & height.

-c file Read configuration file instead of ’.screenrc’.

-d (-r) Detach the elsewhere running screen (and reattach here).

-dmS name Start as daemon: Screen session in detached mode.

-D (-r) Detach and logout remote (and reattach here).

-D -RR Do whatever is needed to get a screen session.

-e xy Change command characters.

-f Flow control on, -fn = off, -fa = auto.

-h lines Set the size of the scrollback history buffer.

-i Interrupt output sooner when flow control is on.

-l Login mode on (update /var/run/utmp), -ln = off.

-list or -ls. Do nothing, just list our SockDir.

-L Turn on output logging.

-m ignore $STY variable, do create a new screen session.

-O Choose optimal output rather than exact vt100 emulation.

-p window Preselect the named window if it exists.

-q Quiet startup. Exits with non-zero return code if unsuccessful.

-r Reattach to a detached screen process.

-R Reattach if possible, otherwise start a new session.

-s shell Shell to execute rather than $SHELL.

-S sockname Name this session <pid>.sockname instead of <pid>.<tty>.<host>.

-t title Set title. (window’s name).

-T term Use term as $TERM for windows, rather than "screen".

-U Tell screen to use UTF-8 encoding.

-v Print "Screen version 4.00.03 (FAU) 23-Oct-06".

-wipe Do nothing, just clean up SockDir.

-x Attach to a not detached screen. (Multi display mode).

-X Execute <cmd> as a screen command in the specified session.

183



The detach and attach commands are the ’background’ and ’foreground’ commands. Now start screen
for real (from a frontend or compute node):

> screen

You will get a new terminal, but otherwise everything looks the same. You can exit this ’new’ terminal
using exit or control-D (depending on your shell). It is more fun, however, to detach the screen
session, while running a command in the foreground. So simply execute sleep for half a minute:

> sleep 30

and detach screen, by typing control-a control-d. All screen commands start with a special
control key, which by default is control-a. You should now have been returned to your previous
terminal. Now list the available screen instances:

> screen -list

There is a screen on:

8090.pts-64.lfe001 (Detached)

1 Socket in /var/run/screen/S-rol.

This shows you which screen(s) are running. You can have multiple screens, although that may be
confusing. Now re-attach to this screen:

screen -r

You will get back to the screen terminal, which may still be running sleep (or it might just have
ended).

Now create a new ’tab’ inside screen. Use control-a control-c (c for ’create’). You end up in the
new tab. If you want to switch to the previous tab, use control-a 0; the numbers 0 to 9 specify a
tab. You can also use control-a " to get a list of tabs, and use the arrows keys & enter to select the
tab (in case you have more than ten tabs). Lastly, to toggle back and forth between two tabs, you can
simply type control-a control-a.

In case you accidentally loose your internet connection, your session to your the LOFAR cluster will
quit. ’Screen’, however, will still be running. If you login again to the machine where you started
screen, you can see it:

> screen -list

There is a screen on:

8090.pts-64.lfe001 (Attached)

1 Socket in /var/run/screen/S-rol.

Note that it says Attached; you can’t simply attached to it using screen -r, you first have the detach
the (now defunct) old screen session, and then reattach to it:

screen -d -r

Inside screen, there are a lot more commands that you can use. Type control-a ? to get a help
view (space or enter to exit). The above sample session should keep you going for most tasks anyway.
Note that you can easily ssh to machines from within screen (just like normal), although forwarding

184



X (’-Y’ option) won’t work. So starting screen from the frontend node and then logging in to one or
more compute nodes to run DPPP, BBS and/or mwimager can work nicely.

For people who don’t like the the control-a shortcut, you can redefine this key in a file called .screenrc
(in your home directory. Enter the following line:

escape ^Jj

If you have problems with the delete key, try this in .screenrc:

bindkey -k kD

bindkey -d -k kD

There are many other options; see for example http://www.emacswiki.org/emacs/GnuScreen. In par-
ticular, if you want to dump out what is in screen’s buffer (not only what you see on the screen, but
also whatever is in its scrollback buffer), you can:

• press Control-a

• type ”:hardcopy -h output.txt” (output.txt can be whatever you want)

Then you can open output.txt with a text editor to have a look at what screen had in its mem-
ory. To make screen remember more lines, you can edit /.screenrc so that the line containing
”defscrollback” says something like

defscrollback 10000

185

http://www.emacswiki.org/emacs/GnuScreen


B LOFAR simulation software and new Demixing approach95

The A-team or other bright sources can strongly affect the observation of nearby targets. To under-
stand which is the best strategy to adopt in order to deal with these strong sources, it is useful to make
the user aware in advance about their effect on the observed target when the observations will be per-
formed. In this context a LOFAR simulation software96 has been developed. The software package
is composed of two Python scripts, one to simulate a mock data set (simulate.py) and the other to
compare simulations and observations (compare.py). They can be found at

/opt/cep/tools/simulation/

All the dependencies of the software are installed in the LOFAR cluster CEP3. To source the scripts
type

> use Lofar

and

> use Cookbook

By using these scripts, the user can simulate two mock Measurement Sets containing respectively the
target and A-team sources, and compare them in order to understand which percentage of the data
will be affected by the bright sources.

B.1 Simulating a Measurement Set

The simulation of the data is performed through the script simulate.py. The script includes three
main blocks generating commands and parsets that the user can run in order to:

1. create an empty mock Measurement Set with the same starting time, ending time, and pointing
as the observations, by using makems;

2. update the calibration tables in the Measurement Set with the information to compute the beam
of the instrument, by using makebeamtables;

3. simulate the effect of a model of sources on the data, by using BBS.

If necessary, commands and parsets can be modified by the user before to be run.

When launching the script the user can use the following options:

--ra=RA right ascension of the field
--dec=DEC declination of the field
--time=TIME start date and time of the observation

in the format YYYY/MM/DD/hh:mm:ss.s
--n-time=N TIME duration of the observation in integer multiples of 10 s

(the default value is 1800 corresponding to 5 h)
--name=NAME name of the simulated field and prefix of the output files

95The author of this appendix is Valentina Vacca (vvacca[at]mpa-garching[dot]mpg[dot]de).
96This software has been developed by Jose Sabater (jsm[at]roe[dot]ac[dot]uk).

186



--source=SOURCE1,SOURCE2,... name of the source(s) to simulate
--sky-model=SKY MODEL skymodel of the source(s) to simulate
--path=PATH path to store the parsets and Measurement Sets of the

simulation
--overwrite overwrite existing parsets and Measurement Sets
--lba simulate a LBA observation (the default is HBA)
--antenna-conf=ANTENNA CONF antenna configuration (the default antenna

configurations are HBA DUAL INNER for
HBA and LBA OUTER for LBA)

--h or --help shows the usage of the script

The format for time, right ascension, and declination is the same as used in the parset. In particular,
we note that declination uses dots instead than colons. At the moment it is possible to insert in the
simulation only the sources 3C53 and 3C237, and the A-team sources CygA, CasA, CasA4, TauA,
VirA, VirA4, HydraA97. The default location of the files produced when launching the script is

/data/scratch/<user_name>/simulation/

The present version of the software creates the working directory simulation/ and the parsets,
while the commands are only displayed on the screen and have to be executed by the user. In the
future release the commands will be directly executed by the script and other antenna configurations
will be allowed.

B.1.1 Example

As an example, we run simulate.py to produce a mock observation in the direction of 3C 299
(RA = 14h21m05.88s and DEC = 41◦44′49.490′′), with a total observational time ∼ 2 h starting at
04:16:02.5 in date 14 April 2013 and we will investigate the effect of Cygnus A on the target source:

python /opt/cep/tools/simulation/simulate.py --ra 14:21:05.88 \

--dec 41.44.49.490 --time 2013/04/14/04:16:02.5 --n-time 720 \

--name 3C299 --source CygAGG --sky-model \

/globaldata/COOKBOOK/Models/Ateam_LBA_CC.skymodel --overwrite

The script creates the folder simulation/ in the default directory /data/scratch/<user name>/

containing the parsets

makems_3C299_HBA.parset

predict_CygAGG.parset

and gives as an output on the screen the following commands that the user has to run to produce the
mock Measurement Set

cd /data/scratch/<user_name>/simulation/;

makems /data/scratch/<user_name>/simulation/makems_3C299_HBA.parset;

makebeamtables antennaset=HBA_DUAL_INNER ms=20130414_3C299_HBA.MS \

97Models for these sources are available e.g. in /globaldata/COOKBOOK/Models/Ateam LBA CC.skymodel. Note:
when CasA and VirA are used the simulation is very slow.

187



overwrite=True

cp -r /data/scratch/<user_name>/simulation/20130414_3C299_HBA.MS \

/data/scratch/<user_name>/simulation/20130414_3C299_HBA_CygAGG.MS

cd /data/scratch/<user_name>/simulation/;

(date; calibrate-stand-alone -f \

/data/scratch/<user_name>/simulation/20130414_3C299_HBA_CygAGG.MS \

predict_CygAGG.parset \

/globaldata/COOKBOOK/Models/Ateam_LBA_CC.skymodel; \

date) | tee log_3C299_CygAGG.txt

which is one long command split over multiple lines (splitting indicated by \).
This output contains all the instructions the user has to follow to produce the mock Measurement Set:

1. move to the working directory simulation/

2. run makems with the parset makems 3C299 HBA.parset to create the mock Measurement Set
20131304 3C299 HBA.MS

3. run makebeamtables on the mock Measurement Set to compute the station beam model

4. change the name of the Measurement Set from 20131304 3C299 HBA.MS to
20131304 3C299 HBA CygAGG.MS

5. move again to the working directory simulation/ if you are not there anymore

6. run BBS on the Measurement Set by using the parset predict CygAGG.parset to predict the
effect of the A-team source(s) on the target. At the moment no default sky model is present,
therefore the user has to specify one. The output on the screen of BBS plus the date before and
after BBS was running are redirected to the file log 3C299 CygAGG.txt. With these parame-
ters BBS takes ∼5 m to run.

B.2 Comparing observations and simulations

Once the simulation has been produced, the user can investigate the effect of the bright sources on the
target field with the script compare.py. The code calculates the percentage of data points affected by
the A-team for the XX and YY polarization products, according to two possible criteria:

1. the user fixes a flux threshold and all the data points with flux larger than this threshold are
considered affected. In this case the user needs only a mock Measurement Set containing the
A-team sources or other bright sources that can affect the data;

2. the user fixes a level and compares the flux of the bright source(s) (SA) with the flux of a
central source in the target field (ST). If SA/ST ≥ level, the corresponding visibility will be
considered affected by the bright source(s). In this case the user needs a mock Measurement
Set containing the target source (alternatively, if the observations have been already performed,
the observed data can be used) and a mock Measurement Set containing the A-team sources.

When launching the script on the mock Measurement Set containing A-team/bright sources that can
affect the observation of a target source of interest, the user can choose among the following options:

--s or --source=SOURCE.MS simulated Measurement Set of the central source

188



(alternatively the real observation can be used)
--t or --threshold=T1, T2, ... threshold(s) (the default value is 5 Jy).

A different threshold for each bright source can
be specified

--l or --level=L1, L2, ... ratio(s) between the flux of an A-team/bright
source SA and of the target source ST. A different
level for each A-team/bright source can be
specified

-f or --stat-function=STAT FUNCTION statistical function used for the threshold/level.
Possible options are: max, min, median, std, mean
(the default function is median)

--all-correlations=CORRELATIONS correlations considered (not working yet)
-p or --plot produce plots
--h or --help shows the usage of the program

As an output a percentage of the amount of data above the threshold or above the level selected by the
user (and therefore affected by A-team/bright sources) at different times is given for all channels and
for XX and YY correlation products. This percentage is calculated according the statistical function
selected among the options.

Due to a bug in the Python module argparse, if the options --t or --l are used, they can not be
followed by the name of the Measurement Set containing the A-team sources. In this case the name
of the Measurement Set has to be placed before these options, just after compare.py. Nevertheless,
they can be followed by any other option.

At the moment the code does not allows the simultaneous comparison of multiple bright sources. This
option will be available in a future release.

B.2.1 Example

As an example, we run compare.py on the simulation produced with simulation.py at the step
before by using the option --t:

python /opt/cep/tools/simulation/compare.py \

/data/scratch/vacca/LSS/simulation/20130414_3C299_HBA_CygAGG.MS \

--t 4 -f "median"

A combination of the options --t and --l is also possible.

The script gives as an output on the screen:

Successful readonly open of default-locked table \

/data/scratch/<user_name>/simulation/20130414_3C299_HBA_CygAGG.MS: \

25 columns, 1274400 rows

===================================

Flux density threshold: 4.000000

Freq: 0 XX: 2.98% YY: 2.86%

Freq: 1 XX: 2.81% YY: 2.81%

Freq: 2 XX: 0.00% YY: 0.00%

Freq: 3 XX: 0.00% YY: 0.00%

Freq: 4 XX: 0.12% YY: 0.06%

189



Freq: 5 XX: 0.00% YY: 0.00%

Freq: 6 XX: 0.12% YY: 0.12%

Freq: 7 XX: 0.00% YY: 0.00%

Freq: 8 XX: 0.06% YY: 0.06%

Freq: 9 XX: 0.12% YY: 0.06%

Freq: 10 XX: 0.88% YY: 0.64%

Freq: 11 XX: 0.94% YY: 0.82%

Freq: 12 XX: 1.46% YY: 1.34%

Freq: 13 XX: 1.29% YY: 1.29%

The script takes a few seconds to run. During the observation, 10% of the data will be affected by
Cygnus A above a threshold of 4 Jy.

B.3 New demixing algorithm

When the A-team or other bright sources are present for the most of the observational time, the
best strategy to eliminate them from the visibilities is to apply the standard demixing procedure that
consists on the subtraction of the A-team sources from the entire observation (see Sect. 5.1.10). On
the contrary, when long HBA observations are performed, A-team sources can be visible just for a
fraction of the observation (see for example Fig. 63) and therefore they can just partially affect the
data set. In this case their subtraction from the all observation can be dangerous and it is better to
adopt the alternative strategy98 described in the following.

B.3.1 Predict

When observations are already available the user does not need to simulate a mock observation but
only to simulate the effect of A-team sources on the target. In this case, the first step consists in sim-
ulating the A-team sources (VirA, CygA, CasA, TauA) during the observations of interest. Through
the stand-alone version of BBS (described in Chapter 7), the data set can be filled with a sky model
containing the A-team sources (VirA, CygA, CasA, TaurA):

calibrate-stand-alone -f dataset.MS predict.parset skymodel.skymodel

where

1. data set.MS is the observed data set;

2. predict.parset is a parset aiming at simulating data according to a given sky model;

3. skymodel.skymodel is the file containing the model of the A-team sources.

An example of the parset to be used is

Strategy.InputColumn = DATA

Strategy.ChunkSize = 300

Strategy.UseSolver = F

Strategy.Steps = [predict4]

98This procedure has been developed by Reinout van Weeren (rvanweeren[at]cfa[dot]harvard[dot]edu).

190



Step.predict4.Model.Sources = [VirA_4_patch,CygAGG,CasA_4_patch,TauAGG]

Step.predict4.Model.Cache.Enable = T

Step.predict4.Model.Gain.Enable = F

Step.predict4.Operation = PREDICT

Step.predict4.Output.Column = MODEL_DATA

Step.predict4.Model.Beam.Enable = True

and an example of a skymodel for LBA observations can be found at

/globaldata/COOKBOOK/Models/Ateam_LBA_CC.skymodel

The simulation should require about 1 h (for a 10 h long observation, 4 frequency channels and a time
step of 5 s). As a result the data set will contain in the MODEL DATA column the information about
A-team sources visible during the observations.

B.3.2 A-team clipper

The second step consists in using a Python algorithm that takes in input the observed data set and
flags99 the A-team signal baseline by baseline above a threshold chosen according to the observing
frequency. Different thresholds are possible for LBA and HBA data: default values are considered in
the script but the clip levels can be adjusted by the user. The default threshold for LBA observations
is 50 Jy. This value is required to remove the A-team contribution but at these low frequencies this
implies the flag of most of the data. Therefore, at the moment for LBA observations at this frequency
it is strongly recommended to use the standard demixing procedures. For HBA observations the
algorithm is highly efficient for A-team sources far away (≥20–30◦ ) from the target. The default
threshold is 5 Jy but values in the range 2–10 Jy can be suitable for different data sets, being 10 Jy the
safest value in order not to flag the target source. The user can choose the proper value by comparing
the amplitude of the observed target and the contribution from A-team sources. The script can be
found at the LOFAR-Contributions GitHub repository:

https://github.com/lofar-astron/LOFAR-Contributions

Once the user copies it in his home directory it can be launched as follows

python Ateamclipper.py dataset.MS

The scripts takes few tens of seconds to run and an example of output is

Successful read/write open of default-locked table \

L123834_SB417_uv.dppp.MS.newtest: 27 columns, 12303270 rows \

Successful readonly open of default-locked table \

L123834_SB417_uv.dppp.MS.newtest/SPECTRAL_WINDOW: 14 columns, 1 rows

------------------------------

SB Frequency [MHz] 134.765625

% input XX flagged 4.12201796758

% input YY flagged 4.12201796758

Cliplevel used [Jy] 4.0

99An algorithm based on a subtraction procedure is currently under development.

191



Doing polarization,chan 0 0

Doing polarization,chan 0 1

Doing polarization,chan 0 2

Doing polarization,chan 0 3

Doing polarization,chan 1 0

Doing polarization,chan 1 1

Doing polarization,chan 1 2

Doing polarization,chan 1 3

Doing polarization,chan 2 0

Doing polarization,chan 2 1

Doing polarization,chan 2 2

Doing polarization,chan 2 3

Doing polarization,chan 3 0

Doing polarization,chan 3 1

Doing polarization,chan 3 2

Doing polarization,chan 3 3

% output XX flagged 6.54876711638

% output YY flagged 6.54876711638

The output gives information about the frequency of the data set and about the consequent clip level
applied. The percentage of flags applied to the observation before (input XX and YY flagged) and
after (output XX and YY flagged) the clipper is given as well. If the percentage of flags due to the
algorithm is large (≥ 20%) it is strongly suggested to apply the standard demixing procedure.

In Fig. 64 an example of the result from this algorithm is shown. In the top left panel, the ampli-
tude versus time of the A-team sources VirA, CygA, CasA, and TauA, simulated as described in
Sect. B.3.1, during an HBA observation of 3C 299 (PI: Dr. Chiara Ferrari) is shown for a single base-
line. Amplitudes larger than 4 Jy are present at the end of the observations. In the top right panel the
amplitude versus time from the same baseline is shown for the raw observed data set. In the real ob-
servation, a pattern can be identified when the simulated A-team sources are above 4 Jy. In the bottom
left panel the amplitude versus time is shown after the standard demixing subtraction of VirA, CygA,
CasA, and TauA, while in the bottom right panel after their flag with the new demixing algorithm
with a cut threshold of 4 Jy.

192



Figure 63: Example of amplitude of A-team sources versus time for a single baseline of an HBA
observation. The A-team sources affect the observation just for a fraction of the total observing time.

193



Figure 64: Top left: Simulation of the A-team sources VirA, CygA, CasA, and TauA during an HBA
observation of 3C 299 (PI: Dr. Chiara Ferrari). Top right: Amplitude versus time from the raw data
set. Bottom left: Amplitude versus time after the standard demixing subtraction of VirA, CygA,
CasA, and TauA. Bottom right: Amplitude versus time after the flag of VirA, CygA, CasA, and TauA
with the new demixing algorithm with a cut threshold of 4 Jy. The sources affecting the data is likely
Cygnus A.

194


	Title Page
	Changes
	Overview of changes

	Table of Contents
	1 Getting Started
	1.1 The LOFAR cluster layout
	1.1.1 CEP2
	1.1.2 CEP3

	1.2 Logging on to CEP3
	1.3 Setting up your working environment
	1.3.1 Login scripts
	1.3.2 Generation of SSH keys
	1.3.3 Disable SSH Host Key Checking
	1.3.4 Data copy from and to CEP3 cluster


	2 Data Inspection
	2.1 Viewing Measurement Set details
	2.2 Pyrap / PyDAL scripts
	2.3 Quick baseline-based visibility inspection
	2.4 CASA
	2.4.1 Casaviewer
	2.4.2 CASA table viewer
	2.4.3 Plotting with CASA
	2.4.4 CASA tips
	2.4.5 CASA bugs

	2.5 The Drawer
	2.5.1 Examples

	2.6 Plot_Ateam_elevation.py
	2.7 Useful tools to handle Measurement Sets
	2.7.1 Concatenating subbands
	2.7.2 Splitting the dataset
	2.7.3 Converting MS times to a friendly format


	3 Imaging pipeline
	3.1 Running long-duration processes

	4 The AOFlagger - RFI Console
	4.1 How to run the AOFlagger
	4.2 Advanced settings with RFI Console
	4.2.1 Visualizing RFI and flags
	4.2.2 Changing flagging parameters
	4.2.3 RFI Console's parameters
	4.2.4 Using the direct reading mode
	4.2.5 Flagging of bad baselines

	4.3 Documentation

	5 The Default Pre-Processing Pipeline (DPPP)
	5.1 Various ways to use DPPP
	5.1.1 Basic usage
	5.1.2 Copy a MeasurementSet and calculate weights
	5.1.3 Count flags
	5.1.4 Preprocess a raw LOFAR MS
	5.1.5 Update flags using the preflagger
	5.1.6 Remove baselines and/or channels
	5.1.7 Combining stations into a superstation
	5.1.8 Update flags for NaNs
	5.1.9 Creating another data column
	5.1.10 Demixing
	5.1.11 Combine MeasurementSets
	5.1.12 Advanced multi-step example

	5.2 The ParSet File
	5.2.1 Input / output parameters
	5.2.2 Flagging
	5.2.3 Averaging
	5.2.4 Combining PreFlagger keywords into sets

	5.3 MSSelection, antenna/baseline syntax
	5.3.1 Antenna names/numbers
	5.3.2 Physical baseline length
	5.3.3 Some examples

	5.4 Arbitrary User DPPP Step
	5.4.1 User Step in Python

	5.5 Flag statistics
	5.6 Analyzing the data quality with aoqplot
	5.6.1 Usage
	5.6.2 Analyzing the statistics
	5.6.3 Background information

	5.7 Additional information: manual flagging in CASA

	6 Gain calibration with DPPP
	6.1 Calibration variants
	6.2 Make a skymodel
	6.3 Calibration
	6.4 Applying solutions
	6.5 Transferring solutions and the beam
	6.6 Applying the beam

	7 Calibration with BBS
	7.1 Overview
	7.2 Usage
	7.3 Source catalog
	7.3.1 Gaussian sources
	7.3.2 Spectral index
	7.3.3 Rotation measure

	7.4 GSM
	7.5 Model parameters
	7.6 Model
	7.6.1 Beam model

	7.7 Solver
	7.8 Example reductions
	7.8.1 Simulation
	7.8.2 Gain calibration (direction independent)
	7.8.3 Gain calibration (direction independent, phase or amplitude only)
	7.8.4 Gain calibration (direction dependent) with source subtraction
	7.8.5 Differential TEC

	7.9 Tweaking BBS to run faster
	7.10 Global parameter estimation
	7.10.1 Setting up your environment
	7.10.2 Usage
	7.10.3 Defining a global solve

	7.11 Pre-computed visibilities
	7.12 Inspecting the solutions
	7.13 The global bandpass
	7.13.1 LBA
	7.13.2 HBA

	7.14 Gain transfer from a calibrator to the target source
	7.14.1 The ``traditional'' approach
	7.14.2 The LOFAR multi-beam approach

	7.15 Post-processing
	7.16 Troubleshooting
	7.16.1 Common problems


	8 LoSoTo: LOFAR Solution Tool
	8.1 H5parm
	8.1.1 HDF5 format
	8.1.2 Characteristics of the H5parm
	8.1.3 Example of H5parm content
	8.1.4 H5parm benchmarks

	8.2 LoSoTo
	8.2.1 Tools
	8.2.2 Operations
	8.2.3 LoSoTo parset

	8.3 Usage
	8.4 Developing in LoSoTo
	8.5 Clock/TEC separation

	9 SAGECAL
	9.1 Introduction
	9.2 Using SAGECAL
	9.2.1 Data preparation
	9.2.2 Model
	9.2.3 SAGECAL
	9.2.4 Robustness

	9.3 Simulations
	9.4 Distributed Calibration

	10 The AW Imager
	10.1 Introduction
	10.2 Background
	10.3 Usage
	10.4 Output files
	10.5 Parameters
	10.5.1 Data selection
	10.5.2 Image properties
	10.5.3 weighting
	10.5.4 Operation
	10.5.5 Deconvolution
	10.5.6 Gridding


	11 Source detection and sky model manipulation: PyBDSM and LSMTool
	11.1 Source detection: PyBDSM
	11.1.1 Introduction
	11.1.2 Recent Changes
	11.1.3 Setup
	11.1.4 Usage
	11.1.5 Examples
	11.1.6 Usage in Python scripts

	11.2 Sky model manipulation: LSMTool
	11.2.1 Introduction
	11.2.2 Setup

	11.3 Basic Usage
	11.4 Operations
	11.5 The Parset File
	11.6 Interactive use and scripting

	12 Automated Self-Calibration
	12.1 Overview
	12.2 Availability
	12.3 Selfcal: the stand-alone version
	12.3.1 Usage
	12.3.2 Required Data Format
	12.3.3 Selfcal implementation details
	12.3.4 Selfcal examples


	13 RMSynthesis
	13.1 Overview
	13.1.1 Tools


	14 Sky Model Construction Using Shapelets
	14.1 Introduction
	14.2 Software Overview
	14.2.1 modkey
	14.2.2 fitscopy
	14.2.3 ds9 and kvis
	14.2.4 Duchamp
	14.2.5 buildsky
	14.2.6 restore
	14.2.7 shapelet_gui
	14.2.8 convert_skymodel.py

	14.3 Step by Step Example
	14.3.1 Initial point source model
	14.3.2 Initial shapelet model
	14.3.3 Using both shapelets and point sources together
	14.3.4 Simulation
	14.3.5 Calibration
	14.3.6 Residual
	14.3.7 Recalibration

	14.4 Conclusions

	15 Practical examples
	15.1 3C295 – A bright source at the centre of the field
	15.2 HBA
	15.2.1 Inspecting the raw data
	15.2.2 Flagging and data compression
	15.2.3 Post-compression data inspection and flagging
	15.2.4 Calibration with BBS
	15.2.5 Imaging
	15.2.6 Combining Measurement Sets
	15.2.7 Subtraction of 3C295

	15.3 LBA
	15.3.1 Inspecting the raw data
	15.3.2 Flagging and demixing
	15.3.3 Post-compression data inspection and flagging
	15.3.4 Combining Measurement Sets
	15.3.5 Calibration with BBS
	15.3.6 Imaging


	16 Useful resources
	16.1 Webpages
	16.2 Useful analysis scripts
	16.3 Contact points
	16.4 Commissioning reports

	17 Acknowledgments
	A GNU screen
	B LOFAR simulation software and new Demixing approach
	B.1 Simulating a Measurement Set
	B.1.1 Example

	B.2 Comparing observations and simulations
	B.2.1 Example

	B.3 New demixing algorithm
	B.3.1 Predict
	B.3.2 A-team clipper



