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Changes

The latest released version of the cookbook is available at the web address:

http://www.astron.nl/radio-observatory/lofar/lofar-imaging-cookbook

This link is advertised on the LOFAR wiki. The very latest (development) version of the cookbook
can also be found on the USG repository:

http://usg.lofar.org/svn/documents/trunk/Tutorials/Imaging/

The LOFAR software is continuously improving and, as a consequence, several procedures (and the
cookbook itself) continuously change. In the following, we report an overview of the (recent) changes
applied to the manual.

Overview of the changes

Most recent changes

2016-06-13 – updated the Getting Started chapter (Chapter 1);

– updated the LoSoTo chapter (Chapter 6);

– updated the DPPP chapter (Chapter 4);

– updated the AOflagger chapter (Chapter 3);

– added new WSclean chapter (Chapter 7);

– added new Factor chapter (Chapter 9);

– moved some chapters to the appendices;

– moved the data simulation to the data inspection chapter (Chapter 2);

– moved some tool documentation online;

2015-11-11 – updated the Getting Started chapter (Chapter 1);

– updated the LoSoTo chapter (Chapter 6);

– added new DPPP calibration chapter (Chapter 5);

– added new RM Synthesis chapter (Chapter D);

– changed the references for the LOFAR analysis scripts to the GitHub repository instead
of CEP3.

2015-06-19 – update of the Getting Started chapter (Chapter 1).

– updated the DPPP chapter, improved the baseline selection documentation, added docu-
mentation for the up-arrow character and added a few examples (Chapter 4);

– update of the LoSoTo chapter (Chapter 6);

– update of the Sagecal chapter (Chapter C);

– update of the AW Imager chapter (Chapter F);

– update of the Source Detection chapter (Chapter 8);
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– update of the Sky Model Construction chapter (Chapter B);

– update of the Useful resources chapter (Chapter 11)

2015-02-24 – Renaming on NDPPP with DPPP through the Cookbook;

– added to the DPPP chapter a description on how to use steps coded in Python;

– update of the Selfcal chapter (Chapter E);

– update of the LoSoTo chapter (Chapter 6);

– update of the BBS chapter (Chapter A), including a description on how to use parmexportcal.

2014-11-04 – general update of the entire manual to make it compatible with the architecture of the
CEP3 commissioning cluster.

2014-04-22 – corrections to the BBS chapter (Chapter A);

– corrections to the Selfcal chapter (Chapter E).
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1 Getting Started4

1.1 The LOFAR cluster layout

The correlated data coming from the Cobalt5 correlator are stored on a cluster of machines called
CEP2 cluster (see Sect. 1.1.1 for an extensive overview). CEP2 has been added to the LOFAR offline
system at the beginning of 2011. Till March 2011, another cluster of computing machines was used
to store and process the data (CEP1). Nowadays, CEP2 is normally used by the Radio Observatory
to process the data through the initial stages of the data reduction (flagging and averaging of the
visibilities), while another CEP facility is currently used by both the commissioners and LOFAR
users to manually play with the data and understand which strategy to use for the calibration and
the imaging: the new commissioning cluster CEP3 (see Sect. 1.1.2). CEP2 will be soon replaced by
another CEP facility, providing technologies that are not available on CEP2, especially with respect
to resource management. The CEP4 cluster is currently being installed with the aim to have it ready
for production before the end of 2016. In the following sections we will focus on discussing the
architecture of CEP facilities as well as their usage policies.

1.1.1 CEP2

The LOFAR CEP2 cluster is composed by 100 compute nodes (locus001-100). A detailed de-
scription of all the packages available on the new cluster and on its network interface can be found
on line at http://www.lofar.org/wiki/doku.php?id=operations:phase2cluster. In the following, a few
more details on this cluster components are given.

• Frontend: it has 2 lhn head nodes (called lhnxxx; lhn001 is the main head node for users).
Each head node (lhn001 & lhn002) consists of: 64 GB memory 16 CPU’s @ 2.3 GHz, 512 GB
Solid State Disc, 6 TB RAID5 disks.

• Processing units: the 100 locus compute nodes with 21TB each (called locusxxx). Each lo-
cusxxx compute nodes consists of: 64 GB memory, 24 CPU’s (6 quad cores @ 2.1 GHz), 21
TB disk space, XFS filesystem, 40 Gbps Infiniband network interface.

• 4 router nodes: Each of the 4 router nodes connect a quarter of the compute nodes to the
CEP network switches. They are also used to interface the Ethernet Fiber connections to the
Infiniband interconnect of the cluster. They can be seen as network equipment by the user.

• Infiniband interconnect using Ethernet protocol.

USAGE POLICY: CEP2 is meant for storing the observations and process them through the Lofar
pipelines but not for commissioning work. For that, commissioners can use CEP3 with prior coor-
dination with the Radio Observatory (sciencesupport[at]astron[dot]nl). Since the CEP2 cluster is
meant to be a machine dedicated to run the pipeline, the Observatory will give access to it just to a
few selected people (exclusively to perform MSSS- related work). Due to the limited disk space, CEP2
is not intended for long term storage of raw data and/or intermediate products.

4This chapter is maintained by M. Iacobelli, iacobelli[at]astron[dot]nl.
5It is located in Groningen, The Netherlands.
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1.1.2 CEP3

The CEP3 cluster is available since November 2014 and allows running science processing close to the
CEP2 facility as well as for commissioning work. An overview of the hardware and software as well
as of major policies and procedures is available at http://www.lofar.org/operations/doku.php?id=cep3:start.
The cluster consists of 24 equivalent servers with the following specifications:

• DELL PowerEdge R720 Rack server

• Dual Intel Xeon e5 2660 v2 processors (10 cores each)

• 128 GB memory

• 4x 8 TB internal disk configured in RAID 6 (24 TB net capacity)

• 10 GE data interconnect

• 1 GE management network

In the future the servers can be fitted with up to two GPU cards (e.g. NVIDIA K20X).

Two head nodes (lhd001 & lhd002) are available for logging in and (limited) interactive development
and processing purposes. Access to the CEP3 system can only be done through the lhd002 head
node, Access to the twenty worker nodes is managed through a job management system. Users are
required to submit requests for processing jobs/sessions on the worker nodes. In general, data will be
distributed across the local disks on the worker nodes and processing jobs are distributed accordingly.

USAGE POLICY: Observing, CEP2 processing time and the use of CEP3 are allocated by the LO-
FAR Programme Committee and the ILT director during the regular proposal evaluation stages, or
under Director’s Discretionary Time.
Access and use of CEP3 is under the sole control of the Radio Observatory’s Science Support Group
(SSG). Access for Users will be granted only at the discretion of the Science Support Group. Users
should conform to the access, resource allocation and data deletion policies issued by the SSG at all
times.

To have access to CEP3 a formal request must be submitted to sciencesupport@astron.nl or be explic-
itly given in a proposal for LOFAR observing time. When submitting a request users should clearly
include the following information:

• A brief explanation of why access to CEP3 is required (e.g., you do not have access to suitable
computing resources elsewhere)

• Project to be worked on (i.e. commissioning, cycle or archived data (post) processing)

• Description of the kind of processing for which CEP3 access is requested

• List of collaborators (if any) who should also have access

• General description of the data to be processed (e.g. data size)

• Estimated processing time required

Users awarded with access to CEP3 will be able to access the cluster for a limited period of time (2
months by default). The awarded period starts:
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• from the moment the user’s data is copied from CEP2 (after Radio Observatory pipeline pro-
cessing) to CEP3

• following the timeline communicated to the user via the SSG notification and available at
http://www.lofar.org/operations/doku.php?id=cep3:earlyaccess.

At the beginning of a Cycle, users requesting CEP3 processing time in their observing proposals can
derive this timeline by checking the observing schedule, which is available at http://www.astron.nl/radio-
observatory/cycles/cycles. Access timelines related to observing programs involving observations
spread in time will be discussed between the PI and Science Support. In general, info about CEP3
access of users are detailed at http://www.lofar.org/operations/doku.php?id=cep3:earlyaccess. After
the granted period on CEP3 has expired, all users data products generated on the cluster will be
automatically and promptly removed, to enable new users to have enough disk space to perform their
data reduction.
Extensions to the default 8-week period will be granted only in exceptional circumstances and only
if properly justified through a formal request to be sent to sciencesupport@astron.nl no later than 1
week before the expiration of your access privileges. Monitoring of node usage during allocated time
will be performed and the evaluation of extension requests will be based on such statistics.

1.2 Logging on to CEP3

As mentioned above, normal users have access only to CEP3 head node(s), while the access to pro-
cessing nodes is controlled using the Slurm cluster management software. In the head node users
can experience the quality of the data and understand the best approach to use in the lof node(s) for
the calibration and imaging of the visibilities. After Science Support has set up a reservation on a
particular processing node(s), you should have a reservationID needed for setting up access to the
working node(s)

• To access CEP3, begin by logging on to portal.lofar.eu6:

> ssh -Y <user name>@portal.lofar.eu

where <user name> is likely to be the user’s surname. Type in your default password7:

> "password"

Throughout this cookbook, > is used to indicate a new input line.

• You can now log in to the front end (you are requested to use lhd002)8:

> ssh -Y lhd002

If this is the first time you will be logging onto the cluster, you are advised to change your
password by typing:

> yppasswd

6The actual host name is lfw.lofar.eu (lfw=LOFAR firewall), but this alias will work fine.
7Your default password will be communicated to you at the moment of the creation of your Lofar account by Teun

Grit (grit[at]astron[dot]nl).
8You may have to log out of and log in again to the portal first
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in the usual fashion (old default password, new password, confirm new password).

• In order to log on to (for example) lof0199, start a Slurm job from the head node lhd002. Any
job will do, but we advice starting an interactive bash shell:

> use Slurm

> srun --reservation=<reservationID> -N<nr of nodes> bash -i

This should give you a prompt (or more than one if you have more nodes on your job). Once
you have the Slurm job running and log using ssh-keys enabled (see Sect. 1.3.2 for instructions),
you are allowed standard SSH access with X-forwarding to the reserved nodes from the head
node starting from a new terminal screen on the head node lhd002:

> ssh -XY <user name>@lof019

Once on the compute node, you will be located in your home directory ( /home/<user name>),
which is visible from any node.

For more information on the cluster architecture/properties, you can visit:

http://www.lofar.org/operations/doku.php?id=public:lofar cluster
http://www.lofar.org/operations/doku.php?id=cep3:start

1.3 Setting up your working environment

1.3.1 Login scripts

After an account is created, you will have a separate CEP3 $HOME directory. At the first login, it will
be empty and needs to be setup properly to be able to use the provided tools and programs on CEP3.
Log in to the front end cluster and from your $HOME directory follow the approaches reported below.

Create a link to the systems login scripts:

• Make sure to delete any potential .profile or .cshrc file on your home directory (check with
ls -a)

• > ln -s /opt/cep/login/bashrc $HOME/.profile

or

> ln -s /opt/cep/login/cshrc $HOME/.cshrc

depending on whether you use a BASH login shell or a (T)CSH login shell.

• Now log in again; you should see a welcome message.

For BASH, make sure your .bashrc is as clean as possible, that means not cluttered with variables
(especially LOFARROOT, LD LIBRARY PATH & PYTHONPATH should not have -too many- de-
fault settings); although this probably applies to (t)csh as well.

To use a certain package, you can make use of the “use” alias. To initialise the LOFAR imaging
pipeline software (including the Generic Pipeline Python script) together with and linked against
casacore, casarest, and python-casacore type

9The Radio Observatory will assign you with a suitable lof node to work on
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> use Lofar

While the basic python packages are initialised by default, to activate the full suite of available python
packages type

> use Pythonlibs

To initialize the CASA software, which could be useful for particular steps of the data reduction, you
can type

> use Casa

On CEP3 AIPS version 31DEC14 is available. To be able to use you must contact Marco Iacobelli,
Teun Grit or Arno Schoenmakers to add you to the user group “aipsgrp”. Then you can execute

> use AIPS

You can then start AIPS with the normal startup command, e.g.

> aips tpok tv=local

SageCal and auxiliary scripts have been installed, using OpenBlas. To activate them type

> use Lofar

> use Sagecal

The self-calibration tool of the Standard Imaging Pipeline (see Sect. E) is installed and can be acti-
vated by typing:

> use Pyselfcal

The WSClean wide-field imager has been installed. To activate it type:

> use Wsclean

The COmplex Half-Jacobian Optimization for N-directional EStimation (CohJones) peeling tool and
auxiliary scripts have been installed. To activate it type:

> use CohJones

To activate Duchamp, type

> use Duchamp

To activate the LOFAR Solution Tool (LoSoTo)

> use Losoto

To activate DS9, just type
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> use DS9

Similarly, the Karma software (useful during imaging), can also be initialised:

> use Karma

To run a few scripts needed during the data reduction (see Sect. 11.2) without having to copy them
into your working directory, just type:

> use Lofar ; use Cookbook

To activate a collection of python scripts from the Imaging commissioning, type

> use Scripts

To extract TEC, vTEC, Earth magnetic field and Rotation Measures from GPS and WMM data for
radio interferometry observations, the RMextract tool is installed. To activate it type:

> use Lofar

> use RMextract

Finally, you can initialise scripts to perform RM-Synthesis with

> use RMSynthesis

and activate Pyrmsynth 1.2.1 by executing rm synthesis.py (Option −−help gives options). Also
available is library rm tools (use import rm tools within a python script).

You can also create a file in your home directory (.mypackages) that contains a list of all packages
to initialize at login time. For example, if this file contains the line

Casa Lofar

the login scripts will initialize the CASA and the LOFAR imaging pipeline software for you at login
time.

On the LOFAR wiki more information can be found about the LOFAR login environment. Also, an
updated list of the software packages installed on CEP3 is found here.

Processing can now take place. Once you have logged onto this compute node, you should create
your own working directory using

> mkdir /data/scratch/<username>

You can now cd into it and use it as your working space.

You can copy in here the data provided by the Radio Observatory by e.g. typing:

> scp -r <user name>@lhd002:/data/<user>/<LOFAR dataset> .

where <LOFAR dataset> has the syntax LXXXXX10.
10"L" stays for LOFAR, XXXXX is the ID number of the observation, which is assigned to it at the moment of the

scheduling
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1.3.2 Generation of SSH keys

We use the Secure Shell (SSH) on the LOFAR Central Processing (CEP) to connect to different
systems. This page explains how this can be used without having to supply a password each time you
want to connect to a system (very useful to run things such as BBS (Sect. A) on nodes of a cluster, or
other remote machines). With normal SSH you always have to give a password. If you use a private
and public key, you can access systems where your public key is in $HOME/.ssh/authorized keys

from the system where you have the private key.

• For Linux or OS X:

From the front end node lhd002 set up passwordless access to the lof nodes (if you have a job
running to provide you access) via SSH: Go to, or create a directory

$HOME/.ssh

> ssh-keygen -t dsa

Press enter and again when prompted for a password. Now you have a file id rsa.pub in this
directory. Copy it to authorized keys.

> cp ~/.ssh/id_dsa.pub ~/.ssh/authorized_keys

$HOME/.ssh/authorized keys must be available on all the machines you need to access with
this key; since your home directory is automatically mounted on all the cluster nodes, they
should already be accessible—you can copy it to other, external, systems if required.

• For Windows and additional information, refer to the LOFAR wiki 11.

1.3.3 Disable SSH Host Key Checking

Normally, when you first connect to a new host, SSH will prompt you for confirmation of the host
key:

> ssh lof019

The authenticity of host ’lce019 (10.176.0.19)’ can’t be established.

RSA key fingerprint is 73:27:96:cd:f5:04:b7:c3:57:47:49:97:8b:87:8b:15.

Are you sure you want to continue connecting (yes/no)?

When trying to run a command over many compute (and/or storage) nodes using multiple SSH con-
nections, that can get pretty annoying. To get around it, set StrictHostKeyChecking to no in
$HOME/.ssh/config:

> cat > ~/.ssh/config

StrictHostKeyChecking no

11http://www.lofar.org/wiki/doku.php?id=public:ssh-usage
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1.3.4 Data copy from and to CEP3 cluster

Data transfers from CEP2 to CEP3 should always be coordinated with the Radio Observatory (sci-
encesupport[at]astron[dot]nl). Data retrieval from LTA locations as well as from/to other computing
facilities is also possible as detailed at http://www.lofar.org/wiki/doku.php?id=cep3:userdata. Al-
though access to the CEP3 systems can only be done through the lhd002 head node, data transfers
to the outside world can be done directly. Because data will be transferred via the LOFAR portal,
care should be taken not to flood the available network bandwidth with the public internet. Thus we
recommend to limit the bandwidth to not disturb the portal access of other users. Note that the portal
capacity is 120MB/s.

1.4 The LOFAR phase 4 cluster - CEP4

The Lofar phase 4 cluster (CEP4) will soon be adopted to store the raw observation data and process
them through the standard data pipelines. Processed data products will usually made available to the
user via the Long-Term Archive, but may also be copied to the CEP3 cluster upon request for further
analysis by the user in the original proposal. Due to the intensive nature of the standard data pipelines
and the need for these compute resources to be allocated and scheduled by Radio Observatory staff,
access to the resources on CEP4 will be strictly limited, with a few exceptions, to the Radio Observa-
tory. In the following, a short description of the computing characteristics/performances of the new
cluster is given.
The Lofar Phase 4 cluster consists of:

• 50 compute nodes (called cpu01..cpu50)

• 4 GPU nodes (gpu01..gpu04)

• 18 storage nodes (data01..data18)

• 2 meta-data nodes (meta01..meta02)

• 2 head nodes (head01..head02)

• 1 management node (mgmt01)

Each node is reachable as XXXX.cep4.control.lofar. Users are only allowed on head01 and head02.
Each compute node consists of:

• CPU: Intel Xeon E5-2680v3 2.5 GHz (12 cores, HyperThreading disabled)

• Memory: 256GB @ 2133 MHz

• Disk: 2x 300GB 10Krpm SAS RAID

• Network: 2x 1GbE, 2x 10GbE, 1x FDR InfiniBand

Each GPU node consists of:

• CPU: Intel Xeon E5-2630v3 2.4 GHz (8 cores, HyperThreading disabled)

• Memory: 320GB @ 1866 MHz

• Disk: 2x 300GB 10Krpm SAS RAID + 2x 6TB 7.2Krpm SAS RAID
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• Network: 2x 1GbE, 2x 10GbE, 1x FDR InifiniBand

Each head node consists of:

• CPU: Intel Xeon E5-2603v3 1.6 GHz (6 cores, HyperThreading disabled)

• Memory: 128GB at 1600 MHz

• Disk: 2x 300GB 10Krpm SAS RAID + 2x 6TB 7.2Krpm SAS RAID

• Network: 2x 1GbE, 2x 10GbE, 1x FDR InifiniBand

The other nodes are not accessible (storage, meta-data, and management nodes).
Storage: The storage and meta-data nodes provide about 2PB LustreFS global filesystem through the
InfiniBand network to all nodes in the data partition, thus implying that all nodes see the same data.
Processing: CEP4 will use a SLURM batch scheduling system to schedule and run all observation
and processing jobs on the cluster.
NOTE: It is emphasised again that CEP4 is not meant for commissioning work. For that, commis-
sioners can use CEP3 (see access policies here). It is emphasized that the disks on CEP3 are not
intended for long term storage of results. As it is impossible for the Observatory to micro-manage the
disk space, commissioners should be aware that disk deletions could happen with very little warning.
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2 Data Inspection and simulation12

Data inspection is essential for a proper data reduction and can be carried out using either scripts
(by means of a python interface to the Measurement Set) or CASA13. In this Chapter, we summarize
the various tools that can be used to inspect the LOFAR visibilities at the beginning and during the
processing of your data.

1. The program msoverview provides you with details on the contents of a Measurement Set, no
matter if it is raw or it has been already processed. You are advised to use this script when you
start working on your data. You can run it by typing:

> msoverview in=some.MS verbose=T

where the verbose parameter allows you to have more detailed information about the observa-
tion, as the used antennas and their positions.

2. Python-casacore (formerly “pyrap”) is a python interface to the casacore library, which al-
lows the raw data tables (Measurement Sets) to be manipulated and the data plotted via python
scripts. These allow you to customize what is plotted, and can be significantly faster than CASA
for plotting large datasets.

An extensive description of the python-casacore utilities is available at the web address

http://casacore.github.io/python-casacore/

3. Visibilities can be plotted relatively rapidly by making use of the combination of python-
casacore and the plotting package PGPLOT, both of which work quickly. A script is available
which plots visibility data from all baselines in a Measurement Set14. It plots either amplitude
or phase against time, frequency, or channel number.

To use it, you should first prepare the environment by typing

> use Cookbook

> use Lofar

The script itself is uvplot.py15, and it will list its (many) options if you use the -h flag.

4. CASA16 is the python-based next generation replacement for AIPS/AIPS++ and can be used
to display the data17. Be aware that trying to inspect the raw visibilities with CASA will pro-
duce a ”segmentation fault” error. To avoid this, you should make a copy of the dataset
with DPPP (see the first example parset in Sect. 4.2). Moreover, when opening with CASA a
MeasurementSet observed between May and October 2011, you will get the following error:

12This chapter is maintained by A. Shulevski, shulevski[at]astron[dot]nl and Valentina Vacca (vvacca[at]mpa-
garching[dot]mpg[dot]de)

13Documentation available at the web address http://casa.nrao.edu/
14uvplot.py can also be used to plot the raw visibilities and may be significantly faster than the PLOTMS task in

CASA.
15The script has been created by G. Heald.
16http://casa.nrao.edu/
17Be warned: attempting to display unaveraged data will take a long time (about 20 mins, for a single subband of a

13 hour dataset), while doing this on averaged, single channel data may not show all of the RFI.
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Unrecognized mount type

This is due to the fact that the MS writer version used during those months was specifying the
antenna mount as FIXED, and not as ALT-AZ, which is CASA friendly. To solve this problem,
you can run the following taql command on your MS (your.MS):

> taql ’update your.MS/ANTENNA set MOUNT="X-Y" ’

To initialize the CASA software, type

> use Casa

• Casaviewer can be used to plot the visibilities and look at an image. Once you are sure
that you have properly initialized Casa (Sect. 1.3.1), to invoke casaviewer just type:

> casaviewer

• To inspect the content of a Measurement Set, use the casabrowser:

> casabrowser

• You can use the CASA task plotms, which can also be called from outside CASA by
typing

> casaplotms

• For more detailed information and examples of how to use CASA, we direct users to the
CASA Guides: http://casaguides.nrao.edu/index.php?title=Main Page

5. The low frequency radio sky is dominated by a few bright sources that form the so called
A-team: CasA, CygA, VirA, TauA, HydA, HerA. The removal of these sources from the tar-
get visibilities is very important in order to achieve high dynamic range images. A useful
script providing an overview of the elevation and distance of the A-team from a given target is
plot Ateam elevation.py. On CEP3, you can initialize this script by typing:

use Cookbook

6. For manipulating measurement sets, you can use TaQL (Table Query Language); this is an
SQL-like language which works on MS, and can perform all kinds of selections (and more).

See http://www.astron.nl/casacore/trunk/casacore/doc/notes/199.html for more info on TaQL.
A tutorial is available at http://taql.astron.nl.

2.1 Analyzing the data quality with aoqplot

Once you have succesfully run DPPP on the measurement sets in your observation, it is recommended
that you validate the results of the flagger and get an impression of the quality of the full observation.
For this, the aoqplot tool that is part of the LofIm build can be used.

Basically, the tool allows you to plot standard deviations and RFI percentages and some other quanti-
ties, over time, frequency, baselines and the time-frequency domain of the full observation, i.e., over
all sub-bands. Since an observation can be several terabytes of data, the performance of standard
tools to perform such analysis is an issue, and the aoqplot was designed to overcome this problem.
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Fig. 1 shows an example of the aoqplot interface, plotting the data standard deviations of an LBA
set over the entire frequency range. It also allows one to plot differential statistics. “Differential”
in this context means that the standard deviation is calculated over the difference between adjacent
channels. Therefore, they quantify the noise, because the difference of signal in adjacent (3 kHz)
channels is tiny and can be neglected. Differential quantities are prefixed with a “D”, such as DMean
and DStdDev.

Figure 1: The aoqplot window showing the standard deviation of the data over frequency of a full
observation.

2.1.1 Usage

If your environment allows (see below), one can get the statistic plots of an observation of a DPPPed
set, with the following command:

aoqplot yourobservation.gvds

The gvds file is given by the observatory and describes the observation, in particular the locations of
the measurement sets. The aoqplot tool will now connect to all the nodes with an ssh connection,
start a bash-session on the node and start a client there that connects back to your node and sends
the quality tables. Once all the tables have been received, a window will appear containing the plots.
Collecting all the tables takes typically less than 5 seconds.

The use of ssh and bash requires that you should be able to ssh to all the involved nodes without
manual intervention, and that the client (called “aoremoteclient”, part of the LofIm daily build)
is directly in your bash path after ssh-ing. Thus, after ”ssh locus001” (or lce001), you should be
able to start aoremoteclient within bash without a “use LofIm”. The easiest way of doing this
is by putting LofIm in ~/.mypackages. If you have problems running the aoqplot due to your
environment, please let us know.
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When a node is not answering, or there is some error with the measurement set, the set will be
skipped, an error will be given describing the problem and the statistics will be collected without those
measurement sets. If none of the measurement sets can be queried, you will see a dialog window with
many error messages and the window will not appear thereafter. If you can not determine the cause
of this, please let us know. The software is currently (January 2012) still experimental.

The aoqplot can also be used on individual sub-bands by putting the measurement set filename in
the command line, e.g.:

aoqplot SB000.MS

2.1.2 Analyzing the statistics

The aoqplot tool provides the following statistics:

• Count: the number of samples that are left after flagging of the data. This should normally be
fairly constant over time, frequency and baselines, apart from a few imprints of RFI that lower
the number of available samples. Since the flags of the complex values of different polarizations
are normally equal, there’s no use in looking at this statistic for polarizations or real/imaginary
components indivually.

• Mean: the mean of the data. If you are observing a strong source (such as a calibrator), this
value should contain structure over time, frequency and baselines. Note that if you for example
plot the mean over time, each sample in the plot shows the mean of that timestep over all base-
lines and frequencies. Therefore, if your source is not in the phase centre, it will be supressed
and can even be averaged out, because sources outside the phase centre contribute sinusoidally
and will cancel out. If your source is in the phase centre, the Mean is a very good representation
of the strength of the signal. Together with an estimate of the noise, this can be used to calculate
the signal-to-noise ratio during the observation. If you know the approximate flux density of
the source, you can estimate the gain during the observation and, together with an estimate of
the noise, calculate a rough estimate of the system noise. Cross polarizations can be checked to
see if there was significant differential Faraday rotation during the observation.

• StdDev: the standard deviation of the data after flagging. The standard deviation should not
have significant imprints of RFI. In good data, one generally sees about three significant spikes
in HBA (in± 115-163 MHz) and zero spikes in LBA (>30 MHz, an example is given in Fig. 1).
The standard deviation is rather sensitive for low-level RFI, and a few RFI spikes do not seem
to hurt calibration at this point (please report if you think otherwise). If there are time or
frequency ranges at which the standard deviation is significantly different, try to select different
polarizations and use the different domains (time-frequency, baseline, time, frequency, ...) to
see if you can localize the guilty data range. The position of the Sun and the Milky Way in the
sky can significantly change the standard deviation. Because the StdDev includes the variance
of the signal, it is recommended also to look at the DStdDev.

• DCount, DMean and DStdDev are similar to the above statistics, but are calculated over the
differences of samples (after flagging) in adjacent channels. They contain therefore very little
contribution of the signal, and can be used to get an accurate estimate of the noise. They have
been normalized to represent the same units as their counterpart values. The DMean should
be close to zero, as the signal should be subtracted out, and the noise should average out (it is
mainly there because it is easy to calculate, but it is often more helpful to look at Mean and
DStdDev).
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• RFI: the amount of RFI found by the flagger. The ’base level’ of RFI is 2–5%, but can contain
a few spikes over time or frequency that go up to 20%–100% at times. This is normally not
a problem. Sub-bands or stations with significant different RFI levels (either 0% or >∼ 5%)
often indicate an issue with the station. Such problems are often also reflected in the standard
deviations. Different polarizations and real/imaginary values have equal RFI ratios.

• SNR: the signal-to-noise ratio. It is calculated by Mean / DStdDev. This value is only accurate
if you are observing a source in the phase centre, due to the reasons mentioned in the paragraph
for the Mean value.

2.1.3 Background information

The aoqplot tool works together with DPPP. Recent versions (>21 December 2011) of DPPP will
add so-called quality statistic tables to a measurement set. These tables circumvent having to read
the entire DATA column of a measurement set to get the basic statistics. The way they are stored is
described in the quality statistics proposal written by André Offringa18. Because the statistics plotting
tool require these tables, you can not directly plot statistics of measurement sets that are averaged by
an older DPPP, or have not been averaged at all.

The statistics are calculated individually for the real and complex values. This is not common when
treating complex values, but does allow easy interpretation. This means that µr and σr, the real mean
and real standard deviations respectively, are calculated as:

µr =
1
N ∑

x∈X
real(x) (1)

σ
2
r =

1
N ∑

x∈X
(real(x)−µr)

2 (2)

If you select “amplitude” in the aoqplot user interface, the actual plotted quantity is:

|σ |=
√

σ2
r +σ2

i , (3)

i.e., the amplitude of the standard deviation of the real and imaginary components, not the standard
deviation over the amplitudes. The same holds for the “XX+YY” and “XY+YX” check boxes, which
represent the sum of the statistic, not the statistic over the sums.

If, for some reason, you want to use aoqplot, but do not want to use DPPP to average the data, a
different way of adding the required quality statistics to a measurement set is by using the aoquality
tool, part of the LofIm build. The general usage is:

aoquality collect SB000.MS

The aoquality also has some options for retrieving statistics on the command line. Run aoquality

without parameters to get a list of options.

2.2 Additional information: manual flagging in CASA

While manual flagging will not be practical once the pipeline is completed, during early stages it may
be useful to remove remaining RFI in order to test the calibration or imaging routines. Flagging tasks

18offringa[at]astron[dot]nl
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in CASA include FLAGDATA and FLAGCMD for command-line based flagging. The task PLOTMS offers
GUI-based flagging. PLOTXY can also be used for manual flagging, but users should be aware that it
is being deprecated in favor of PLOTMS and may not be available in future releases of CASA. Once
the CASA PLOTMS has loaded and data is visible, click the Mark Region button, highlight data that
you wish to flag, click the Flag button, and Quit once you are finished.

CASA also provides two algorithms, RFLAG and TFCROP, for automatic RFI flagging. These algo-
rithms are available as options within the FLAGDATA task. For more information on their usage, we
suggest users consult Chapter 3 of the latest version of the CASA Cookbook.

Observations at ‘low’ elevation (below ∼ 30◦ for Cygnus A, and below ∼ 40◦ for 3C196) are suffi-
ciently noisy that they are of limited use. These bad time ranges need to be identified and removed.
This could be done through DPPP, but also by manual flagging in CASA or using the CASA SPLIT19

task or the python script split ms by time.py (Section 11.2). Splitting out part of a Measure-
mentSet can be done as part of the distributed pipeline and will most likely be necessary until more
robust flagging routines are implemented.

2.3 LOFAR simulation software

The A-team or other bright sources can strongly affect the observation of nearby targets. To under-
stand which is the best strategy to adopt in order to deal with these strong sources, it is useful to make
the user aware in advance about their effect on the observed target when the observations will be per-
formed. In this context a LOFAR simulation software20 has been developed. The software package
is composed of two Python scripts, one to simulate a mock data set (simulate.py) and the other to
compare simulations and observations (compare.py). They can be found at

/opt/cep/tools/simulation/

All the dependencies of the software are installed in the LOFAR cluster CEP3. To source the scripts
type

> use Lofar

and

> use Cookbook

By using these scripts, the user can simulate two mock Measurement Sets containing respectively the
target and A-team sources, and compare them in order to understand which percentage of the data
will be affected by the bright sources.

2.3.1 Simulating a Measurement Set

The simulation of the data is performed through the script simulate.py. The script includes three
main blocks generating commands and parsets that the user can run in order to:

1. create an empty mock Measurement Set with the same starting time, ending time, and pointing
as the observations, by using makems;

19The SPLIT task will be deprecated in favor of the MSTRANSFORM task beginning with CASA v.4.1.0.
20This software has been developed by Jose Sabater (jsm[at]roe[dot]ac[dot]uk).
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2. update the calibration tables in the Measurement Set with the information to compute the beam
of the instrument, by using makebeamtables;

3. simulate the effect of a model of sources on the data, by using BBS.

If necessary, commands and parsets can be modified by the user before to be run.

When launching the script the user can use the following options:

--ra=RA right ascension of the field
--dec=DEC declination of the field
--time=TIME start date and time of the observation

in the format YYYY/MM/DD/hh:mm:ss.s
--n-time=N TIME duration of the observation in integer multiples of 10 s

(the default value is 1800 corresponding to 5 h)
--name=NAME name of the simulated field and prefix of the output files
--source=SOURCE1,SOURCE2,... name of the source(s) to simulate
--sky-model=SKY MODEL skymodel of the source(s) to simulate
--path=PATH path to store the parsets and Measurement Sets of the

simulation
--overwrite overwrite existing parsets and Measurement Sets
--lba simulate a LBA observation (the default is HBA)
--antenna-conf=ANTENNA CONF antenna configuration (the default antenna

configurations are HBA DUAL INNER for
HBA and LBA OUTER for LBA)

--h or --help shows the usage of the script

The format for time, right ascension, and declination is the same as used in the parset. In particular,
we note that declination uses dots instead than colons. At the moment it is possible to insert in the
simulation only the sources 3C53 and 3C237, and the A-team sources CygA, CasA, CasA4, TauA,
VirA, VirA4, HydraA21. The default location of the files produced when launching the script is

/data/scratch/<user_name>/simulation/

The present version of the software creates the working directory simulation/ and the parsets,
while the commands are only displayed on the screen and have to be executed by the user. In the
future release the commands will be directly executed by the script and other antenna configurations
will be allowed.

2.3.1.1 Example As an example, we run simulate.py to produce a mock observation in the
direction of 3C 299 (RA = 14h21m05.88s and DEC = 41◦44′49.490′′), with a total observational
time ∼ 2 h starting at 04:16:02.5 in date 14 April 2013 and we will investigate the effect of Cygnus A
on the target source:

python /opt/cep/tools/simulation/simulate.py --ra 14:21:05.88 \

--dec 41.44.49.490 --time 2013/04/14/04:16:02.5 --n-time 720 \

--name 3C299 --source CygAGG --sky-model \

/globaldata/COOKBOOK/Models/Ateam_LBA_CC.skymodel --overwrite

21Models for these sources are available e.g. in /globaldata/COOKBOOK/Models/Ateam LBA CC.skymodel. Note:
when CasA and VirA are used the simulation is very slow.
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The script creates the folder simulation/ in the default directory /data/scratch/<user name>/

containing the parsets

makems_3C299_HBA.parset

predict_CygAGG.parset

and gives as an output on the screen the following commands that the user has to run to produce the
mock Measurement Set

cd /data/scratch/<user_name>/simulation/;

makems /data/scratch/<user_name>/simulation/makems_3C299_HBA.parset;

makebeamtables antennaset=HBA_DUAL_INNER ms=20130414_3C299_HBA.MS \

overwrite=True

cp -r /data/scratch/<user_name>/simulation/20130414_3C299_HBA.MS \

/data/scratch/<user_name>/simulation/20130414_3C299_HBA_CygAGG.MS

cd /data/scratch/<user_name>/simulation/;

(date; calibrate-stand-alone -f \

/data/scratch/<user_name>/simulation/20130414_3C299_HBA_CygAGG.MS \

predict_CygAGG.parset \

/globaldata/COOKBOOK/Models/Ateam_LBA_CC.skymodel; \

date) | tee log_3C299_CygAGG.txt

which is one long command split over multiple lines (splitting indicated by \).
This output contains all the instructions the user has to follow to produce the mock Measurement Set:

1. move to the working directory simulation/

2. run makems with the parset makems 3C299 HBA.parset22 to create the mock Measurement Set
20131304 3C299 HBA.MS

3. run makebeamtables23 on the mock Measurement Set to compute the station beam model

4. change the name of the Measurement Set from 20131304 3C299 HBA.MS to
20131304 3C299 HBA CygAGG.MS

5. move again to the working directory simulation/ if you are not there anymore

6. run BBS on the Measurement Set by using the parset predict CygAGG.parset to predict the
effect of the A-team source(s) on the target. At the moment no default sky model is present,
therefore the user has to specify one. The output on the screen of BBS plus the date before and
after BBS was running are redirected to the file log 3C299 CygAGG.txt. With these parame-
ters BBS takes ∼5 m to run.

2.3.2 Comparing observations and simulations

Once the simulation has been produced, the user can investigate the effect of the bright sources on the
target field with the script compare.py. The code calculates the percentage of data points affected by
the A-team for the XX and YY polarization products, according to two possible criteria:

22The antenna configuration files can be found in: /globaldata/COOKBOOK/Demixing/
23Alternativelly: makebeamtables ihbadeltadir=$LOFARROOT/etc/StaticMetaData
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1. the user fixes a flux threshold and all the data points with flux larger than this threshold are
considered affected. In this case the user needs only a mock Measurement Set containing the
A-team sources or other bright sources that can affect the data;

2. the user fixes a level and compares the flux of the bright source(s) (SA) with the flux of a
central source in the target field (ST). If SA/ST ≥ level, the corresponding visibility will be
considered affected by the bright source(s). In this case the user needs a mock Measurement
Set containing the target source (alternatively, if the observations have been already performed,
the observed data can be used) and a mock Measurement Set containing the A-team sources.

When launching the script on the mock Measurement Set containing A-team/bright sources that can
affect the observation of a target source of interest, the user can choose among the following options:

--s or --source=SOURCE.MS simulated Measurement Set of the central source
(alternatively the real observation can be used)

--t or --threshold=T1, T2, ... threshold(s) (the default value is 5 Jy).
A different threshold for each bright source can
be specified

--l or --level=L1, L2, ... ratio(s) between the flux of an A-team/bright
source SA and of the target source ST. A different
level for each A-team/bright source can be
specified

-f or --stat-function=STAT FUNCTION statistical function used for the threshold/level.
Possible options are: max, min, median, std, mean
(the default function is median)

--all-correlations=CORRELATIONS correlations considered (not working yet)
-p or --plot produce plots
--h or --help shows the usage of the program

As an output a percentage of the amount of data above the threshold or above the level selected by the
user (and therefore affected by A-team/bright sources) at different times is given for all channels and
for XX and YY correlation products. This percentage is calculated according the statistical function
selected among the options.

Due to a bug in the Python module argparse, if the options --t or --l are used, they can not be
followed by the name of the Measurement Set containing the A-team sources. In this case the name
of the Measurement Set has to be placed before these options, just after compare.py. Nevertheless,
they can be followed by any other option.

At the moment the code does not allows the simultaneous comparison of multiple bright sources. This
option will be available in a future release.

2.3.2.1 Example As an example, we run compare.py on the simulation produced with simulation.py
at the step before by using the option --t:

python /opt/cep/tools/simulation/compare.py \

/data/scratch/vacca/LSS/simulation/20130414_3C299_HBA_CygAGG.MS \

--t 4 -f "median"

A combination of the options --t and --l is also possible.

The script gives as an output on the screen:
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Successful readonly open of default-locked table \

/data/scratch/<user_name>/simulation/20130414_3C299_HBA_CygAGG.MS: \

25 columns, 1274400 rows

===================================

Flux density threshold: 4.000000

Freq: 0 XX: 2.98% YY: 2.86%

Freq: 1 XX: 2.81% YY: 2.81%

Freq: 2 XX: 0.00% YY: 0.00%

Freq: 3 XX: 0.00% YY: 0.00%

Freq: 4 XX: 0.12% YY: 0.06%

Freq: 5 XX: 0.00% YY: 0.00%

Freq: 6 XX: 0.12% YY: 0.12%

Freq: 7 XX: 0.00% YY: 0.00%

Freq: 8 XX: 0.06% YY: 0.06%

Freq: 9 XX: 0.12% YY: 0.06%

Freq: 10 XX: 0.88% YY: 0.64%

Freq: 11 XX: 0.94% YY: 0.82%

Freq: 12 XX: 1.46% YY: 1.34%

Freq: 13 XX: 1.29% YY: 1.29%

The script takes a few seconds to run. During the observation, 10% of the data will be affected by
Cygnus A above a threshold of 4 Jy.

2.3.3 Simulation and A-team clipping tutorial

When the A-team or other bright sources are present for the most of the observational time, the
best strategy to eliminate them from the visibilities is to apply the standard demixing procedure that
consists on the subtraction of the A-team sources from the entire observation (see Sect. 4.1.9). On
the contrary, when long HBA observations are performed, A-team sources can be visible just for a
fraction of the observation (see for example Fig. 2) and therefore they can just partially affect the data
set. In this case their subtraction from the all observation can be dangerous and it is better to adopt
the alternative strategy24 described in the following.

2.3.3.1 Predict When observations are already available the user does not need to simulate a mock
observation but only to simulate the effect of A-team sources on the target. In this case, the first step
consists in simulating the A-team sources (VirA, CygA, CasA, TauA) during the observations of
interest. Through the stand-alone version of BBS (described in Chapter A), the data set can be filled
with a sky model containing the A-team sources (VirA, CygA, CasA, TaurA):

calibrate-stand-alone -f dataset.MS predict.parset skymodel.skymodel

where

1. data set.MS is the observed data set;

2. predict.parset is a parset aiming at simulating data according to a given sky model;

3. skymodel.skymodel is the file containing the model of the A-team sources.

24This procedure has been developed by Reinout van Weeren (rvanweeren[at]cfa[dot]harvard[dot]edu).
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An example of the parset to be used is

Strategy.InputColumn = DATA

Strategy.ChunkSize = 300

Strategy.UseSolver = F

Strategy.Steps = [predict4]

Step.predict4.Model.Sources = [VirA_4_patch,CygAGG,CasA_4_patch,TauAGG]

Step.predict4.Model.Cache.Enable = T

Step.predict4.Model.Gain.Enable = F

Step.predict4.Operation = PREDICT

Step.predict4.Output.Column = MODEL_DATA

Step.predict4.Model.Beam.Enable = True

and an example of a skymodel for LBA observations can be found at

/globaldata/COOKBOOK/Models/Ateam_LBA_CC.skymodel

The simulation should require about 1 h (for a 10 h long observation, 4 frequency channels and a time
step of 5 s). As a result the data set will contain in the MODEL DATA column the information about
A-team sources visible during the observations.

2.3.3.2 A-team clipper The second step consists in using a Python algorithm that takes in input
the observed data set and flags25 the A-team signal baseline by baseline above a threshold chosen
according to the observing frequency. Different thresholds are possible for LBA and HBA data:
default values are considered in the script but the clip levels can be adjusted by the user. The default
threshold for LBA observations is 50 Jy. This value is required to remove the A-team contribution but
at these low frequencies this implies the flag of most of the data. Therefore, at the moment for LBA
observations at this frequency it is strongly recommended to use the standard demixing procedures.
For HBA observations the algorithm is highly efficient for A-team sources far away (≥20–30◦ ) from
the target. The default threshold is 5 Jy but values in the range 2–10 Jy can be suitable for different
data sets, being 10 Jy the safest value in order not to flag the target source. The user can choose the
proper value by comparing the amplitude of the observed target and the contribution from A-team
sources. The script can be found at the LOFAR-Contributions GitHub repository:

https://github.com/lofar-astron/LOFAR-Contributions

Once the user copies it in his home directory it can be launched as follows

python Ateamclipper.py dataset.MS

The scripts takes few tens of seconds to run and an example of output is

Successful read/write open of default-locked table \

L123834_SB417_uv.dppp.MS.newtest: 27 columns, 12303270 rows \

Successful readonly open of default-locked table \

L123834_SB417_uv.dppp.MS.newtest/SPECTRAL_WINDOW: 14 columns, 1 rows

------------------------------

25An algorithm based on a subtraction procedure is currently under development.
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SB Frequency [MHz] 134.765625

% input XX flagged 4.12201796758

% input YY flagged 4.12201796758

Cliplevel used [Jy] 4.0

Doing polarization,chan 0 0

Doing polarization,chan 0 1

Doing polarization,chan 0 2

Doing polarization,chan 0 3

Doing polarization,chan 1 0

Doing polarization,chan 1 1

Doing polarization,chan 1 2

Doing polarization,chan 1 3

Doing polarization,chan 2 0

Doing polarization,chan 2 1

Doing polarization,chan 2 2

Doing polarization,chan 2 3

Doing polarization,chan 3 0

Doing polarization,chan 3 1

Doing polarization,chan 3 2

Doing polarization,chan 3 3

% output XX flagged 6.54876711638

% output YY flagged 6.54876711638

The output gives information about the frequency of the data set and about the consequent clip level
applied. The percentage of flags applied to the observation before (input XX and YY flagged) and
after (output XX and YY flagged) the clipper is given as well. If the percentage of flags due to the
algorithm is large (≥ 20%) it is strongly suggested to apply the standard demixing procedure.

In Fig. 3 an example of the result from this algorithm is shown. In the top left panel, the amplitude ver-
sus time of the A-team sources VirA, CygA, CasA, and TauA, simulated as described in Sect. 2.3.3.1,
during an HBA observation of 3C 299 (PI: Dr. Chiara Ferrari) is shown for a single baseline. Ampli-
tudes larger than 4 Jy are present at the end of the observations. In the top right panel the amplitude
versus time from the same baseline is shown for the raw observed data set. In the real observation, a
pattern can be identified when the simulated A-team sources are above 4 Jy. In the bottom left panel
the amplitude versus time is shown after the standard demixing subtraction of VirA, CygA, CasA,
and TauA, while in the bottom right panel after their flag with the new demixing algorithm with a cut
threshold of 4 Jy.
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Figure 2: Example of amplitude of A-team sources versus time for a single baseline of an HBA
observation. The A-team sources affect the observation just for a fraction of the total observing time.
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Figure 3: Top left: Simulation of the A-team sources VirA, CygA, CasA, and TauA during an HBA
observation of 3C 299 (PI: Dr. Chiara Ferrari). Top right: Amplitude versus time from the raw data
set. Bottom left: Amplitude versus time after the standard demixing subtraction of VirA, CygA,
CasA, and TauA. Bottom right: Amplitude versus time after the flag of VirA, CygA, CasA, and TauA
with the new demixing algorithm with a cut threshold of 4 Jy. The sources affecting the data is likely
Cygnus A.
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3 The AOFlagger26

The frequencies covered by LOFAR are considerably affected by RFI, both in the low and the high
band. Without proper flagging of the RFI, the RFI affects the image quality or can make calibration
fail. This chapter describes how to analyze and flag LOFAR observations using the AOFlagger.

In most cases, one would normally use the AOFlagger step in NDPPP with the default settings to flag
the data. In this chapter we look at what the flagger does and how to alter its behaviour.

3.1 Tutorial

We will use the following measurement in this tutorial on the CEP clusters:

/globaldata/COOKBOOK/Tutorial/3c295/data/L74759/L74759_SAP000_SB001_uv.MS

The AOFlagger program comes with a tool called rfigui that is part of the “LofIm” environment on
the CEP clusters. If you haven’t done so, load the environment: 27.

> use LofIm

LofIm Thu-build appears to be successful

We will use the rfigui to display the measurement set. The rfigui will not write to the measurement
set, so you do not need to copy the measurement set yet. Use the following command to open the
measurement set in rfigui:

> rfigui /globaldata/COOKBOOK/Tutorial/3c295/data/L74759/L74759_SAP000_SB001_uv.MS

Browsing baselines

A window should pop-up which can be used to select how to open the measurement set. Note that
the visualized column can be selected here, which is useful to analyze data in a different column
(e.g. CORRECTED DATA). Since this is raw data, it will only have a DATA (“observed”) column,
so leave the settings as they are and press “Open”.

Another window will pop-up which allows you to select two antennas, a band and a field. Since
LOFAR measurement sets never have multiple bands or fields, they will always have only one option.
With the two antenna selection boxes, you can select which cross-correlation to visualize. Select
antenna CS002HBA0 in both selection frames and press “Load”. It will take some while before the
visibilities are loaded.

You should now see a dynamic spectrum (time on the x-axis, frequency on the y-axis) of auto-
correlation CS002HBA0 x CS002HBA0. Note several things:

- When you move the mouse over the dynamic spectrum, the status bar will provide some infor-
mation of the visibilities at the location of the mouse.

- At the bottom of the plot is a purple line. The rfigui uses purple to indicate visibilities that are
flagged. In this case, it is flagged because in raw LOFAR data, channel 0 contains invalid data
due to how the poly-phase filter works. The purple overlay can be turned off with the “Original
flags” toggle button in the toolbox.

26The author of this Chapter is André Offringa (andre[dot]offringa[at]anu[dot]edu[dot]au).
27Soon, the aoflagger tools will be removed from LofIm and will require a different use command
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- Note the sharp patterns that recur in a horizontal way, such as at 119.05 and 119.18 MHz. These
are common, and are caused by normal transmitters. Use the mouse to find which features I
mean.

- Around 13.30 h, vertical features are visible. These can be caused by broadband RFI such as
lightning, or by a malfunctioning instrument.

- Finally, there are some big wavy features visible. These are intermodulations in the receivers,
and are only present in auto-correlations (and sometimes in the cross-baseline of a dual split
station, e.g. CS002HBA0 x CS002HBA1).

Auto-correlations are much more sensitive to RFI. Because the auto-correlations are normally not
used in imaging, in fact this RFI situation is not representative. Let’s go to a cross-correlation: press
the “Forward” button. This will load the correlations for the baseline of this antenna by the next
antenna, in this case CS002HBA0 x CS002HBA1. Notice that the RFI situation is much better,
and the dominating features are the consistent transmitters at 119.05 MHz and 119.18 MHz. Press
“Forward” a few more times and notice the changes.

Let’s go to a remote station: go to the “Go” (newer version: “Browse”) menu and select “Go to...”.
Load baseline CS004HBA0 x RS106HBA. Note the smooth vertical features in the background.
These are fringes caused by observed sources. Therefore, a flagging strategy should not flag these.

Plotting & flagging

Power spectra and time-power plots can be helpful to analyze the magnitude of RFI. In menu “Plot”,
select “Power spectrum”. A pop-up window appears with the power over frequency over the selected
region in the main window. The RFI is clearly visible as spikes in the spectrum. Note also that the
bandpass shape is curving down at 119.23 MHz. One normally does not want to include these edge
channels because of these features, and they are therefore cut-off in NDPPP (see the NDPPP tutorial).

Now select “Plot time scatter” in the “Plot” menu, and notice how the RFI looks like in this plot. In
this plot, different colours show the different polarizations. Also try the “mean spectrum” and “power
vs time” plots, and notice how they differ.

Normally, the time-frequency plot shows the Stokes I power of the visibilities. However, internally
AOFlagger has loaded complex correlations for all four polarizations. Select “Data”→“Keep real
data”. Fringes are more pronounced in the real data. When you press one of the “Keep...” options, the
rfigui will no longer keep the other parts in memory. This can be confusing: for example, try selecting
“Data”→“Keep imaginary data” and understand the error message. To see the imaginary data, first
reload the baseline with “Go”→“Go to...” (new version: refresh button). Try analyzing the different
parts of this correlation by using the other “Data”→“Keep...” buttons and reloading the baseline when
necessary.

Before continuing, close the plot window and reload the baseline.

Testing a flagging strategy

Select “Actions”→“Execute strategy”. A progress window will pop-up, which you can close once
the flagging is done. Notice that yellow flags have appeared in the time-frequency plot. The default
flagging strategy has indeed flagged all visible RFI. Additionally, it has flagged a bit of the edge
channels (e.g. in the top-right), because of the curvature in the pass-band at the edges. This is
normally not a problem, since these channels will be cut off with NDPPP.
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Try toggling the yellow flags off and on with the “Alternative flags” button on the toolbar. Before
continuing, make sure that the yellow flags are shown. Plot the power spectrum and time scatter
plots as before. The power spectrum will now have two lines: the original one, and one that shows
the spectrum after the flagged visibilities have been taken off. The time scatter plot will only show
unflagged samples. Indeed, the RFI samples have been removed, and a clear difference between
XX/YY and XY/YX is visible. If you hide the yellow flags and replot the scatter plot, the flagged
samples will be shown again.

Clear the flags by reloading the baseline.

Editing the flagging strategy

Press “Action”→“Edit strategy”. A window will pop-up that shows a tree that represents the flagging
script. Every row is an action, and certain actions can have sub-actions28.

Notice that there are two “SumThreshold” actions: one is in the “iterate 2 times” loop, while the
other is below the loop. When you press one of the SumThreshold actions, a settings box will appear.
Set the “Base sensitivity” to 0.7 and press “Apply” for both SumThreshold actions. Now, rerun the
strategy with “Actions”→“Execute strategy” and notice the difference.

Try playing with the settings below, and rerun the flagger each time. Do not forget to press “Apply”
after changing the settings of an action. If you make modifications you don’t like, you can press the
“Default” button in the edit startegy window to reset the strategy.

- The strategy normally slowly converges by iterating a couple of times. Only in the last SumThresh-
old action, the maximum sensitivity is used. The “Iterate 2 times” action performs this slow
convergence. In the “Iterate 2 times” action, try changing the number of iterations to 1 and see
if this is enough for this baseline.

- Normally, each polarization is searched for RFI. Change the “For each polarization” action so
that only Stokes Q is searched for RFI.

- In the “Statistical flagging” action, play with the “Minimum time ratio” and “Minimum fre-
quency ratio”. For example, is a “Minimum time ratio” of 60% a good setting?

- Try setting the threshold of the “Time selection” action to 2.5.

This subband is a rather good subbands. While for LOFAR many subbands are like this, there are
also subbands which are much worse. Typically you want to try the strategy on some good and bad
subband, as well as on some small on some long baselines. You can chose to flag different subbands
with a different strategy, but in general it is easier to have one generic strategy. It is also generally
better to flag slightly too much than too little. Finally, it is not necessary to consider the flagging
speed.

Once you have made a modified strategy, you can save it with the “Save” button in the “Edit strategy
window”. When saving a strategy, give the filename an extension of “.rfis”. These strategies can be
used by the AOFlagger step inside NDPPP, to flag and average the data at the same time, as well as
that they can be used by the “aoflagger” command line program. It is normally faster to do this with
NDPPP.

28A description of the steps in the pipeline is given in this paper:
http://pos.sissa.it/archive/conferences/107/036/RFI2010_036.pdf.
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Running the aoflagger command line program

We are now going to flag the measurement set without running NDPPP. To do this, we need write
access to the measurement set. Therefore, copy the measurement set mentioned above to your scratch
directory. Measurement sets that are created by the LOFAR correlator have a special “raw” format.
To make the flag table writeable by aoflagger, it is necessary to store the flags with a different format.
This can be done with the following command:

> makeFLAGwritable L74759_SAP000_SB001_uv.MS

Successful read/write open of default-locked table L74759_SAP000_SB001_uv.MS:

23 columns, 5337090 rows

Created new FLAG column; copying old values ...

FLAG column now stored with SSM to make it writable

The measurement set can now be flagged with the aoflagger command. To get a list of commands,
run the program without parameters:

> aoflagger

AOFlagger 2.7.1 (2015-07-01) command line application

This program will execute ...

NB: at present, aoflagger is not properly installed on CEP. If aoflagger is not found, change all calls to:
/cep/aoflagger/current/bin/aoflagger

Two settings need to be changed: i) for large raw sets, it is best to use the indirect reading mode;
ii) since we have made a modified strategy, we want to specify our new strategy. If you are using
aoflagger 2.7, you can immediately specify the .rfis file that you have created in the gui. At the point
of writing, you will need to use a file which has been prepared by me, because there is an issue with
different versions of the gui and the command line aoflagger.

Combined all together, run aoflagger like this:

> aoflagger -indirect-read -strategy ~offringa/tutorials/aoflagger-tutorial.rfis \

L74759_SAP000_SB001_uv.MS

AOFlagger 2.7.1 (2015-07-01) command line application

...

0% : +-+-+-+-+-+-Initializing...

...

Please note that the current working directory will be used as a temporary storage location, and a lot
of temporary data will be written there. Once the flagger is done, you can open the measurement set
in the rfigui, and the found flags will be shown with purple.

3.2 Documentation

The manual for AOFlagger can be found on the site http://aoflagger.sourceforge.net/. The
properties and performance of the AOFlagger have been described in the following papers:

• Post-correlation radio frequency interference classification methods, http://arxiv.org/abs/
1002.1957.

• A morphological algorithm for improving radio-frequency interference detection, http://arxiv.
org/abs/1201.3364
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4 The Default Pre-Processing Pipeline (DPPP)29

DPPP (default pre-processing pipeline) is the initial processing routine for LOFAR data. It is capable
of flagging, averaging, gain calibration, and various other operations described below (see following
sections for more details). It is possible to define an arbitrary operation in Python (or C++), which
could be used for trying out new operations.

1. Flagging (automatic or manual) including the AOFlagger - Sect. 3)

2. Average in time and/or frequency

3. Phase shift to another phase center

4. Count flags and writing the counts into a table for plotting purposes.

5. Combine subbands into a single MeasurementSet

6. Demix and subtract A-team sources outside the field of view

7. Add stations to form a superstation (for long baselines)

8. Filter out stations, baselines, channels, times

9. Predict a sky model

10. Apply or de-apply the LOFAR beam model

11. Do gain calibration

12. Apply calibration solutions

13. An arbitrary step defined in user code (C++ or Python)

Each of these operations works on the output of the previous one in a streaming way (thus without
intermediate I/O to disk). The operations can be combined in any way. The same type of operation can
be used multiple times with probably different parameters. The operations are defined in a so-called
parset file, a text file containing key-value pairs defining the operations (steps) and their parameters.

The ability to execute an arbitrary DPPP step is implemented by means of dynamically loadable
shared libraries or by a script written in Python. Especially the latter is a nice way to add experimental
operations to DPPP. It is described in more on the LOFAR wiki.

The input to DPPP is any (regularly shaped) MeasurementSet (MS). Regularly shaped means that
all time slots in the MS must contain the same baselines and channels. Furthermore, the MS should
contain only one spectral window; for a multiband MS this can be achieved by specifying which
spectral window to use. The data in the given column are piped through the steps defined in the
parset file (See Sect. 4.2) and finally written. This makes it possible to e.g. flag at the full resolution,
average, flag on a lower resolution scale, perform more averaging, and write the averaged data to a
new MeasurementSet. If time slots are missing, flagged data containing zeroes are inserted to make
the data nicely contiguous for later processing.

The output can be a new MeasurementSet, but it is also possible to update the flags or data in the
input. When doing operations changing the meta data (e.g., averaging or phase-shifting), it is not

29This section is maintained by Ger van Diepen (diepen[at]astron[dot]nl) and Tammo Jan Dijkema
(dijkema[at]astron[dot]nl).
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possible to update the input MeasurementSet. Any step can be followed by an output step creating (or
updating) a MeasurementSet, whereafter the data can be processed further, possibly creating another
MeasurementSet.

It is possible to combine multiple MeasurementSets into a single spectral window. In this way mul-
tiple subbands can be combined into a single MeasurementSet. Note this is different from python-
casacore’s msconcat command, because msconcat keeps the individual spectral windows, while
DPPP combines them into one.

Detailed information on DPPP can be found here30. For specific questions regarding this software,
you can contact the software developers, Tammo Jan Dijkema (dijkema[at]astron.nl) or Ger van
Diepen (diepen[at]astron.nl).

4.1 How to run DPPP

The proper environment has to be defined to be able to run LOFAR programs such as DPPP. Normally
this is done by the command

use LofIm

Some parameters have to be given to DPPP telling the operations to perform. Usually they are defined
in a parset file (see Sect 4.2). The DPPP task can be run like:

DPPP some.parset

It is also possible to specify parset keys on the command line, which will be added to the keys given
in the (optional) parset file or override them. For example:

DPPP msin=in.MS steps=[] msout=out.MS

does not use a parset file and specifies all keys on the command line. Note this run will copy the given
MeasurementSet, while flagging NaN values.

DPPP some.parset msout.overwrite=true

uses a parset, but adds (or overrides) the key msout.overwrite.
If no arguments are given, DPPP will try to use the DPPP.parset or NDPPP.parset file. If not found,
DPPP will print some help info.

An example NDPPP.parset file is available on CEP2 and CEP3 and can be copied into your working
directory by typing:

cp /globaldata/COOKBOOK/Parset/NDPPP.parset .

DPPP will print outputs to the screen or a logger, including some brief statistics like the percentage
of data being flagged for each antenna and frequency channel.
The next sections give some example DPPP runs. They only show a subset of the available parameters.

DPPP is described in more detail on the LOFAR Operations wiki which also contains several exam-
ples. It also contains a description of all its parameters

30http://www.lofar.org/wiki/doku.php?id=public:user_software:ndppp
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4.1.1 Copy a MeasurementSet and calculate weights

The raw LOFAR MeasurementSets are written in a special way. To make them appear as ordinary
MeasurementSets a special so-called storage manager has been developed, the LofarStMan. This
storage manager is part of the standard LOFAR software, but cannot be used (yet) in a package like
CASA. To be able to use CASA to inspect the raw LOFAR data, a copy of the MeasurementSet has
to be made which can be done with a parset like:

msin = in.ms

msin.autoweight = true

msout = out.ms

steps = []

Apart from copying the input MS, it will also flag NaNs and infinite data values. Furthermore the
second line means that proper data weights are calculated using the auto-correlations. The latter is
very useful, because the LOFAR online system only calculates simple weights from the number of
samples used in a data value.

4.1.2 Count flags

The percentages of flagged data per baseline, station, and frequency channel can be made visible
using:

msin = in.ms

msout =

steps = [count]

The output parameter is empty meaning that no output will be written. The steps parameter defines
the operations to be done which in this case is only counting the flags.

4.1.3 Preprocess a raw LOFAR MS

The following example is much more elaborate and shows how a typical LOFAR MS can be prepro-
cessed.

msin = in.ms

msin.startchan = nchan/32 #1

msin.nchan = nchan*30/32

msin.autoweight = true

msout = out.ms

steps = [flag,avg] #2

flag.type = aoflagger #3

flag.memoryperc = 25

avg.type = average #4

avg.freqstep = 60

avg.timestep = 5

1. Usually the first and last channels of a raw LOFAR dataset are bad and excluded. Because
the number of frequency channels of a LOFAR observations can vary (typical 64 or 256), an
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elaborate way is used to specify the first and number of channels to use. They are specified as
expressions where the ’variable’ nchan is predefined as the number of input channels.
Note that it might be better to flag the channels instead of removing them. In that way no gaps
are introduced when concatenating neighbouring subbands.

2. Two operations are done: flagging followed by averaging. The parameters for these steps are
specified thereafter using the step names defined in the steps parameter. Note that arbitrary step
names can be used, but for clarity they should be meaningful.

3. A step is defined by various parameters. Their names have to be prefixed with the step name to
connect them to the step. In this way it is also possible to have multiple steps of the same type
in a single DPPP run.
Usually the type of step has to be defined, unless a step name is used representing a type. In
this case the aoflagger is used, an advanced data flagger developed by André Offringa. This
flagger works best for large time windows, so it tries to collect as many data in memory as
possible. However, to avoid memory problems this step will not use more than 25% of the
available memory.

4. The next step is averaging the data, 60 channels and 5 time slots to a single data point. Averag-
ing is done in a weighted way. The new weight is the sum of the original weights.

In DPPP the data flows from one step to another. In this example the flow is read-flag-average-write.
The data of a time slot flows to the next step as soon as a step has processed it. In this case the flag
step will buffer a lot of time slots, so it will take a while before the average step receives data. Using
its parset parameters, each step decides how many data it needs to buffer.

4.1.4 Update flags using the preflagger

The preflagger step in DPPP makes it possible to flag arbitrary data, for example baselines with
international stations.

msin = in.ms

msout =

steps = [flag]

flag.type = preflagger

flag.baseline = ![CR]S*

No output MS is given meaning that the input MS will be updated. Note that the msout always needs
to be given, so one explicitly needs to tell that an update should be done.
The preflagger makes it possible to flag data on various criteria. This example tells that baselines
containing a non core or remote station have to be flagged.
Note that in this way the baselines are flagged only, not removed. The Filter step described hereafter
can be used to remove baselines or channels.

4.1.5 Remove baselines and/or channels

The filter step in DPPP makes it possible to remove baselines and/or leading or trailing channels. In
fact, it should be phrased in a better way: to keep baselines and channels. An output MS name must
be given, because data are removed, thus the meta data changes.
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msin = in.ms

msout = out.ms

steps = [filter]

filter.type = filter

filter.baseline = [CR]S*

If this would be the only step, it has the same effect as using msselect with deep=true.
The filter step might be useful to remove, for example, the superterp stations after they have been
summed to a single superstation using a stationadder step.

The filter step has the option (using the remove parameter) to remove the stations not being used from
the ANTENNA subtable (and other subtables) and to renumber the remaining stations. This will also
remove stations filtered out before, even if done in another program like msselect). In this way it
can be used to ’normalize’ a MeasurementSet.

4.1.6 Combining stations into a superstation

The stationadder step in DPPP makes it possible to add stations incoherently forming a superstation.
This is particularly useful to combine all superterp stations, but can, for instance, also be used to add
up all core stations.
This step does not solve or correct for possible phase errors, so that should have been done previously
using BBS. However, this might be added to a future version of DPPP.

msin = in.ms

msout = out.ms

steps = [add]

add.type = stationadder

add.stations = {CSNew:[CS00[2-6]*]}

This example adds stations CS002 till CS006 to form a new station CSNew. The example shows that
the parameter stations needs to be given in a Python dict-like way. The stations to be added can be
given as a vector of glob patterns. In this case only one pattern is given. Note that the wildcard asterix
is needed, because the station name ends with LBA or HBA (or even HBA0 or HBA1).

In the example above the autocorrelations of the new station are not written. That can be done by
setting parameter autocorr. By default they are calculated by summing the autocorrelations of the
input stations. By setting parameter sumauto to false, they are calculated from the crosscorrelations
of the input stations.

4.1.7 Update flags for NaNs

Currently it is possible that BBS writes NaNs in the CORRECTED DATA column. Such data can
easily be flagged by DPPP.

msin = in.ms

msin.datacolumn = CORRECTED_DATA

msout = .

steps = []

DPPP will always test the input data column for NaNs. However, if no steps are specified, DPPP will
not update the flags in the MS. An update can be forced by defining the output name as a dot. Giving
the output name the same name as the input has the same effect.
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4.1.8 Creating another data column

When updating a MeasurementSet, it is possible to specify another data column. This can, for in-
stance, be used to clone the data column.

msin = in.ms

msin.datacolumn = DATA

msout = .

msout.datacolumn = CORRECTED_DATA

steps = []

In this way the MeasurementSet will get a new column CORRECTED DATA containing a copy of
DATA. It can be useful when thereafter, for example, a python script operates on CORRECTED DATA.

4.1.9 Demixing

The so-called ”demixing” procedure should be applied to all LBA (and sometimes HBA) data sets
to remove from the target visibilities the interference of the strongest radio sources in the sky (the so
called A-team: CasA, CygA, VirA, etc...). Removing this contribution is essential to make it possible
to properly calibrate the target field. To understand whether demixing is needed for your data, you are
suggested to inspect the elevation of the A-team sources during your observation. By combining this
information with the angular distance of the A-team from your target, you can have a clear picture
of how critical is to apply this algorithm to your data to improve the calibration and imaging of the
visibilities. This overview is provided by the script plot Ateam elevation.py, which is described
in Sect. 2.

There are two ways to do the demixing:

• The old demixer will demix in the same way for the entire observation without taking temporal
variations into account. One can define:

– The baselines to use.

– The (A-team) sources to solve for and to subtract.

– If the target has to be ignored, solved or deprojected.

– Possibly different time and frequency averaging factors to use for demix and subtract.

• Recently a new (smart)demixing scheme (designed by Reinout van Weeren) has been added to
DPPP. Basically it works the same as the old demixer, but for each time window it estimates
the data by evaluating a rough model of the A-team sources and target. Using those data it tests
which sources have to be demixed, which baselines should be used, and if the target has to be
ignored, solved, or deprojected. The LOFAR beam is taken into account in estimate, solve, and
subtract. In this scheme one can specify:

– A detailed model of the A-team sources to be used in the solve/subtract.

– A rough model of the A-team sources to be used in the estimation. If not given, the
detailed model is used.

– A model of the target field which can be obtained using e.g. gsm.py.

– The baselines to be used in the demixer. Note that the estimation step might exclude
baselines for a given time window.
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Figure 4: Top:the elevation and angular distance of the A-team from the target field centered on
B1835+62. This plot shows that during this observation CygA and CasA are very high in elevation
and pretty close to our target (24 and 33 degrees, respectively). Bottom left: target visibilities before
demixing - the interference of Cas A and Cyg A with the target visibilities is the cause of the bump
in the data in the second part of the observation. Bottom right: the contributions of the two A-team
sources is gone. This is particularly evident in the second part of the observation.
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– Various threshold and ratio values to test which sources, etc. to use.

Below, an example old demixer parset is given:

msin = in.ms

msout = out.ms

steps = [demix]

demix.type = demixer

demix.subtractsources=[CygA, CasA, VirA]

demix.targetsource=3C196

demix.freqstep=16

demix.timestep=10

Following this example, the source models of CygA, CasA, and VirA will be subtracted with the gain
solutions calculated for them. The target source model is also used to get better gain solutions for the
A-team sources.

If no source model is given for the target, the target direction is projected away when calculating the
gains. This should not be done if an A-team source is close to the target. Currently, Science Support
is investigating how close it can be. If too close, one should specify

demix.ignoretarget=true

Examples of demixing performance on real data are given in Figure 4.

4.1.10 Combine MeasurementSets

For further processing it can be useful to combine preprocessed and calibrated LOFAR Measure-
mentSets for various subbands into a single MeasurementSet. In this way BBS can run faster and can
a single image be created from the combined subbands.

msin = somedirectory/L23456_SAP000_SB*_uv.MS.dppp

msin.datacolumn = CORRECTED_DATA

msin.baseline = [CR]S*&

msout = L23456_SAP000_SBcomb_uv.MS.dppp

steps = []

The first line shows that a wildcarded MS name can be given, so all MeasurementSets with a name
matching the pattern will be used. The data of all subbands are combined into a single subband and
the meta frequency info will be updated accordingly.
The second line means that the data in the CORRECTED DATA column will be used and written as
the DATA column in the output MS.
The third line means that only the cross-correlations of the core and remote stations are selected and
written into the output MS. Note this is different from flagging the baselines as shown in the preflagger
example. Input selection means that non-matching baselines are fully omitted, while the preflagger
only flags baselines.
Note that no further operations are needed, thus no steps are given. However, it is perfectly possible
to include any other step. In this case one could use count.

It is important to note that subbands to be combined should be consecutive, thus contiguous in fre-
quency. Otherwise BBS might not be able to handle the MS. This means that the first and last channels
of an MS should not be removed, but flagged instead using the preflagger.
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4.2 The ParSet File

As shown in the examples in the previous section, the steps to perform the flagging and/or averaging
of the data have to be defined in the parset file. The steps are executed in the given order, where the
data are piped from one step to the other until all data are processed. Each step has a name to be used
thereafter as a prefix in the keyword names specifying the type and parameters of the step.

A description of all the parameters that can be used in DPPP can be found online at the address

http://www.lofar.org/wiki/doku.php?id=engineering:software:tools:ndppp.

4.2.1 Input / output parameters

A description of the input/output parameters of DPPP is given below.

msin The msin step defines which MS and which DATA column to use. It is possible to skip leading
or trailing channels. It sets flags for invalid data (NaN or infinite). Dummy, fully flagged data
with correct UVW coordinates will be inserted for missing time slots in the MS. Missing time
slots at the beginning or end of the MS can be detected by giving the correct start and end time.
This is particularly useful for the imaging pipeline where BBS requires that the MSs of all sub
bands of an observation have the same time slots. When updating an MS, those inserted slots
are temporary and not put back into the MS.

When combining multiple MSs into a single one, the names of the input MSs can be given in
two ways using the msin argument.

– The name can be wildcarded as done in, say, bash using the characters *, ?, [], and/or .
The directory part of the name cannot be wildcarded though. For example,

msin=L23456\_SAP000\_SB*\_uv.MS

– A list of MS names can be given like msin=[in1.ms, in2.ms].

The MSs will be ordered in frequency unless msin.orderms=false is given.

It is possible to select baselines to use from the input MS. If a selection is given, all baselines
not selected will be omitted from the output. Note this is different from the Preflagger where
data flags can be set, but always keeps the baselines.

LOFAR data are written and processed on the CEP2 cluster in Groningen. This cluster consists
of the head node lhn001 and the compute/storage nodes locus001..100. Different subbands are
stored on different nodes, and it may be necessary to search them all for the required data.
MeasurementSets are named in the format LXXXXX SAPnnn SBmmm uv.MS, where L stands for
LOFAR, XXXXX is the observation number, nnn is the subarray pointing (beam), and mmm is
the subband.
For example, /data/L32667 SAP000 SB010 uv.MS

msout The msout step defines the output. The input MS is updated if an emtpy output name is given.

Data should be written to /data/scratch/<username> (which may need creating initially).
Output data should not be written back to the storage disks. Also, do not write output data to
/home/<user name>, as space is very limited on this disk.

You can let DPPP create a so-called VDS file, which tells other data processing programs (no-
tably, BBS and mwimager) where the data live. You need a so-called cluster description file for
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this. These can be found in /globaldata/COOKBOOK/files.
(For the curious, the cluster description is a simple ASCII file that should be straightforward to
understand).

4.2.2 Flagging

The properties of the flagging performed through DPPP can be summarized as follows.

• If one correlation is flagged, all correlations will be flagged.

• The msin step flags data containing NaNs or infinite numbers.

• A PreFlagger step can be used to flag (or unflag) on time, baseline, elevation, azimuth, simple
uv-distance, channel, frequency, amplitude, phase, real, and imaginary. Multiple values (or
ranges) can be given for one or more of those keywords. A keyword matches if the data matches
one of the values. The results of all given keywords are AND-ed. For example, only data
matching given channels and baselines are flagged.

Keywords can be grouped in a set making it a single (super) keyword. Such sets can be OR-ed
or AND-ed. It makes it possible to flag, for example, channel 1-4 for baseline A and channel
34-36 for baseline B. Below it is explained in a bit more detail.

• A UVWFlagger step can be used to flag on UVW coordinates in meters and/or wavelengths. It
is possible to base the UVW coordinates on a given phase center. If no phase center is given,
the UVW coordinates in the input MS are used.

• A MADFlagger step can be used to flag on the amplitudes of the data. It flags based on the
median of the absolute difference of the amplitudes and the median of the amplitudes. It uses a
running median with a box of the given size (number of channels and time slots). It is a rather
expensive flagging method with usually good results.

It is possible to specify which correlations to use in the MADFlagger. Flagging on XX only,
can save a factor 4 in performance.

• An AOFlagger step can be used to flag using the AOFlagger. Usually it is faster than using
rficonsole itself, because it does not reorder the data. Instead it flags in a user-defined time
window. It is possible to specify a time window overlap to reduce possible edge effects. The
larger the time window, the better the flagging results. It is possible to specify the time window
by means of the amount of memory to be used.
The flagging strategy can be given in an rficonsole strategy file. Such a file should not contain a
’baseline iteration’ command, because DPPP itself iterates over the baselines. Default strategy
files exist for LBA and HBA observations (named LBAdefault and HBAdefault).
Note that the AOFlagger flags more data if there is a large percentage of zero data in the
time window. This might happen if zero data is inserted by DPPP for missing time slots in a
MeasurementSet or for missing subbands when concatenating the MeasurementSets of multiple
subbands.
By default the QUALITY subtables containing flagging statistics are written. They can be
inspected using aoqplot.

4.2.3 Averaging

The properties of the averaging performed through DPPP can be summarized as follows.
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• Unflagged visibility data are averaged in frequency and/or time taking the weights into account.
New weights are calculated as the sum of the old weights.

Some older LOFAR MSs have weight 0 for unflagged data points. These weights are set to 1.

• The UVW coordinates are also averaged (not recalculated).

• It fills the new column LOFAR FULL RES FLAG with the flags at the original resolution for
the channels selected from the input MS. It can be used by BBS to deal with bandwidth and
time smearing.

• Averaging in frequency requires that the average factor fits integrally. E.g. one cannot average
every 5 channels when having 256 channels.

• When averaging in time, dummy time slots will be inserted for the ones missing at the end. In
that way the output MeasurementSet is still regular in time.

• An averaged point can be flagged if too few unflagged input points were available

4.3 Flag statistics

Several steps shows statistics during output about flagged data points.

• A flagger step shows the percentage of visibilities flagged by that step. It shows:

1. The percentages per baseline and per station.

2. The percentages per channel.

3. The number of flagged points per correlation, i.e. which correlation triggered the flagging.
This may help in determining which correlations to use in the MADFlagger.

• An AOFlagger, PreFlagger, and UVWFlagger step show the percentage of visibilities flagged
by that flagging step. It shows percentages per baseline and per channel.

• The msin step shows the number of visibilities flagged because they contain a NaN or infinite
value. It is shown which correlation triggered the flagging, so usually only the first correlation
is really counted.

• A Counter step can be used to count and show the number of flagged visibilities. Such a step
can be inserted at any point to show the cumulative number of flagged visibilities. For example,
it can be defined as the first and last step to know how many visibilities have been flagged in
total by the various steps.

Furthermore the AOFlagger step will by default write some extra QUALITY subtables in the output
MeasurementSet containing statistical information about its performance. These quality data can be
inspected using the aoqplot tool.
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5 Gain calibration with DPPP31

The most common gain calibration procedures can be performed32 with DPPP. Formerly BBS (Ap-
pendix A) was the standard calibration tool, but for the supported calibration scenarios DPPP is at
least 10 times faster. For calibration scenarios that are not (yet) supported in DPPP, is may be neces-
sary to resort to BBS, see (Appendix A).

The calibration problem that DPPP can solve is the following: find a set of Jones matrices {Gp}
(one for every station p) which corrects the measured visibilities Vpq to closely resemble the model
visibilities Mpq (for all baselines pq), i.e. minimize

‖Vpq−GpMpqGH
q ‖ (4)

The matrices G will be referred to as gain matrices although they correct for more than just electrical
gains.

5.1 Calibration variants

There are various options to restrict the shape of G. The main difference is whether to solve for the
amplitude of the solutions or only for the phase. Also, the number of free parameters can be restricted.

Shape Calibration type Free parameters

Gp =

(
A(p)

xx eφ
(p)
xx A(p)

xy eφ
(p)
xy

A(p)
yx eφ

(p)
yx A(p)

yy eφ
(p)
yy

)
fulljones 8

Gp =

(
A(p)

xx eφ
(p)
xx 0

0 A(p)
yy eφ

(p)
yy

)
diagonal 4

Gp =

(
eφ

(p)
xx 0

0 eφ
(p)
yy

)
phaseonly 2

Gp =

(
eφ (p)

0
0 eφ (p)

)
scalarphase 1

5.2 Make a skymodel

To perform a calibration, you need a sky model (see Section ). You can get one from the catalogs in
gsm.py (see Section ), or make your own. To make the sky model (in text format) readable by DPPP,
it needs to be converted from plain text to a sourcedb. That is done with the program makesourcedb.
Usually the sourcedb is called ’sky’ and copied into the data set you’re reducing. If you put it else-
where, it is customary to give it the extension .sourcedb.

makesourcedb in=my.skymodel out=L123.MS/sky format=’<’

The part format=’<’ is necessary to convince makesourcedb that the format is given by the first line
in the file. You can use the program showsourcedb to verify the output sourcedb.

31This section is maintained by Tammo Jan Dijkema (dijkema[at]astron[dot]nl).
32http://www.lofar.org/operations/doku.php?id=public:user_software:ndppp#gaincal
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It is also possible to calibrate on model visibilities – in this case no sky model is necessary. See the
online documentation of DPPP, the parameter to look for is usemodelcolumn.

5.3 Calibration

To perform a phase only calibration, the following parset can be given to DPPP.

msin=L123.MS

msout=

steps=[ gaincal]

gaincal.sourcedb=L123.MS/sky

gaincal.parmdb=L123.MS/instrument

gaincal.caltype=phaseonly

gaincal.solint =2

gaincal.nchan=0

The part solint=2 specifies that we only want one solution for every two time intervals. This can
improve the signal to noise ratio – but one should have a physical argument that tells that the solutions
do not change within the solution interval. The part nchan=0 tells that one solution is computed that
is assumed constant over the entire band. Setting it to e.g. nchan=1 will compute a separate solution
for each channel (again, at the cost of signal to noise).

The parset above performs a phase only calibration, and stores the calibration result in the parmdb
(parameter database) L123.MS/instrument. This file will be created if it is not there yet. If it does
exist, the solution in it will be overwritten. Note that it is a convention to save the calibration tables
in a file (casa table) called instrument in the data set being reduced. If you store it outside the data
set, the convention is to give it the extension .parmdb.

The solution table can (and should!) be inspected with parmdbplot.py, see Section A.12. Note
that this calibration step does not yet change the visibilities. To perform complex operations on the
solutions, like smoothing them, LoSoTo can be used, see Chapter 6.

5.4 Applying solutions

To apply the calibration solutions in DPPP, the step applycal can be used. The following parset applies
the solutions that were obtained by gaincal. Note that currently. the solution table is only written at
the very end of DPPP, so that it is not possible to solve and apply the solutions in the same run of
DPPP.

msin=L123.MS

msout=.

msout.datacolumn=CORRECTED_DATA

steps=[ applycal]

applycal.parmdb=L123.MS/instrument

It is a convention to write the output to the column CORRECTED DATA, to avoid changing the original
data column DATA.

5.5 Transferring solutions and the beam

When transferring solutions from a calibrator to a target, the sensitivity of the beam across the sky
needs to be taken into account: the instrument does not have the same sensitivity at the position of the
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calibrator field as at the position of the target field. You can compensate for this by using a model for
the LOFAR beam. Effectively, then instead of equation 4 the following equation is solved for {Gp}:

‖Vpq−GpBpMpqBH
q GH

q ‖ (5)

In the case of transferring solutions, the calibration is usually about the amplitude and the calibration
type should be either diagonal or fulljones.

A parset for calibrating on the calibrator field, taking the beam into account, is given below:

msin=L123.MS

msout=

steps=[ gaincal]

gaincal.sourcedb=L123.MS/sky

gaincal.parmdb=L123.MS/instrument

gaincal.caltype=diagonal

gaincal.usebeammodel=true

5.6 Applying the beam

When applying the solutions of the calibrator to the target, you should probably not apply the beam, so
that another round of calibration is possible afterwards. Only after you are done with all calibration,
the beam should be applied (just before imaging). Applying the beam is possible with

msin=L123.MS

msin.datacolumn=CORRECTED_DATA

msout=.

msout.datacolumn=CORRECTED_DATA

steps=[ applybeam]
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6 LoSoTo: LOFAR Solution Tool33

The LOFAR Solution Tool (LoSoTo) is a Python package which handles LOFAR solutions in a variety
of ways. The data files used by LoSoTo are not in the standard parmdb format used by BBS/NDPPP
(e.g. the “instrument” table). LoSoTo uses instead an innovative data file, called H5parm, which is
based on the HDF5 standard34.

WARNING: LoSoTo is still in a beta version! Please report bugs to fdg@hs.uni-hamburg.de
and drafferty@hs.uni-hamburg.de. LoSoTo will be soon integrated in the LOFAR environment
but up to that moment to use it on cep3 users have to:

source /home/fdg/scripts/losoto/tools/lofarinit.[c]sh

6.1 H5parm

H5parm is simply a list of rules which specify how data are stored inside the tables of an HDF5
compliant file. We can say that H5parm relates to HDF5 in the same way that parmdb relates to
MeasurementSet. The major advantage of using HDF5 is that it is an opensource project developed
by a large community of people. It has therefore a very easy-to-use Python interface (the pytables

module) and it has better performance than competitors.

6.1.1 HDF5 format

There are three different types of nodes used in H5parm:

Array: all elements are of the same type.

CArray: like Arrays, but here the data are stored in chunks, which allows easy access to slices of
huge arrays, without loading all data in memory. These arrays can be much larger than the
physically available memory, as long as there is enough disk space.

Tables: each row has the same fields/columns, but the type of the columns can be different within
each other. It is a database-like structure.

The use of tables to create a database-like structure was investigated and found to be not satisfactory
in terms of performance. Therefore LoSoTo is now based on CArrays organized in a hierarchical
fashion which provides enough flexibility but preserves performance.

6.1.2 Characteristics of the H5parm

H5parm is organized in a hierarchical way, where solutions of multiple datasets can be stored in
the same H5parm (e.g. the calibrator and the target field solutions of the same observation) into
different solution-sets (solset). Each solset can be thought as a container for a logically related group
of solutions. Although its definition is arbitrary, usually there is one solset for each beam and for each
scan. Each solset can have a custom name or by default it is called sol### (where ### is an increasing
integer starting from 000).

33This section is maintained by Francesco de Gasperin (fdg@hs.uni-hamburg.de).
34http://www.hdfgroup.org/HDF5/

42

http://www.hdfgroup.org/HDF5/


Each solset contains an arbitrary number of solution-tables (soltab) plus a couple of Tables with some
information on antenna locations and pointing directions. Soltabs also can have an arbitrary name.
If no name is provided, then it is by default set to the solution-type name (amplitudes, phases, clock,
tec...) plus again an increasing integer (e.g. amplitudes000, phase000...). Since soltab names are
arbitrary the proper solution-type is stated in the parmdb type attribute of the soltab node. Supported
values are: amplitude, phase, scalarphase, rotation, clock, tec, tecscreen and phase offset.

Soltabs are also just containers; inside each soltab there are several CArrays which are the real data
holders. Typically there are a number of 1-dimensional CArrays storing the axes values (see Table 3)
and two n-dimensional (where n is the number of axes) CArrays, “values” and “weights”, which
contain the solution values and the relative weights.

Soltabs can have an arbitrary number of axes of whatever type. Here we list some examples:

amplitudes : time, freq, pol, dir, ant

phases : time, freq, pol, dir, ant

clock : time, ant, [pol]

tec : time, ant, dir, [pol]

foobar : foo, bar...

Theoretically the values/weights arrays can be only partially populated, leaving NaNs (with 0 weight)
in the gaps. This allows to have e.g. different time resolution in the core stations and in the remote
stations (obviously this ends up in an increment of the data size). Moreover, solution intervals do
not have to be equally spaced along any axis (e.g. when one has solutions on frequencies that are
not uniformly distributed across the band). The attribute axes of the “values” CArrays states the axes
names and, more important, their order.

Axis name Format Example
time (s) float64 [4.867e+09, 4.868e+09, 4.869e+09]
freq (Hz) float64 [120e6,122e6,130e6...]
ant string (16 char) [CS001LBA]
pol string (2 char) [?XX?, ?XY?, ?RR?, ?RL?]
dir string (16 char) [?3C196?,?pointing?]
val float64 [34.543,5345.423,123.3213]
weight (0 = flagged) float32 [from 0 to 1] [0,1,0.9,0.7,1,0]

Table 3: Default names and formats for axes values.

6.1.3 Example of H5parm content

Here is an example of the content of an H5parm file having a single solset (sol000) containing a single
soltab (amplitude000).

# this is the solset

/sol000 (Group) ’’

# this is the antenna Table

/sol000/antenna (Table(36,), shuffle, lzo(5)) ’Antenna names and positions’
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description := {

"name": StringCol(itemsize=16, shape=(), dflt=’’, pos=0),

"position": Float32Col(shape=(3,), dflt=0.0, pos=1)}

byteorder := ’little’

chunkshape := (2340,)

# this is the source Table

/sol000/source (Table(1,), shuffle, lzo(5)) ’Source names and directions’

description := {

"name": StringCol(itemsize=16, shape=(), dflt=’’, pos=0),

"dir": Float32Col(shape=(2,), dflt=0.0, pos=1)}

byteorder := ’little’

chunkshape := (2730,)

# this is the soltab

/sol000/amplitude000 (Group) ’amplitude’

# this is the antenna axis, with all antenna names

/sol000/amplitude000/ant (CArray(36,), shuffle, lzo(5)) ’’

atom := StringAtom(itemsize=8, shape=(), dflt=’’)

maindim := 0

flavor := ’numpy’

byteorder := ’irrelevant’

chunkshape := (36,)

# direction axis, with all directions

/sol000/amplitude000/dir (CArray(2,), shuffle, lzo(5)) ’’

atom := StringAtom(itemsize=8, shape=(), dflt=’’)

maindim := 0

flavor := ’numpy’

byteorder := ’irrelevant’

chunkshape := (2,)

# frequency axis, with all the frequency values

/sol000/amplitude000/freq (CArray(5,), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (5,)

# polarization axis

/sol000/amplitude000/pol (CArray(2,), shuffle, lzo(5)) ’’

atom := StringAtom(itemsize=2, shape=(), dflt=’’)

maindim := 0

flavor := ’numpy’

byteorder := ’irrelevant’

chunkshape := (2,)

# time axis
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/sol000/amplitude000/time (CArray(4314,), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (4314,)

# this is the CArray with the solutions, note that its shape is the product of all axes

shapes /sol000/amplitude000/val (CArray(2, 2, 36, 5, 4314), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (1, 1, 10, 2, 1079)

# weight CArray, same shape of the "val" array

/sol000/amplitude000/weight (CArray(2, 2, 36, 5, 4314), shuffle, lzo(5)) ’’

atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0

flavor := ’numpy’

byteorder := ’little’

chunkshape := (1, 1, 10, 2, 1079)

6.1.4 H5parm benchmarks

For a typical single-SB parmdb of 37 MB the relative H5parm is around 5 MB large. A typical
H5parm for an 8 hrs observation using 244 SBs is ∼ 3 GB (LBA) and ∼ 5 GB (HBA). Reading times
between compressed and non-compressed H5parms are comparable within a factor of 2 (compressed
is slower). Compared to parmdb the reading time of the python implementation of H5parm (mid-
compression) is a factor of a few (2 to 10) faster.

This is a benchmark example:

INFO: H5parm filename = L99289-cal_SB081.h5

INFO: parmdb filename = L99289-cal_SB081.MS/instrument/

INFO: ### Read all frequencies for a pol/dir/station

INFO: PARMDB -- 1.9 s.

INFO: H5parm -- 0.28 s.

INFO: ### Read all times for a pol/dir/station

INFO: PARMDB -- 1.85 s.

INFO: H5parm -- 0.28 s.

INFO: ### Read all rotations for 1 station (slice in time)

INFO: PARMDB -- 1.94 s.

INFO: H5parm -- 0.3 s.

INFO: ### Read all rotations for all station (slice in time)

INFO: PARMDB -- 8.05 s.

INFO: H5parm -- 0.26 s.

INFO: ### Read all rotations for remote stations (slice in ant)

INFO: PARMDB -- 3.81 s.

INFO: H5parm -- 1.65 s.
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INFO: ### Read all rotations for a dir/station and write them back

INFO: PARMDB -- 2.01 s.

INFO: H5parm -- 0.47 s.

INFO: ### Read and tabulate the whole file

INFO: parmdb -- 0.67 s.

INFO: H5parm -- 0.02 s.

6.2 LoSoTo

LoSoTo is made by several components. It has some tools used mostly to transform parmdb to
H5parm and back (see Sec. 6.2.1). A separate program (losoto.py) is instead used to perform
operations on the specified H5parm. losoto.py receives its commands by reading a parset file that
has the same syntax of BBS/NDPPP parsets (see Sec.6.2.3).

6.2.1 Tools

There are currently four tools shipped with LoSoTo:

parmdb benchmark.py provide a comparison between parmdb and H5parm for reading/writing

parmdb collector.py fetches parmdb tables from the cluster using a gds file

H5parm importer.py creates an h5parm file from an instrument table (parmdb) or a globaldb cre-
ated by hand or with parmdb collector.py

H5parm merge.py copy a solset from an H5parm files into another one

H5parm exporter.py export an H5parm to a pre-existing parmdb

The usage of these tools is described in Sec. 6.3.

6.2.2 Operations

These are the operations that LoSoTo can perform:

ABS : takes the absolute value of the solutions (probably most meaningful for amplitudes).

CLIP : clip all solutions n times above and 1/n times below the median value (only for amplitudes).

CLOCKTEC : perform clock/tec separation (code maintained by Maaijke Mevius).

DUPLICATE : duplicate a solution table.

FARADAY : extract Faraday rotation solutions from the difference between RR and LL phase solu-
tions.

FLAG : iteratively remove a general trend from the solutions and then perform noisy region detection
and outlier rejection. For phases this is done in real/imaginary space, for amplitude in log space.

FLAGEXTEND : flag a point if surrounded by enough other flags in a chosen N-dimensional space
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Figure 5: Example of phase (left and amplitude (right) solutions after the FLAG operation. Image
made with the PLOT operation. White pixels are flagged data, every plot is an antenna, X-axis is time
and Y-axis is frequency.

INTERP : interpolate solutions along whatever (even multiple) axis. Typically one can interpolate
in time and/or frequency. This operation can also simply rescale the solutions to match the
median of the calibrator solution on a specific axis.

NORM : normalize solutions of an axis to have a chosen average value.

PLOT : plot solutions in 1D/2D plots.

PLOTTECSCREEN : plot TEC screen (code maintained by David Rafferty).

RESET : reset the solution values to 1 for all kind of solutions but for phases which are set to 0.

RESIDUAL : subtract a table from another (e.g. remove TEC from phases).

REWEIGHT : manually set weights to a specific values (can be used to hand-flag data, e.g. a bad
antenna/timerange).

SMOOTH : smooth solutions using a multidimensional running median. The n-dimensional surface
generated by multiple axis (e.g. time and freq) can be smoothed in one operation using a
different FWHM for each axis.

TECFIT : fit TEC values per direction and station to phase solutions (code maintained by David
Rafferty).

TECSCREEN : fit TEC screens to TEC values (code maintained by David Rafferty).

EXAMPLE : this is just an example operation aimed to help developing of new operations.

Beside these operations which require the activation through a LoSoTo parset file (see Sec. 6.2.3), one
can call losoto.py with the “-i” option passing an H5parm as argument to obtain some information
on it. Information on a specific subset of solsets can be obtained with “-i -f solset name(s)”. If “-i”
is combined with “-v” (verbose), LoSoTo will take a bit more time and outputs also the percentage of
flagged data and the values of all axes will be written in a file (e.g. file.h5-axes values.txt). Using the
“-d” options instead one can delete a chosen soltab (e.g. “losoto.py -d sol000/phase000 file.h5”).

47



$ losoto.py -i -v single.h5

WARNING: Axes values saved in single.h5-axes_values.txt

Summary of single.h5

Solution set ’sol000’:

======================

Directions: 3C196

pointing

Stations: CS001LBA CS002LBA CS003LBA CS004LBA

CS005LBA CS006LBA CS007LBA CS011LBA

CS017LBA CS021LBA CS024LBA CS026LBA

CS028LBA CS030LBA CS031LBA CS032LBA

CS101LBA CS103LBA CS201LBA CS301LBA

CS302LBA CS401LBA CS501LBA RS106LBA

RS205LBA RS208LBA RS305LBA RS306LBA

RS307LBA RS310LBA RS406LBA RS407LBA

RS409LBA RS503LBA RS508LBA RS509LBA

Solution table ’amplitude000’ (type: amplitude): 2 pols, 2 dirs, 36 ants, 5 freqs,

4314 times

Flagged data 1.131%

History:

2014-12-17 13:29:25: CREATE (by H5parm_importer.py from

lof011:/home/fdg/scripts/losoto/examples/single.globaldb)

Solution table ’rotation000’ (type: rotation): 2 dirs, 36 ants, 5 freqs, 4314 times

Flagged data 1.131%

History:

2014-12-17 13:29:25: CREATE (by H5parm_importer.py from

lof011:/home/fdg/scripts/losoto/examples/single.globaldb)

Solution table ’phase000’ (type: phase): 2 pols, 2 dirs, 36 ants, 5 freqs, 4314 times

Flagged data 1.131%

History:

2014-12-17 13:29:25: CREATE (by H5parm_importer.py from

lof011:/home/fdg/scripts/losoto/examples/single.globaldb)

6.2.3 LoSoTo parset

This is an example parset for the interpolation in amplitude:

LoSoTo.Steps = [interp]

LoSoTo.Solset = [sol000]

LoSoTo.Soltab = [sol000/amplitude000]
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LoSoTo.SolType = [amplitude]

LoSoTo.ant = []

LoSoTo.pol = [XX,YY]

LoSoTo.dir = []

LoSoTo.Steps.interp.Operation = INTERP

LoSoTo.Steps.interp.InterpAxes = [freq, time]

LoSoTo.Steps.interp.InterpMethod = nearest

LoSoTo.Steps.interp.MedAxes = []

LoSoTo.Steps.interp.Rescale = F

LoSoTo.Steps.interp.CalSoltab = cal000/amplitude000

LoSoTo.Steps.interp.CalDir = 3C295

In the first part of the parset “global” values are defined. These are values named LoSoTo.val name.
In Table 4 the reader can find all the possible global values.

Var Name Format Example Comment
LoSoTo.Steps list of steps [flag,plot,smoothPhases,plot2] sequence of steps names in

order
LoSoTo.Solset list of solset

names
[sol000, sol001] restrict to these solsets

LoSoTo.Soltab list of soltabs:
“solset/soltab”

[sol000/amplitude000] restrict to these soltabs

LoSoTo.SolType list of solution
types

[phase] restrict to soltab of this solu-
tion type

LoSoTo.ant antenna names [CS001 HBA] restrict to these antennas
LoSoTo.pol polarizations [XX, YY] restrict to these polarizations
LoSoTo.dira directions [pointing, 3C196] restrict to these pointing di-

rections
LoSoTo.freq frequencies [30076599.12109375] restrict to these frequencies
LoSoTo.time times [123456789.1234] restrict to these times
LoSoTo.Ncpub integer 10 number of processes to spawn
a it is important to notice that the default direction (e.g. those related to BBS solving for anything
that is not “directional”: Gain, CommonRotationAngle, CommonScalarPhase...) has the direction

named “pointing”. b only some operations are multiprocess.

Table 4: Definition of global variables in LoSoTo parset.

For every stepname mentioned in the global “steps” variable the user can specify step-specific param-
eters using the syntax: LoSoTo.Steps.stepname.val name. At least one of these options must always
be present, which is the “Operation” option that specifies which kind of operation is performed by
that step among those listed in Sec. 6.2.2. All the global variables (except from the “steps” one) are
also usable inside a step to change (override) the selection criteria for that specific step. Selection
can be a string (interpreted as a regular expression), a list of values (exact match) or can have a min/-
max/step value which is activated using the axisName.minmax sintax (e.g. LoSoTo.freq.minmax =
[30e6,1e9,5] to select 1 point every 5 from 30 MHz to 1 GHz). A list of step-specific parameters is
given in https://github.com/revoltek/losoto.

6.3 Usage

This is a possible sequence of commands to run LoSoTo on a typical observation:
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1. Collect the parmdb of calibrator and target:

parmdb_collector.py -v -d "target.gds" -c "clusterdesc" -g globaldb_tgt

parmdb_collector.py -v -d "calibrator.gds" -c "clusterdesc" -g globaldb_cal

where “[target | calibrator].gds” is the gds file (made with combinevds) of all the SB you want to
use. You need to run the collector once for the calibrator and once for the target. “Clusterdesc”
is a cluster description file as the one used for BBS (not stand-alone).

One can create the globaldb also by hand. Just create a directory, copy all the instrument
(parmdb) tables you need calling them: instrument-1, instrument-2... Then copy from one of
the MS (they are all the same) the ANTENNA, FIELD and sky tables. This directory is now a
valid globaldb.

2. Convert the set of parmdbs into an h5parm:

H5parm_importer.py -v tgt.h5 globaldb_tgt

H5parm_importer.py -v cal.h5 globaldb_cal

This command converts ALL the instrument tables (parmdb) inside the globaldb directories in
a single solset inside tgt.h5.

One can then merge the two h5parms in a single file (this is needed if you want to interpo-
late/rescale/copy solutions in time/freq from the cal to the tgt):

H5parm_merge.py -v cal.h5:sol000 tgt.h5:cal000

An easier approach is to directly append the second globaldb to the h5parm file of the first (note
the same name for the h5parm):

H5parm_importer.py -v tgt.h5 globaldb_tgt

H5parm_importer.py -v tgt.h5 globaldb_cal

One can create a h5parm also from a single SB:

H5parm_importer.py -v LXXXXX_3c295.h5 LXXXXX_3c295.MS

This command converts the “instrument” (parmdb) table inside the MS in a solset inside LXXXXX 3c295.h5.
Note that given the definition of globaldb above, a single-SB measurement set is a perfect valid
one.

3. Run LoSoTo using e.g. the parset given in Sec. 6.2.3:

losoto.py -v tgt.h5 losoto-interp.parset

4. Convert back the h5parm into parmdb:

H5parm_exporter.py -v -c tgt.h5 globaldb_tgt

5. Redistribute back the parmdb tables into globaldb tgt that are now updated (inspect with par-
mdbplot), there’s no automatic tool for that yet.
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6.4 Developing in LoSoTo

LoSoTo is much more than a stand alone program, the user can use LoSoTo to play easily with
solutions and to experiment. The code is freely available and is already the result of the collaborative
effort of several people. If interested in developing your own operation, please have a look at: https:
//github.com/revoltek/losoto/.

In the “tools” directory the user can find all the tools described in Sec. 6.2.1 plus some other program.
All these programs are stand-alone. losoto.py is the main program which calls all the operations
(one per file) present in the “operation” directory. It relays on the h5parm.py library which deals
with reading and writing from an H5parm file and the operations lib.py library which has some
functions common to several operations.

An example operation one can use to start coding its own, is present in the “operation” directory under
the name “example.py”. That is the first point to start when interested in writing a new operation.
The most important thing shown in the example operation is the use of the H5parm library to quickly
fetch an write back solutions in the H5parm file.

6.5 Clock/TEC separation

In LoSoTo an algorithm is implemented with which it is possible to separate the BBS phase solutions
into a instrumental delay (clock) and an ionospheric component (TEC, a measure of the differential
ionospheric electron content). This is done using the difference in frequency dependence of both
effects: The phase shift due to a delay error goes as ν , whereas ionospheric refraction gives to first
order an phase shift proportional to 1/ν . Accordingly, one needs to have solutions over a large enough
bandwidth to be able to do the separation 35.

There are three situations for which Clock/TEC separation could be useful. The first is if one needs
to transfer from a calibrator not only the amplitudes, but also the phase solutions, eg. to be able to
combine more sub-bands before doing a phase self-calibration on the target field. Since the iono-
spheric refraction is a direction dependent effect, in most cases it does not make sense to transfer the
ionospheric phases. It is then possible to only apply the clock solutions from the calibrator to the
target field. However, one should take note that the delays between stations drift and therefore this
method is only useful if calibrator data was taken simultaneously with the target field.

A more experimental case for Clock/TEC separation is the fit of a TECscreen that can be applied
during imaging with the AWimager, to correct for the direction dependent ionospheric effects. In this
case, it is good to remove the direction independent instrumental effects as good as possible and only
use the fitted TEC as input for the TECscreen. This has only been tested in very limited cases.

Finally, the TEC solutions of the clock/TEC separation give insight in the general ionospheric con-
ditions of your observation. This could be of relevance if one wants eg. to estimate the noise due to
remaining ionospheric errors.

It is important (especially for LBA) to correct for differential Faraday rotation before attempting to do
a clock/TEC separation on the diagonal phases. The most straightforward way to do this, is to solve
in BBS for diagonal gains and a common rotation angle.

The Clock/TEC fit as it is implemented in LoSoTo, returns per timeslot and station two arrays, one
with clock errors (in s) and one with differential TEC solutions (in TEC-units). Furthermore a constant
(in time) phase offset per station can be estimated. The remaining phase errors (eg. due to cable
reflections) are of second order.

35The exact bandwidth requirements have not been tested yet, but it has been shown that on good S/N (calibrator) HBA
data, it is possible to do the clock/TEC separation with 15 solutions, evenly distributed over 60 MHz.
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It is possible to write the clock solutions to the instrument tables and thus correct for them in BBS.
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7 The WSClean Imager36

WSClean is a command-line imager that is tailered for wide-field imaging. It supports several decon-
volution methods, including multi-scale and multi-frequency deconvolution and an “RM-synthesis”-
deconvolution mode. It also supports correcting images for the LOFAR beam.

To use WSClean on one of the CEP clusters, first include the WSClean environment:

> use Wsclean

A list of command line options can be acquired by running wsclean without parameters:

> wsclean

WSClean version 1.11 (2016-05-25)

This software package is released under the GPL version 3.

...

An extensive manual for WSClean is available on-line, at http://wsclean.sourceforge.net/. It
includes a chapter about LOFAR beam correction. WSClean has also been described in the following
article: http://arxiv.org/abs/1407.1943.

36The author of this chapter is André Offringa (offringa[at]astron[dot]nl).
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8 Source detection and sky model manipulation: PyBDSM and
LSMTool37

8.1 Source detection: PyBDSM

8.1.1 Introduction

PyBDSM (Python Blob Detection and Source Measurement) is a Python source-finding software
package written by Niruj Mohan, Alexander Usov, and David Rafferty. PyBDSM can process FITS
and CASA images and can output source lists in a variety of formats, including makesourcedb (BBS),
FITS and ASCII formats. It can be used interactively in a casapy-like shell or in Python scripts. The
full PyBDSM manual is located at http://www.astron.nl/citt/pybdsm.

8.1.2 Setup

The latest version of PyBDSM is installed on the CEP clusters. To initialize your environment for
PyBDSM, run:

> use Lofar

After initialization, the interactive PyBDSM shell can be started with the command pybdsm and
PyBDSM can be imported into Python scripts with the command from lofar import bdsm.

8.1.3 Tutorials

This section gives examples of using PyBDSM on the following: an image that contains only fairly
simple sources and no strong artifacts, an image with strong artifacts around bright sources, and
an image with complex diffuse emission. It is recommended that interactive mode (enabled with
interactive=True) be used for initial runs on a new image, as this allows the user to check the
background mean and rms images and the islands found by PyBDSM before proceeding to fitting.
Also, if a very large image is being fit, it is often helpful to run on a smaller (but still representative)
portion of the image (defined using the trim box parameter) to verify that the chosen parameters are
appropriate before fitting the entire image.

8.1.3.1 Simple Example A simple example of using PyBDSM on a LOFAR image (an HBA
image of 3C61.1) is shown below. In this case, default values are used for all parameters. Generally,
the default values work well on images that contain relatively simple sources with no strong artifacts.

BDSM [1]: inp process_image

BDSM [2]: filename = ’sb48.fits’

BDSM [3]: go

--------> go()

--> Opened ’sb48.fits’

Image size .............................. : (256, 256) pixels

Number of channels ...................... : 1

Beam shape (major, minor, pos angle) .... : (0.002916, 0.002654, -173.36) degrees

37This section is maintained by David Rafferty (drafferty[at]hs[dot]uni-hamburg[dot]de).
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Frequency of averaged image ............. : 146.497 MHz

Blank pixels in the image ............... : 0 (0.0%)

Flux from sum of (non-blank) pixels ..... : 29.565 Jy

Derived rms_box (box size, step size) ... : (61, 20) pixels

--> Variation in rms image significant

--> Using 2D map for background rms

--> Variation in mean image significant

--> Using 2D map for background mean

Min/max values of background rms map .... : (0.05358, 0.25376) Jy/beam

Min/max values of background mean map ... : (-0.03656, 0.06190) Jy/beam

--> Expected 5-sigma-clipped false detection rate < fdr_ratio

--> Using sigma-clipping thresholding

Number of islands found ................. : 4

Fitting islands with Gaussians .......... : [====] 4/4

Total number of Gaussians fit to image .. : 12

Total flux in model ..................... : 27.336 Jy

Number of sources formed from Gaussians : 6

BDSM [4]: show_fit

--------> show_fit()

========================================================================

NOTE -- With the mouse pointer in plot window:

Press "i" ........ : Get integrated fluxes and mean rms values

for the visible portion of the image

Press "m" ........ : Change min and max scaling values

Press "0" ........ : Reset scaling to default

Click Gaussian ... : Print Gaussian and source IDs (zoom_rect mode,

toggled with the "zoom" button and indicated in

the lower right corner, must be off)

________________________________________________________________________

The figure made by show fit is shown in Figure 6. In the plot window, one can zoom in, save the
plot to a file, etc. The list of best-fit Gaussians found by PyBDSM may be written to a file for use in
other programs, such as TOPCAT or BBS, as follows:

BDSM [5]: write_catalog

--------> write_catalog()

--> Wrote FITS file ’sb48.pybdsm.srl.fits’

The output Gaussian or source list contains source positions, fluxes, etc. BBS patches are also sup-
ported.

8.1.3.2 Image with Artifacts Occasionally, an analysis run with the default parameters does not
produce good results. For example, if there are significant deconvolution artifacts in the image, the
thresh isl, thresh pix, or rms box parameters might need to be changed to prevent PyBDSM
from fitting Gaussians to such artifacts. An example of running PyBDSM with the default parameters
on such an image is shown in Figure 7. It is clear that a number of spurious sources are being
detected. Simply raising the threshold for island detection (using the thresh pix parameter) would
remove these sources but would also remove many real but faint sources in regions of low rms.
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Figure 6: Output of show fit, showing the original image with and without sources, the model
image, and the residual (original minus model) image. Boundaries of the islands of emission found by
PyBDSM are shown in light blue. The fitted Gaussians are shown for each island as ellipses (the sizes
of which correspond to the FWHMs of the Gaussians). Gaussians that have been grouped together
into a source are shown with the same color. For example, the two red Gaussians of island #1 have
been grouped together into one source, and the nine Gaussians of island #0 have been grouped into 4
separate sources. The user can obtain information about a Gaussian by clicking on it. Additionally,
with the mouse inside the plot window, the display scaling can be modified by pressing the “m” key,
and information about the image flux, model flux, and rms can be obtained by pressing the “i” key.
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Instead, by setting the rms box parameter to better match the typical scale over which the artifacts
vary significantly, one obtains much better results. In this example, the scale of the regions affected
by artifacts is approximately 20 pixels, whereas PyBDSM used a rms box of 63 pixels when run
with the default parameters, resulting in an rms map that is over-smoothed. Therefore, one should set
rms box=(20,10) so that the rms map is computed using a box of 20 pixels in size with a step size
of 10 pixels (i.e., the box is moved across the image in 10-pixel steps). See Figure 8 for a summary
of the results of this call.

8.1.3.3 Image with Extended Emission If there is extended emission that fills a significant por-
tion of the image, the background rms map will likely be biased high in regions where extended
emission is present, affecting the island determination (this can be checked during a run by set-
ting interactive=True). Setting rms map=False and mean map=’const’ or ’zero’ will force
PyBDSM to use a constant mean and rms value across the whole image. Additionally, setting
atrous do=True will fit Gaussians of various scales to the residual image to recover extended emis-
sion missed in the standard fitting. Depending on the source structure, the thresh isl and thresh pix

parameters may also have to be adjusted as well to ensure that PyBDSM finds and fits islands of
emission properly. An example analysis of an image with significant extended emission is shown in
Figure 9.

8.1.4 Usage in Python scripts

PyBDSM may also be used non-interactively in Python scripts (for example, to automate source
detection in a large number of images for which the optimal analysis parameters are known). To
use PyBDSM in a Python script, import it by calling from lofar import bdsm inside your script.
Processing may then be done using bdsm.process image() as follows:

img = bdsm.process_image(filename, <args>)

where filename is the name of the image (in FITS or CASA format) or PyBDSM parameter save file
and <args> is a comma-separated list of arguments defined as in the interactive environment (e.g.,
beam = (0.033, 0.033, 0.0), rms map=False). If the fit is successful, PyBDSM will return an
“Image” object (in this example named “img”) which contains the results of the fit (among many
other things). The same tasks used in the interactive PyBDSM shell are available for examining the
fit and writing out the source list, residual image, etc. These tasks are methods of the Image object
returned by bdsm.process image() and are described below:

img.show fit() This method shows a quick summary of the fit by plotting the input image with the
islands and Gaussians found, along with the model and residual images.

img.export image() Write an internally derived image (e.g., the model image) to a FITS file.

img.write catalog() This method writes the Gaussian or source list to a file.

The input parameters to each of these tasks are the same as those available in the interactive shell. See
the PyBDSM documentation (http://tinyurl.com/PyBDSM-doc) for more details and scripting
examples.
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Figure 7: Example fit with default parameters of an image with strong artifacts around bright sources.
A number of artifacts near the bright sources are picked up as sources. The background rms map for
the same region (produced using show fit) is shown in the lower panel: the rms varies fairly slowly
across the image, whereas ideally it would increase more strongly near the bright sources (reflecting
the increased rms in those regions due to the artifacts).
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Figure 8: The same as Figure 7, but with rms box=(20,10). The rms map now varies on scales
similar to that of the regions affected by the artifacts, and both bright and faint sources are recovered
properly.
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Figure 9: Example fit of an image of Hydra A with rms map=False, mean map=’zero’, and
atrous do=True. The values of thresh isl and thresh pix were adjusted before fitting (by set-
ting interactive=True) to obtain an island that enclosed all significant emission.

8.2 Sky model manipulation: LSMTool

8.2.1 Introduction

LSMTool is a Python package which allows for the manipulation of sky models in the makesourcedb
format (used by BBS and DPPP). Such models include those output by PyBDSM, those made by
gsm.py, and CASA clean-component models (after conversion with casapy2bbs.py). The full LSM-
Tool manual is located at http://www.astron.nl/citt/lsmtool.

8.2.2 Setup

To initialize your environment for LSMTool, users on the CEP clusters should run the following
commands:

use Lofar

source ~rafferty/init_lsmtool

8.2.3 Tutorials

This section gives examples of using LSMTool to select sources and group them into patches.

8.2.3.1 Filter and Group a Sky Model As with many of the LOFAR tools (e.g., DPPP), LSMTool
can be run with a parset that specifies the operations to perform and their parameters. Below is an
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example parset that filters on the Stokes I flux density (selecting only those sources with flux densities
above 1 mJy), adds a source to the sky model, and then groups the sources into patches (so that each
patch has a total flux density of around 50 Jy):

LSMTool.Steps = [selectbright, addsrc, grp, setpos]

# Select only sources above 1 mJy

LSMTool.Steps.selectbright.Operation = SELECT

LSMTool.Steps.selectbright.FilterExpression = I > 1.0 mJy

# Add a source

LSMTool.Steps.addsrc.Operation = ADD

LSMTool.Steps.addsrc.Name = new_source

LSMTool.Steps.addsrc.Type = POINT

LSMTool.Steps.addsrc.Ra = 277.4232

LSMTool.Steps.addsrc.Dec = 48.3689

LSMTool.Steps.addsrc.I = 0.69

# Group using tessellation to a target flux of 50 Jy

LSMTool.Steps.grp.Operation = GROUP

LSMTool.Steps.grp.Algorithm = tessellate

LSMTool.Steps.grp.TargetFlux = 50.0 Jy

LSMTool.Steps.grp.Method = mid

# Set the patch positions to their midpoint and write final skymodel

LSMTool.Steps.setpos.Operation = SETPATCHPOSITIONS

LSMTool.Steps.setpos.Method = mid

LSMTool.Steps.setpos.OutFile = grouped.sky

In the first line of this parset the step names are defined. Steps are applied sequentially, in the same
order defined in the list of steps. See the full manual for a list of steps and their allowed parameters.

LSMTool can also be used interactively (in IPython, for example) or in Python scripts without the need
for a parset, which is generally more convenient. To use LSMTool in a Python script or interpreter,
import it as follows:

>>> import lsmtool

A sky model can then be loaded with, e.g.:

>>> s = lsmtool.load(’skymodel.sky’)

The following commands duplicate the steps done using the parset above:

# Select only sources above 1 mJy

>>> s.select(’I > 1.0 mJy’)

# Add a source

>>> s.add({’Name’:’new_source’, ’Type’:’POINT’, ’Ra’:277.4232, ’Dec’:48.3689,

’I’:0.69})
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# Group using tessellation to a target flux of 50 Jy

>>> s.group(algorithm=’tesselate’, targetFlux=’10.0 Jy’)

# Set the patch positions to their midpoint and write final skymodel

>>> s.setPatchPositions(method=’mid’)

>>> s.write(’grouped.sky’)

8.2.3.2 Select Sources within a Given Region In this example, LSMTool is used to select only
those sources within a radius of 1 degree of a given position (RA = 123.2123 deg, Dec = +34.3212
deg):

# Get the distance of each source to the given position (here specified as

# RA, Dec in degrees; one can also specify the postion in makesourcedb format)

>>> dist = s.getDistance(123.2123, 34.3212)

# Remove sources with distances of more than 1 degree

>>> s.remove(dist > 1.0)

8.2.3.3 Find Sources below a Given Size in a Clean-component Sky Model It can be difficult
to identify sources in a clean-component sky model (such as one made by casapy2bbs.py), as there
is no explicit connection between the components. LSMTool provides a grouping algorithm (named
threshold) that can be used to find sources in such a sky model. For example, the following lines
will identify sources and select only those smaller than 3 arcmin:

# Use thresholding to group clean components into patches by smoothing the

# clean-component model with a Gaussian of 60 arcsec FWHM

>>> s.group(’threshold’, FWHM=’60.0 arcsec’)

# Get the sizes (in arcmin) of the patches, weighted by the clean-component

# fluxes

>>> sizes = s.getPatchSizes(units=’arcmin’, weight=True)

# Select sources with sizes below 3 arcmin (the "aggregate" parameter means

# to select on the patch sizes instead of the individual source sizes)

>>> s.select(sizes < 3.0, aggregate=True)
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9 Factor: Facet Calibration for LOFAR38

Factor is a Python package that allows for the production of wide-field HBA LOFAR images using
the facet calibration scheme described in van Weeren et al. (2016) to correct for direction-dependent
effects (DDEs). To initialize your environment for Factor, users on CEP3 should run the following
commands:

source ~rafferty/init_factor

If you want to install Factor yourself, follow the instructions in the README.md file at https://

github.com/lofar-astron/factor. Detailed documentation for Factor is available at http://www.
astron.nl/citt/facet-doc.

9.1 Data Preparation: Pre-Facet Calibration Pipeline39

The input data to Factor must have the average amplitude scale set and average clock offsets removed.
Furthermore, the LOFAR beam towards the phase center should be removed. The data should be
concatenated in frequency to bands of about 2 MHz bandwidth (so about 10–12 subbands). All bands
(= input measurement sets) need to have the same number of frequency channels40. Also the number
of channels should have many divisors to make averaging to different scales easy. The data should
then undergo direction-independent, phase-only self calibration, and the resulting solutions must be
provided to Factor.

The pre-facet calibration pipelines are intended to prepare the observed data so that they can be
used in Factor. The pipelines are defined as parsets for the genericpipeline, that first calibrate the
calibrator, then transfer the gain amplitudes, clock delays and phase offsets to the target data, do a
direction-independent phase calibration of the target, and finally image and subtract sources.

Please have a look at the documentation for the genericpipeline at:

http://www.astron.nl/citt/genericpipeline/

You should be reasonably familiar with setting up and running a genericpipeline before running this
pipeline parset.

9.1.1 Download and Set-Up

The pipeline parsets and associated scripts can be found at: https://github.com/lofar-astron/

prefactor. The main parts are the pipeline parsets named Pre-Facet-Cal.parset and
Initial-Subtract.parset. These pipelines require as input data that has been pre-processed by
the ASTRON averaging pipeline. They can work both with observations that had a second beam on a
calibrator and with interleaved observations in which the calibrator was observed just before and after
the target. No demixing is done, but A-Team clipping is done for the target data.41

38This section is maintained by David Rafferty(drafferty@hs.uni-hamburg.de).
39This subsection was written by Andreas Horneffer (ahorneffer@mpifr-bonn.mpg.de) with a lot of help from Tim

Shimwell
40Factor does lots of averaging by different amounts to keep the data-size and computing time within limits. If the input

files have different numbers of channels then finding valid averaging steps for all files gets problematic.
41More versions of the pipeline which also do demixing and / or work with raw (non averaged) data are planned and

will be added when they are done. They will probably not be explained in detail but work in an analog fashion to the basic
version.
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To run the genericpipeline you need a correctly set up configuration file for the genericpipeline,
see http://www.astron.nl/citt/genericpipeline/#quick-start. In addition to the usual settings
you need to ensure that the plugin scripts are found, for that you need to add the pre-facet calibra-
tion directory to the recipe directories in the pipeline parset (so that the plugins directory is a
subdirectory of one of the recipe directories).

At the beginning of the parset there is a section with parameters that you need to set. For example, in
Pre-Facet-Cal.parset the following parameters should be set:

avg timestep averaging step needed in NDPPP to average the data to 4 seconds time
resolution

avg freqstep averaging step needed to average the data to 4 ch/SB frequency resolu-
tion

cal input path path to the directory in which the calibrator data can be found
cal input pattern pattern that matches the calibrator data files in cal input path (Can

e.g. be used to restrict the amount of data for test runs.)xs
calibrator skymodel path to the skymodel for the calibrator

target input path same as cal input path but for the target data
target input pattern same as cal input pattern but for the target data

target skymodel path to the skymodel for the phase-only calibration of the target
num SBs per group how many subbands should be concatenated into one measurement set
results directory path to the directory into which the processed target data will be moved

inspection directory path to the directory into which the inspection plots will be moved

Below that is a section with the paths to the parsets and scripts that the pipeline uses. You need to
adjust the paths to your environment.

9.1.2 Running the Pipelines

Before running the pipelines we strongly suggest you go through the pipeline parsets and familiarize
yourself at least roughly with how the pipelines are supposed to work. In particular, in
Pre-Facet-Cal.parset, the flagging parameters for NDPPP in the ndppp prep cal and ndppp prep target

steps probably need to be adjusted for each observation.

Running the Pre-Facet-Cal pipeline is done in two steps: first only the calibrator part of the pipeline
is run. After that the inspection plots of the fitting routines should be inspected. It is rather likely that
some additional flagging is needed after the first run; this can be included by modifying the pipeline
parset. After that the calibration part needs to be re-run. This may need to be repeated a number of
times. A full re-run of the pipeline can be done by removing the runtime and work directories of the
previous pipeline run.42

Only after the calibrator processing was successful and the fits to the calibration values are satisfac-
tory, should the target part of the Pre-Facet-Cal pipeline be run. This can be done by either adding the
steps for the target processing to the existing pipeline, or by copying the numpy (*.npy) files from
the work directory of the calibrator part to the new work directory and running only the steps for the
target processing.

After the pipeline was run successfully, the resulting measurement sets are moved to the specified
directory. The instrument table of the direction-independent, phase-only calibration are inside the
measurement sets with the names instrument directioninpendent. These measurement sets are
the input to the Initial-Subtract pipeline, which should be run next to do the imaging and source

42Experts of the genericpipeline can re-run only part of a pipeline run by either modifying the statefile or making a new
pipeline parset that pick up the data at an intermediate step and continues from there. But there is no easy way to do that
yet.
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subtraction. Once Initial-Subtract pipeline has finished, the data are ready for Factor.

9.2 Factor tutorials

This section includes examples of setting up and using Factor. Setting up a Factor run mainly involves
creating a parset that defines the reduction parameters. For many of these parameters, the default
values will work well, and hence their values do not need to be explicitly specified in the parset.
Therefore, only the parameters relevant to each example are described below. For a description of all
parameters, see http://www.astron.nl/citt/facet-doc/parset.html.

9.2.1 Quick-start

Below are the basic steps in a typical Factor run on a single machine (e.g., a single CEP3 node).

1. Collect the input bands and Initial-Subtract sky models (produced as described in sub-section
9.1) in a single directory. The MS names must end in “.MS” or “.ms”:

[/data/factor_input]$ ls

L99090_SB041_uv.dppp_122298A79t_119g.pre-cal.ms

L99090_SB041_uv.dppp_122298A79t_119g.pre-cal.wsclean_low2-model.merge

L99090_SB041_uv.dppp_122298A79t_121g.pre-cal.ms

L99090_SB041_uv.dppp_122298A79t_121g.pre-cal.wsclean_low2-model.merge

L99090_SB041_uv.dppp_122298A79t_123g.pre-cal.ms

L99090_SB041_uv.dppp_122298A79t_123g.pre-cal.wsclean_low2-model.merge

L99090_SB041_uv.dppp_122298A79t_125g.pre-cal.ms

L99090_SB041_uv.dppp_122298A79t_125g.pre-cal.wsclean_low2-model.merge

2. Edit the Factor parset (described in detail at http://www.astron.nl/citt/facet-doc/parset.
html) to fit your reduction and computing resources. For example, the parset for a single ma-
chine could be:

[/data]$ more factor.parset

[global]

dir_working = /data/factor_output

dir_ms = /data/factor_input

[directions]

flux_min_jy = 0.3

size_max_arcmin = 1.0

separation_max_arcmin = 9.0

max_num = 40

3. Run the reduction:

[/data]$ runfactor factor.parset
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9.2.2 Selecting the DDE calibrators and facets

Before facet calibration can be done, suitable DDE calibrators must be selected. Generally, a suitable
calibrator is a bright, compact source (or a group of such sources).43 The DDE calibrators can be
provided to Factor in a file (see http://www.astron.nl/citt/facet-doc/directions.html for de-
tails) or can be selected internally. This example shows how to set the parameters needed for internal
selection.

Three parameters in the [directions] section of the parset are most important for the internal cali-
brator selection: flux min Jy, size max arcmin, and separation max arcmin. These parameters
set the minimum flux density (in the highest-frequency band) and maximum size of the calibrators
and the maximum allowed separation that two sources may have to be grouped together as a single
calibrator (see http://www.astron.nl/citt/facet-doc/parset.html for details). The following
are good values to use as a starting point:

[directions]

flux_min_Jy = 0.3

size_max_arcmin = 1.0

separation_max_arcmin = 9.0

It is recommended that you set interactive = True under [global] while experimenting with the
calibrator selection, as Factor will select the calibrators and then pause to allow you to verify them.
Now, run Factor (with runfactor factor.parset) and once it asks for verification, open one of
the *high2 images generated during the Initial Subtract pipeline in ds9 or casaviewer. Then load
the region files located in the dir working/regions/ directory (where dir working is the working
directory defined in your Factor parset). Figure 10 shows an example of such an image with the
regions overlaid.

Check that none of the calibrator image regions are overlapping significantly. If they are, try adjust-
ing the above parameters to either group the calibrators together (so that they form a single calibra-
tor) or remove one of them. Also check that no facet is larger than a degree or so. If such large
facets are present, try adjusting the above parameters to obtain more calibrators (e.g., by lowering
flux min Jy). If the large facets are on the outer edge of the faceted region, you should also consider
reducing faceting radius deg to limit their size.

Once the calibrator and facet selection is acceptable, Factor will make a directions file named
factor directions.txt in dir working. This file can now be edited by hand if desired (e.g., to
specify a sky model or clean mask for a calibrator).

9.2.3 Imaging a target source

If you are interested only in a single target source, you may want to process just the brightest sources
in the field and those nearest the target. Figure 11 shows the layout of an example field, with the
target source (a galaxy cluster) indicated by the blue circle in facet patch 468. Note that the faceting
radius has been reduced substantially to speed up processing (since facets outside of this radius are
small patches that run much more quickly than full facets). A few facets (e.g., facet patch 566 and
facet patch 273) contain bright sources with artifacts that affect the target. Additionally, although
they contain fainter sources, artifacts from the neighboring facets (e.g., facet patch 424) also affect

43Ideally calibrators should be selected that provide roughly uniform coverage of the field with separations less than
the typical distance over which the direction-dependent effects vary strongly (this distance depends on the severity of the
ionospheric conditions, but is usually less than a degree or so). However, the achievable uniformity of coverage will vary
from field to field, depending on the specific distribution of sources.
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Figure 10: Example of internally generated calibrators and facets. Yellow boxes show the regions to
be imaged during self calibration (the inner box shows the region over which sources are added back
to the empty datasets) and green regions show the facets. Each direction is labeled twice: once for
the calibrator region and once for the facet region. Note the elliptical region that encompasses the
faceted area. This region is controlled by the faceting radius deg parameter under [directions] in
the parset: inside this radius (adjusted for the mean primary beam shape), full facets are used; outside
this radius, only small patches are used that are much faster to process. This radius can be adjusted to
limit the size of the outer facets and the region to be imaged.
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Figure 11: Example of the field layout for a case in which an image is desired only for a single target
source (indicated by the blue circle). A region of avoidance was also specified (with a larger radius
than the blue circle) that resulted in the curved bulges to the boundary to the north and south of the
target.

the target significantly. Therefore, a good strategy is to process these facets before processing the
target. Note that the lowest possible noise would be obtained by processing the entire field but would
require much longer to complete.

We can limit the processing to the sources above by moving them to the top of the directions file
(named dir working/factor directions.txt if generated automatically) and setting ndir process

under [directions] in the parset to the number of sources we wish to be processed (including the
facet with the target source). Furthermore, it is generally best to put the target facet at the end of those
to be processed, so that it benefits from the improvements to the empty datasets from the preceding
facets (if you do this, you can set reimage selfcaled = False under [imaging]; see Section 9.2.7
for details). Note that you should typically have many more calibrators in the directions file than di-
rections to be processed, as the facets shapes and sizes are determined from all calibrators together
and too few can result in very large facets. An example directions file is shown below (note that only
the first two columns are shown). In this case, the target facet (facet patch 468) will be the seventh
direction to be processed, so we set ndir process = 7 under [directions] in the parset. Factor
will then stop after the target has been processed.

# name position ...

facet_patch_566 14h29m38.5962s,44d59m14.0061s ...

facet_patch_499 14h31m36.5221s,44d41m39.6252s ...
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facet_patch_424 14h34m38.5876s,44d48m00.415ss ...

facet_patch_379 14h36m04.2603s,44d45m16.2451s ...

facet_patch_273 14h40m14.6989s,45d10m53.6821s ...

facet_patch_573 14h29m33.1473s,44d19m43.2515s ...

facet_patch_468 14h32m44.3536s,44d20m50.7736s ...

......

facet_patch_550 14h30m03.9315s,46d51m44.6965s ...

facet_patch_480 14h32m28.9389s,45d13m49.3407s ...

facet_patch_778 14h20m03.7803s,44d09m40.3293s ...

Additionally, if the target source is diffuse, Factor may not be able to adjust the facet boundaries
properly to ensure that it lies entirely within a single facet. To ensure that no facet boundary passes
through the target source, you can define the position and the size of an avoidance region under the
[directions] section of the parset. The target ra, target dec, and target radius arcmin

parameters determine this avoidance region. An example of such a region for the target above is
given below and the resulting facets are shown in Figure 11. Note that the boundaries of the target
facet (facet patch 468) are curved to avoid this region.

[directions]

target_ra = 14h31m59.7s

target_dec = +44d15m48s

target_radius_arcmin = 15

9.2.4 Peeling bright sources

In many observations there will be one or more strong sources that lie far outside the FWHM of
the primary beam but nevertheless cause significant artifacts inside it. However, because of strong
variations in the beam with frequency at these locations, self calibration does not generally work
well. Therefore, Factor includes the option to peel these outlier sources. A high-resolution sky
model (in makesourcedb format) is needed for this peeling. Factor includes a number of such sky
models for well-known calibrators (see https://github.com/lofar-astron/factor/tree/master/

factor/skymodels for a list). If an appropriate sky model is not available inside Factor, you must
obtain one and specify it in the directions file. To enable peeling, the outlier source entry in the
directions file must be set to True for the source.

It is also possible that a strong source (such as 3C295) will lie inside a facet. Such a source can be
peeled to avoid dynamic-range limitations. Peeling will be done if a source exceeds peel flux Jy

(set under the [calibration] section of the parset) and a sky model is available. After peeling, the
facet is then imaged as normal.

9.2.5 Checking the results of a run

You can check the progress of a run with the checkfactor script by supplying the Factor parset as
follows:

[/data]$ checkfactor factor.parset

A plot showing the field layout will be displayed (see Figure 12), with facets colored by their status.
Left-click on a facet to see a summary of its state, and press “c” to see a plot of the self calibration
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Figure 12: Example checkfactor plot.

Figure 13: Example of self calibration images for a successful run. The self calibration process starts
with image02 (the image obtained after applying only the direction-independent solutions from pre-
Factor) and proceeds to image12, image22, etc. In some cases, Factor will iterate a step until no
more improvement is seen. These steps are indicated by the “iter” suffix.
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Figure 14: Example of self calibration images for an unsuccessful run in which the automatic
clean mask included strong artifacts. In this particular case, the problem was solved by setting
selfcal adaptive threshold = True under [imaging] in the parset.

images and their clean masks. An example of such a plot is shown in Figure 13. For a successful self
calibration, you should see a gradual improvement from image02 to image42.

If self calibration has completed for a direction, select it and press “t” to see plots of the differential
TEC and scalar phase solutions and “g” to see plots of the slow gain solutions. These plots can be
useful in identifying periods of bad data or other problems.

9.2.6 Dealing with failed self calibration

Self calibration may occasionally fail to converge for a direction, causing to Factor to skip the sub-
traction of the corresponding facet model. An example in which self calibration failed is shown
in Figure 14. Note how the image noise does not improve much in this case during the self cal-
ibration process. While Factor can continue with the processing of other directions and apply the
calibration solutions from the nearest successful facet to the failed one (depending on the value of the
exit on selfcal failure option under [calibration] in the parset; see http://www.astron.

nl/citt/facet-doc/parset.html for details), it is generally better to stop Factor and try to correct
the problem. In these cases, a number of options are available that may help correct the failed self cal-
ibration: turn on multi-resolution self calibration, turn on adaptive thresholding, or supply a custom
clean mask.

Multi-resolution self calibration involves imaging at decreasing resolutions, from 20 arcsec to full
resolution (≈ 5 arcsec). This process can stabilize clean in the presence of calibration errors. An
example of such a situation is shown in Figure 15. Multi-resolution self calibration can be enabled by
setting multires selfcal = True under [calibration] in the parset.

Adaptive thresholding can help the automatic masking in the presence of strong artifacts by adjusting
the thresholds depending on the maximum negative pixel value. An example of such a situation is
shown in Figure 14. Adaptive thresholding can be enabled by setting selfcal adaptive threshold

= True under [imaging] in the parset.

In some cases, usually when the calibrator has a complex structure, it may be necessary to supply
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Figure 15: Example of self calibration images at the same stage of reduction for an unsuccessful
run (left) in which an incorrect source structure is present (the bright sources both have “L”-shaped
morphologies) and the successful run (right) in which multi-resolution self calibration was used.

a clean mask made by hand. Such a clean mask can be made by opening one of the self calibration
images (e.g., *image01.image; see http://www.astron.nl/citt/facet-doc/operations.html for
details of the facetselfcal output) in casaviewer and drawing a region that encloses the source
emission but excludes any artifacts. Save the region in CASA format to a file and specify the full path
to this file in the appropriate entry of the directions file (named dir working/factor directions.txt

if generated automatically). The full path must then added to the region selfcal entry in the direc-
tions file. Note that a supplied mask will be unioned with the interally generated one.

To restart self calibration for the failed direction, you will need to reset it. See Section 9.2.8 below
for instructions on how to reset a direction.

9.2.7 Reimaging at the end of a run

Reimaging of facets is desirable for two reasons: (1) to improve the noise in facets done at the
beginning of a run when the empty datasets still contained significant artifacts from poorly subtracted
sources in neighbouring facets and (2) to make images with different resolutions, weights, etc. (e.g.,
to increase sensitivity to diffuse, extended emission).

By default, Factor will only reimage facets for which self calibration was successful. These facets are
reimaged once all other directions have been processed, allowing them to benefit from the improve-
ments to the empty datasets from other directions processed later (directions for which self calibration
was not done are imaged at the end and so already use the improved data). Figure 16 shows a com-
parison of a facet image before and after reimaging.

Note that if you are interested in only a single target source that was processed at the end (and hence
will not benefit from reimaging), you should disable this reimaging by setting reimage selfcaled

= False under [imaging]. See Section 9.2.3 for an example of such a run.

To reimage all facets with different parameters, set one or more of the facet parameters in the parset
under [imaging]: facet cellsize arcsec, facet robust, facet taper arcsec, and
facet min uv lambda. These parameters can be lists, with one set of images for each entry. For
example, the following settings will make two images per facet, one at full resolution (1.5 arcsec
cellsize, robust of -0.25, and no taper) and one at lower resolution (15 arcsec cellsize, robust of -0.5,
and a 45 arcsec taper):
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Figure 16: Example of a facet image: before reimaging (left) and after reimaging (right), showing the
improvement due to the later processing of neighboring facets.

[imaging]

facet_cellsize_arcsec = [1.5, 15.0]

facet_robust = [-0.25, -0.5]

facet_taper_arcsec = [0.0, 45.0]

This run will produce two output directories: dir working/results/facetimage/ (with the full-
resolution images) and dir working/results/facetimage c15.0r-0.5t45.0u0.0/ (with the lower-
resolution images).

9.2.8 Resuming and resetting a run

If a Factor run is interrupted, it can be resumed by simply running it again with the same com-
mand. Occasionally, however, you will want to change some settings (e.g., to supply a clean mask
for self calibration) or something will go wrong that prevents resumption. In these cases, you can
reset the processing for a direction with the “-r” flag to runfactor. For example, to reset direction
facet patch 350, the following command should be used:

runfactor factor.parset -r facet_patch_350
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10 Practical examples44

In this Chapter, examples of how to inspect and analyze LOFAR data are given. The aim of these
exercises is for the User to become familiar with the software used to process LOFAR data and to
be able to apply this knowledge to other data sets. Please note that each LOFAR data set is different
and special care should be taken when directly applying the methods given in these exercises to other
LOFAR data sets.

It is assumed here that the User has already gone through the “Getting Started” procedure described
in Chapter 1.

10.1 3C 295 – A bright source at the centre of the field

In this exercise, the user will calibrate LBA and HBA datasets for 3C 295. By the end of the exercise
the User should be able to

• inspect raw LOFAR data,

• automatically and manually flag data with DPPP, including demix the LBA data,

• calibrate the data with DPPP,

• produce maps with WSClean,

• create a sky model from the data, and,

• subtract bright sources using DPPP

Log into one of the compute nodes above, and make a new directory, for example,

> ssh -Y lof019

> cd /data/scratch/<username>/

> mkdir tutorial/

> mkdir tutorial/3c295/

> cd tutorial/3c295

You will be using the LOFAR software tools. To initialise these use

> use Lofar

10.2 HBA

The raw data set for this exercise can be found in

/globaldata/COOKBOOK/Tutorial/3c295/data/L74759/

The unique LOFAR observation number is L74759 and there are two sub-bands, SB000 and SB001.
The data set is in Measurement Set (MS) format and the filenames are respectively

44The author of this Chapter is Wendy Williams (w.williams[at]herts[dot]ac[dot]uk). Contribution was also given by
many commissioners: Alicia Berciano Alba, Valentina Vacca, Poppy Martin, Maciej Ceglowski, and Carmen Toribio.
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L74759_SAP000_SB000_uv.MS

L74759_SAP000_SB001_uv.MS

for the two sub-bands.

To copy it to your current working directory use:

cp -r /globaldata/COOKBOOK/Tutorial/3c295/data/L74759/L74759_SAP000_SB00[01]_uv.MS .

10.2.1 Inspecting the raw data

It is always useful to find out what the details of the observation are (frequency, integration time,
number of stations) before starting on the data reduction. This is done using the command,

> msoverview in=L74759_SAP000_SB000_uv.MS verbose=T

msoverview: Version 20110407GvD

================================================================================

MeasurementSet Name: /cep3home/williams/tutorial/L74759_SAP000_SB000_uv.MS MS Version 2

================================================================================

This is a raw LOFAR MS (stored with LofarStMan)

Observer: unknown Project: 2012LOFAROBS

Observation: LOFAR

Antenna-set: HBA_DUAL_INNER

Data records: 5337090 Total elapsed time = 3599 seconds

Observed from 12-Nov-2012/12:47:00.0 to 12-Nov-2012/13:46:59.0 (UTC)

Fields: 1

ID Code Name RA Decl Epoch nRows

0 BEAM_0 14:11:20.500000 +52.12.10.00000 J2000 5337090

Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)

SpwID Name #Chans Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) Corrs

0 SB-0 64 TOPO 118.849 3.052 195.3 118.9453 XX XY YX YY

Antennas: 54:

ID Name Station Diam. Long. Lat. Offset from array center (m) ITRF Geocentric coordinates (m)

East North Elevation x y z

0 CS001HBA0LOFAR 31.3 m +006.52.07.1 +52.43.34.7 -0.0006 -0.1610 6364572.0471 3826896.235000 460979.455000 5064658.203000

1 CS001HBA1LOFAR 31.3 m +006.52.02.2 +52.43.31.8 -0.0013 -0.1617 6364572.3376 3826979.384000 460897.597000 5064603.189000

2 CS002HBA0LOFAR 31.3 m +006.52.07.6 +52.43.46.8 -0.0005 -0.1582 6364570.0290 3826600.961000 460953.402000 5064881.136000

...

...

43 CS501HBA1LOFAR 31.3 m +006.51.59.7 +52.44.25.8 -0.0017 -0.1489 6364565.9714 3825663.508000 460692.658000 5065607.883000

44 RS106HBALOFAR 31.3 m +006.59.05.6 +52.41.21.6 0.0592 -0.1926 6364586.7503 3829205.598000 469142.533000 5062181.002000

...

...

51 RS503HBALOFAR 31.3 m +006.51.04.8 +52.45.33.2 -0.0095 -0.1330 6364557.2108 3824138.566000 459476.972000 5066858.578000

52 RS508HBALOFAR 31.3 m +006.57.13.3 +53.03.21.7 0.0431 0.1202 6364441.8110 3797136.484000 463114.447000 5086651.286000

53 RS509HBALOFAR 31.3 m +006.47.04.7 +53.13.30.1 -0.0438 0.2644 6364384.5199 3783537.525000 450130.064000 5097866.146000

The MS is fully regular, thus suitable for BBS

nrows=5337090 ntimes=3594 nbands=1 nbaselines=1485 (54 autocorr)

From this, you should see that HBA DUAL INNER mode was used, i.e. the core stations are split
in two HBA sub-fields, giving a total of 54 stations, and the size of the remote stations is the same
as the core stations. The observation was ∼ 1 hour (3599 seconds) with 3594 timestamps so the time
resolution is ∼ 1 s. There are 64 spectral channels and the frequency is 118.849 MHz for SB000 and
119.044 MHz for SB001, and the total bandwidth for each subband is ∼ 0.2 MHz.

10.2.2 Flagging and data compression

The data set that we are using is uncompressed and unflagged; the total size of each MS is 11 GB. The
data flagging and compression are carried out using DPPP (see Chapter 4 for details). Typically, initial
RFI flagging and averaging will be done by the averaging pipeline run by the Radio Observatory. Note
that the limitation on the compression in frequency is set by the size of the field you wish to image
and the amount of bandwidth smearing at the edges of the field. The time averaging is limited not
only by the amount of time smearing you will allow but also by the changes in the ionosphere.
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In this example we are flagging the data using the aoflagger algorithm within DPPP. Here we will
compress the sub-band to 4 channels in frequency and 5 s in time. The parset file for the flagging and
compression should be copied to your working directory,

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP_HBA_preprocess.parset .

> cat NDPPP_HBA_preprocess.parset

msin = L74759_SAP000_SB000_uv.MS

msin.autoweight=TRUE

msin.datacolumn=DATA

msout = L74759_SAP000_SB000_uv.MS.avg.dppp

msout.datacolumn=DATA

steps=[ preflagger0 ,preflagger1 ,aoflagger ,averager]

preflagger0.chan =[0 ,1 ,62 ,63]

preflagger0.type=preflagger

preflagger1.corrtype=auto

preflagger1.type=preflagger

aoflagger.autocorr=F

aoflagger.timewindow =0

aoflagger.type=aoflagger

averager.freqstep =16 # compresses from 64 to 4 channels

averager.timestep =4 # compresses 4 time -slots into 1, i.e. 4s

averager.type=averager

This parset file will take the data set, flag and compress and then make a new copy in your working
area. If necessary, edit the msin and msout fields to point at your working directory, using your
favourite editor (e.g. vim, nano, nedit). To run DPPP use,

> DPPP NDPPP_HBA_preprocess.parset > log.ndppp.flagavg 2>&1 &

In bash, the 2>&1 pipes both the stdout and stderr to the log file and the & runs the task in the back-
ground so you can continue working on the terminal.

Depending on the use of the cluster, it will take about ∼ 5 minutes to flag and average the data. The
progress bar reports the stage of the initial DPPP steps, not the entire DPPP run, so it will keep running
several minutes after the progress bar reaches 100%. You can inspect the output log file by using,

> cat log.ndppp.flagavg

The log file lists the input and output parameters, the level of flagging at each step and the total amount
of data flagged. You will see that the total data flagged for each of the flagging steps is 4.7%, 3.4%
and 2.6% respectively.

Edit the msin and msout fields of the parset to do the same for the second sub-band. Or you can run it
again using the same parset and supplying new msin and msout parameters on the command line, i.e.

> DPPP NDPPP_HBA_preprocess.parset msin=L74759_SAP000_SB001_uv.MS \

msout=L74759_SAP000_SB001_uv.MS.avg.dppp > log.ndppp.flagavg1 2>&1 &
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The flagged and compressed data set should now be in your working directory and each MS should
have a total size of 333 MB, which is much more manageable than before. You can use msoverview
to look at a summary of this data set using.

> msoverview in=L74759_SAP000_SB000_uv.MS.avg.dppp verbose=True

10.2.3 Post-compression data inspection and flagging

We will use the CASA task plotms to inspect the data. Only limited information for using plotms is
given here, the User is directed to the CASA cookbook45 for full details,

> use Casa

> casaplotms

Figure 17 shows the Amp. vs. time and Amp. vs. UV distance (wavelengths) for SB000. Through
inspecting the data in casaplotms you should be able to see that CS302HBA0 has consistently low
amplitudes and is the only station contributing to the few high amplitudes. If you look back at the logs
from the initial NDPPP preprocessing you will notice that about 40-50% of the data for this station
was flagged by aoflagger.

We will remove CS302HBA0 now with DPPP. This can be done either by flagging it with a preflagger
step or, as we will do here, filtering it out. In this way it is completely removed from the MS so we
have to specify a new output MS. The DPPP parsets are:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.split.sb000.parset .

> cat NDPPP.split.sb000.parset

msin = L74759_SAP000_SB000_uv.MS.avg.dppp

msin.baseline = !CS302HBA0

msin.datacolumn = DATA

msout = L74759_SAP000_SB000_uv.MS.avg.dppp.flag

steps =[]

> DPPP NDPPP.split.sb000.parset > ndppp.flag0.log 2>&1 &

and likewise for the other subband:

> DPPP NDPPP.split.sb000.parset msin=L74759_SAP000_SB001_uv.MS.avg.dppp \

msout=L74759_SAP000_SB001_uv.MS.avg.dppp.flag > ndppp.flag1.log 2>&1 &

The visibilities after removing CS302HBA0 are shown in Figure 17.

10.2.4 Calibration with DPPP

In this example, we will use DPPP to perform the calibration (see also Chapter 5) on single sub-bands.

Before we can run the calibration, we need an initial sky model for correcting the data and a parset
file to direct the calibration. Since 3C 295 is a well-known calibrator source, we already have a good
model for it. The sky model consists of two point sources and can be copied to your working area
using,

45http://casa.nrao.edu/Doc/Cookbook/casa cookbook.pdf
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Figure 17: SB000. Top: Plotting the XX visibility amplitude against time. Bottom: Plotting the
visibility amplitude against UV distance in wavelengths. (The colour scheme ‘Antenna1’ is used
here.)
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Figure 18: SB000. Plotting the XX visibility amplitude against UV distance in wavelengths after
flagging CS302HBA0. (The colour scheme ‘Antenna1’ is used here.)

> cp /globaldata/COOKBOOK/Tutorial/3c295/models/3C295TWO.skymodel .

> cat 3C295TWO.skymodel

# (Name, Type, Patch, Ra, Dec, I, ReferenceFrequency=’150.e6’, SpectralIndex) = format

, , 3c295, 14:11:20.64, +52.12.09.30

3c295A, POINT, 3c295, 14:11:20.49, +52.12.10.70, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

3c295B, POINT, 3c295, 14:11:20.79, +52.12.07.90, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

Here you can see that the two point-source components on 3C 295 have been grouped in a single
‘patch’. Note that there are other sources visible within the field of view, but 3C 295 should be
sufficiently bright to dominate the field.

ASIDE: Usually one makes an initial sky model based on what we think the sky looks like at the
frequency and resolution that we are interested in. This means constructing a model from good image
we have at a different frequency/resolution, or in the case of self-calibration, the image we have just
made (see for example Appendix E). Alternatively, a sky model can be created using the gsm.py tool.
This tool extracts sources in a cone of a given radius around a given position on the sky from the
Global Sky Model or GSM. The GSM contains all the sources from the VLSS, NVSS, and WENSS
survey catalogs. See Section A.4 for more information about the GSM and gsm.py.

Running gsm.py without any arguments will show you the correct usage (help).

> gsm.py

Insufficient arguments given; run as:

/opt/cep/LofIm/daily/Tue/lofar_build/install/gnu_opt/bin/gsm.py outfile RA

DEC radius [vlssFluxCutoff [assocTheta]] to select using a cone

79



outfile path-name of the output file

It will be overwritten if already existing

RA cone center Right Ascension (J2000, degrees)

DEC cone center Declination (J2000, degrees)

radius cone radius (degrees)

vlssFluxCutoff minimum flux (Jy) of VLSS sources to use

default = 4

assocTheta uncertainty in matching (degrees)

default = 0.00278 (10 arcsec)

So now we can construct the command to make a model for the 3C 295 field:

> gsm.py 3c295_field.model 212.835495 52.202770 3.0

Sky model stored in source table: 3c295_field.model

For now, we will return to using the simple two point source model of 3C 295. To be used by DPPP
this needs to be converted to sourcedb format:

> makesourcedb in=3C295TWO.skymodel out=3C295TWO.sourcedb format=’<’

The parset file for DPPP can be found at,

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/dppp-calibrate.parset .

> cat dppp-calibrate.parset

msin=L74759_SAP000_SB000_uv.MS.avg.dppp.flag

msout=.

msout.datacolumn=CORRECTED_DATA

steps=[gaincal , applybeam]

gaincal.sourcedb =3 C295TWO.sourcedb

gaincal.caltype=diagonal

gaincal.usebeammodel=true

gaincal.applysolution=true

This is a very simple parset file that solves and corrects the data. To perform the calibration, use the
following command,

> DPPP dppp-calibrate.parset > log.ndppp.cal 2>&1 &

Note that using the redirect “> log.ndppp.cal” command allows you to save and inspect the output
of DPPP and using the “&” at the end runs DPPP in the background, allowing you to continue with
other tasks, e.g. you can simultaneously run a similar command for the second sub-band, as before
updating the msin parameter:

> DPPP dppp-calibrate.parset msin=L74759_SAP000_SB001_uv.MS.avg.dppp.flag >

log.ndppp.cal1 2>&1 &

The calibration process should be completed in a few minutes. Once complete it is useful to look at
the calibrated data with parmdbplot.py:

> parmdbplot.py L74759_SAP000_SB000_uv.MS.avg.dppp.flag/instrument/
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It is useful to de-select the ‘use resolution’ option as this will plot all of the solutions that we solved
for. After de-selecting the ‘use resolution’ option select a few stations and look at the solutions.
Figure 19 shows some solution plots for SB000.
ASIDE: While parmdbplot.py is very useful and diverse, sometimes you want a quick look at all the
solutions. In python you can use lofar.parmdb to read and plot the solutions. This example script
plots all the phase and amplitude solutions in a single image (see Fig. 20):

> python /globaldata/COOKBOOK/Tutorial/3c295/scripts/plot_solutions_all_stations_v2.py -p -a \

L74759_SAP000_SB000_uv.MS.avg.dppp/instrument/ hba_sb000_gains

> display hba_sb000_gains_amp.png

> display hba_sb000_gains_phase.png

Or use George Heald’s solplot.py or LoSoTo (Chapter 6).

Figure 19: Top left: The parmdb window. Use this to select the stations for which you want to
inspect the solutions, and to change the resolution that is used to display the solutions. Top right: The
solutions for CS003HBA1. Bottom left: The solutions for CS302HBA1. Bottom right: The solutions
for RS406HBA.

We can also inspect the corrected data with casaplotms. Go to the axes tab and plot the amplitude
against time for the corrected data by selecting “Data Column: corrected” and plot only the XX and
YY correlations. Figures 21 and 22 show these plots for SB000 and SB001 respectively. For SB000,
it is clear that the solutions for CS302HBA1 are also very noisy. For both sub-bands, baselines
RS508HBA&RS509HBA (visible in orange) and RS208HBA&RS509HBA (in green) look bad.

This time we will just flag the station and baselines:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.flag.sb000.parset .

> cat NDPPP.flag.sb000.parset
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Figure 20: Top: Phase solutions for all stations for SB000 (polarizations in different colours). Bottom:
Amplitude solutions for all stations for SB000.
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Figure 21: SB000. Top: Plotting the XX visibility amplitude against UV distance. Bottom: Excluding
antenna CS302HBA1.
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Figure 22: SB001. Plotting the XX visibility amplitude against UV distance.

msin = L74759_SAP000_SB001_uv.MS.avg.dppp.flag

msin.datacolumn = DATA

msout =

steps = [flag]

flag.type=preflagger

flag.baseline= CS302HBA1* ; RS508HBA *& RS509HBA* ; RS208HBA *& RS509HBA*

> DPPP NDPPP.flag.sb000.parset

> DPPP NDPPP.flag.sb000.parset msin=L74759_SAP000_SB001_uv.MS.avg.dppp.flag

Next we will re-do the calibration (it’s probably a good idea after removing some bad data):

> DPPP dppp-calibrate.parset > log.ndppp.cal 2>&1 &

> DPPP dppp-calibrate.parset msin=L74759_SAP000_SB001_uv.MS.avg.dppp.flag >

log.ndppp.cal1 2>&1 &

The amplitude against time for the flagged corrected data is plotted in 23.

10.2.5 Imaging

Here we will use WSCleansee Chapter 7 to do the deconvolution combining both subbands. While
3C 295 is the dominant source at the centre of the field we can actually image the large field and find
other sources exploiting the wide-field imaging techniques built into WSClean. The list of parameters
along with a brief description of each can be shown with

> wsclean
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Figure 23: Plotting the XX visibility amplitude against UV distance for SB000 after flagging.

At 120 MHz the LOFAR (NL Remote) field of view is 4.5 deg (FWHM) and the theoretical resolution
should be around 8′′. However, the maximum resolution can only be achieved with a longer obser-
vation providing better uv coverage combined with direction-dependent calibration so we will limit
ourselves here to a resolution of 25−−30′′. This is realised with a maximum uv cut of 7000λ and
a slightly uniform weighting (robust −0.5). 5′′ pixels will sample the beam well. WSClean will take
a list of MS’s as input, so it is not necessary to concatenate them before imaging. The full wsclean
command is:

wsclean -name 3C295 -niter 40000 -threshold 0.01 -mgain 0.85 -pol I \

-weighting-rank-filter 3 -minuv-l 80 -maxuv-l 7000 -cleanborder 0 \

-scale 5asec -weight briggs -0.5 -size 9600 9600 -trim 8000 8000 \

L74759_SAP000_SB000_uv.MS.avg.dppp.flag L74759_SAP000_SB001_uv.MS.avg.dppp.flag

The default major cycle clean gain (mgain) is 1, so it is best to change this to a lower value. Also,
wsclean does no internal padding like casa so to pad by a factor of 1.2 we set the size and trim
parameters appropriately to avoid aliasing effects. Both subbands are given. This will take 10− 15
minutes. This is a very large image but you will see that it includes sources all over.

Cleaning should be done within masks, so we will use pybdsm (see Chapter 8) with some default
settings to create an island mask.

> pybdsm

BDSM [1]: process_image(filename=’3C295-image.fits’, rms_box=(60,20))

BDSM [2]: export_image(img_type=’island_mask’, mask_dilation=0)

The resulting image 3C295-image.pybdsm_island_mask.fits can now be given to wsclean as a
fitsmask. We will also turn on the differential beam calculation (the data have already been corrected
for the beam at the phase centre by the DPPP applybeam step).

wsclean -name 3C295_mask -niter 40000 -threshold 0.01 -mgain 0.85 \
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-pol I -weighting-rank-filter 3 -minuv-l 80 -maxuv-l 7000 \

-scale 5asec -weight briggs -0.5 -size 9600 9600 -trim 8000 8000 -cleanborder 0 \

-apply-primary-beam -use-differential-lofar-beam \

-fitsmask 3C295-image.pybdsm_island_mask.fits \

L74759_SAP000_SB000_uv.MS.avg.dppp.flag L74759_SAP000_SB001_uv.MS.avg.dppp.flag

WSClean produces a lot of images as output, including

root-image.fits # uncorrected model image

root-image-pb.fits # corrected model image

root-model.fits # clean component image

root-psf.fits # point spread function

The output image can be inspected with ds9 (or casaviewer if you prefer):

> ds9 -scale limits -0.1 1 root-image.fits

Figure 24 shows the cleaned corrected image (“-image-pb.fits”). One can see 3C 295 at the centre
of the field and even though only 3C 295 was in our calibration model there are clearly many other
sources visible in the field. The noise in the image is about 20 mJy/beam and 3C 295 has a flux
density of about 110 Jy. This noise is about what is expected – if you look at George Heald’s beta
noise calculator for LOFAR46, with 21 core and 9 remote split HBA stations, we should expect a
noise of a few mJy for an hour’s observation at 120 MHz. The uv cut we are using would also result
in a higher noise as not all the data is used in the imaging.

10.2.6 Combining Measurement Sets

While we did not do this above, it can often be useful to combine calibrated MS’s for separate sub-
bands into a single MS, to allow allow for combined processing in subsequent DPPP runs.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP.combineMS.parset .

> cat NDPPP.combineMS.parset

msin = L74759_SAP000_SB*_uv.MS.avg.dppp

msin.datacolumn = DATA

msout = 3C295_BAND0.MS

steps = []

The wild card in line one of this very simple parset means that all sub-bands of the observation will
be combined. Line two means that the DATA column from the input MSs will be written to the DATA
column in the output. Here we only have two subbands to combine but the method works for many.
If you do msoverview now you will see that there are 8 spectral channels. At this point you need to
redo the calibration because we have copied the DATA column.

> DPPP dppp-calibrate.parset msin=3C295_BAND0.MS gaincal.nchan=2 >

log.ndppp.cal.B0 2>&1 &

Here we set “gaincal.nchan=2” to compute a solution every 2 channels. At around 100 Jy at 150 MHz,
3C 295 is bright enough that there is enough signal to do this.

46http://www.astron.nl/~heald/test/sens.php
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Figure 24: Top: The cleaned image for 3C 295. The radius of the circle is 4.8 deg. Bottom: A zoom-in
of the central part of the field. The data range is set to [-0.05, 0.5].
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10.2.7 Subtraction of 3C 295

3C 295 is the dominant source at the center of the field. Sometimes it is necessary to subtract sources
and here we will subtract 3C 295. In this specific case this is easy because we already have a very
good model for this calibrator source so we will use that instead of making a model from the image.

We require a parset that includes a subtract step for the source 3C 295. We have already done a solve
step to obtain our gain solutions so we will simply subtract the source using those solutions:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/hba/NDPPP_subtract3c295.parset .

> cat NDPPP_subtract3c295.parset

msin=3 C295_BAND0.MS

msout=3 C295_BAND0.MS.sub

steps=[ subtract3c295 , applycal , applybeam]

subtract3c295.type=predict

subtract3c295.operation=subtract

subtract3c295.sourcedb =3 C295TWO.sourcedb

subtract3c295.sources =[3 c295]

subtract3c295.usebeammodel=true

subtract3c295.applycal.parmdb =3 C295_BAND0.MS/instrument

applycal.parmdb =3 C295_BAND0.MS/instrument

> DPPP NDPPP_subtract3c295.parset > log.dppp.gaincalsubtract 2>&1 &

The “subtract3c295.applycal.parmdb” specifies the solutions to use for the subtract – in this case the
model visibilities are corrupted by the gain solutions before being subtracted. The applycal step is
because we still need to apply the gain solutions to the rest of the field and the applybeam step so that
the beam is taken out at the phase centre before imaging. The output is to the DATA column of the
new MS.

The 3C 295-subtracted visibility amplitudes are plotted against time in 25.

We can make an image of the subtracted data (there is no corrected data column so wsclean will use
the data column)

wsclean -name 3C295_sub -niter 40000 -threshold 0.01 -mgain 0.85 -pol I \

-weighting-rank-filter 3 -minuv-l 80 -maxuv-l 7000 -cleanborder 0 \

-scale 5asec -weight briggs -0.5 \

-size 4800 4800 -trim 4000 4000 3C295_BAND0.MS.sub

The resulting image is shown in Fig. 26. There is a small residual (0.5 Jy) where 3C 295 was.

10.3 LBA

The raw LBA data set for this exercise can be found in,

/globaldata/COOKBOOK/Tutorial/3c295/data/L74762/

The unique LOFAR observation number is L74762 and there are two sub-bands, SB000 and SB001.
The data set is in Measurement Set (MS) format and the filenames are respectively

L74762_SAP000_SB000_uv.MS

L74762_SAP000_SB001_uv.MS

for the two sub-bands.
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Figure 25: Plotting the XX visibility amplitude against UV distance after flagging.

Figure 26: Left: The cleaned image for 3C 295 after 3C 295 has been subtracted. The data range is
set to [-0.05, 0.5].
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10.3.1 Inspecting the raw data

Use msoverview again to find out the details of the observation (frequency, integration time, number
of stations):

> msoverview in=L74762_SAP000_SB000_uv.MS verbose=T

msoverview: Version 20110407GvD

================================================================================

MeasurementSet Name: /cep3home/williams/lba_tutorial/L74762_SAP000_SB000_uv.MS MS Version 2

================================================================================

This is a raw LOFAR MS (stored with LofarStMan)

Observer: unknown Project: 2012LOFAROBS

Observation: LOFAR

Antenna-set: LBA_OUTER

Data records: 1897632 Total elapsed time = 3599 seconds

Observed from 12-Nov-2012/14:06:00.0 to 12-Nov-2012/15:05:59.0 (UTC)

Fields: 1

ID Code Name RA Decl Epoch nRows

0 BEAM_0 14:11:20.516698 +52.12.09.92762 J2000 1897632

Spectral Windows: (1 unique spectral windows and 1 unique polarization setups)

SpwID Name #Chans Frame Ch0(MHz) ChanWid(kHz) TotBW(kHz) CtrFreq(MHz) Corrs

0 SB-0 64 TOPO 59.474 3.052 195.3 59.5703 XX XY YX YY

Antennas: 32:

ID Name Station Diam. Long. Lat. Offset from array center (m) ITRF Geocentric coordinates (m)

East North Elevation x y z

0 CS001LBALOFAR 86.0 m +006.52.03.5 +52.43.34.0 -0.0011 -0.1612 6364572.1238 3826923.546000 460915.441000 5064643.489000

1 CS002LBALOFAR 86.0 m +006.52.11.4 +52.43.47.4 0.0000 -0.1581 6364569.9708 3826577.066000 461022.948000 5064892.786000

2 CS003LBALOFAR 86.0 m +006.52.06.9 +52.43.50.3 -0.0006 -0.1574 6364569.6900 3826516.748000 460930.066000 5064946.457000

3 CS004LBALOFAR 86.0 m +006.52.06.5 +52.43.44.7 -0.0007 -0.1587 6364570.2302 3826654.197000 460939.576000 5064842.426000

...

30 RS508LBALOFAR 86.0 m +006.57.11.4 +53.03.19.2 0.0429 0.1196 6364442.0450 3797202.116000 463087.509000 5086605.037000

31 RS509LBALOFAR 86.0 m +006.47.07.0 +53.13.28.2 -0.0435 0.2640 6364384.4231 3783579.131000 450178.882000 5097830.835000

The MS is fully regular, thus suitable for BBS

nrows=1897632 ntimes=3594 nbands=1 nbaselines=528 (32 autocorr)

From this, you should see that 32 stations were used for this observation, that the observation was∼ 1
hour that there are 64 spectral channels and the frequency is 59.474 MHz for SB000 and 59.669 MHz
for SB001. This gives a useful first look at the data, but we will take a closer look after the data have
been converted from the raw correlator visibilities to a proper Measurement Set.

10.3.2 Flagging and demixing

As with the HBA, the data set is uncompressed and unflagged; the total size of each MS is 3.9 GB.
The data flagging and compression are carried out using DPPP (see Chapter 4 for details). We will
compress the sub-band to 4 channel in frequency and 4 s in time. Note that the limitation on the com-
pression in time is set by the changes in the ionosphere. For LBA data it is almost always necessary
to demix the data to remove the bright radio sources from the data. Demixing has been implemented
in DPPP. Usually this will be performed by the Radio Observatory but we include it here so you can
learn how to do it.

To see which A-team sources need to be demixed use the plot Ateam elevation python script,

> plot_Ateam_elevation.py L74762_SAP000_SB000_uv.MS

the output of which is shown in Fig.27. From this we can see that CygA and CasA are over 40 deg
elevation for the duration of the observation and should be demixed. They are also both about 60
deg away from the pointing centre (the distances of the A-team sources from the pointing centre are
indicated in the legend).

The parset file for the flagging47 and demixing should be copied to your working directory. Note that
the demixing outputs the compressed data.

A sky model containing the sources to be demixed is also required
47using the aoflagger algorithm.

90



Figure 27: A-team elevation for the LBA observation.

> cp -r /globaldata/COOKBOOK/Tutorial/3c295/models/Ateam_LBA_CC.sky .

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_preprocess.parset .

> cat NDPPP_LBA_preprocess.parset

msin = L74762_SAP000_SB000_uv.MS

msin.autoweight=TRUE

msin.datacolumn=DATA

msout = L74762_SAP000_SB000_uv.MS.dem.dppp

msout.datacolumn=DATA

steps=[ preflagger0 ,preflagger1 ,aoflagger ,demixer]

preflagger0.chan =[0 ,1 ,62 ,63]

preflagger0.type=preflagger

preflagger1.corrtype=auto

preflagger1.type=preflagger

aoflagger.strategy=LBAdefault

aoflagger.autocorr=F

aoflagger.count.save=F

aoflagger.keepstatistics=T

aoflagger.memorymax =0

aoflagger.memoryperc =0

aoflagger.overlapmax =0

aoflagger.overlapperc =-1

aoflagger.pedantic=F

aoflagger.pulsar=F

aoflagger.timewindow =0
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aoflagger.type=aoflagger

demixer.freqstep =16 # compresses to 4 channels

demixer.timestep =4 # compresses 4 time -slots , i.e. 4s

demixer.demixfreqstep =64 # compresses to 1 channel

demixer.demixtimestep =12 # compresses 12 time -slots , i.e. 12s

demixer.skymodel=Ateam_LBA_CC.sky

demixer.subtractsources =[CasA , CygA] # which sources to demix

demixer.type=demixer

> NDPPP NDPPP_LBA_preprocess.parset > log.ndppp.demix 2>&1 &

You can run a similar parset without demixing and with averaging only to compare the output.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_preprocess_avgonly.parset .

> cat NDPPP_LBA_preprocess_avgonly.parset

msin = L74762_SAP000_SB001_uv.MS

msin.autoweight=TRUE

msin.datacolumn=DATA

msout = L74762_SAP000_SB001_uv.MS.avg.dppp

msout.datacolumn=DATA

steps=[ preflagger0 ,preflagger1 ,aoflagger ,averager]

preflagger0.chan =[0 ,1 ,62 ,63]

preflagger0.type=preflagger

preflagger1.corrtype=auto

preflagger1.type=preflagger

aoflagger.strategy=LBAdefault

aoflagger.autocorr=F

aoflagger.count.save=F

aoflagger.keepstatistics=T

aoflagger.memorymax =0

aoflagger.memoryperc =0

aoflagger.overlapmax =0

aoflagger.overlapperc =-1

aoflagger.pedantic=F

aoflagger.pulsar=F

aoflagger.timewindow =0

aoflagger.type=aoflagger

averager.freqstep =16 # compresses from 64 to 4 channels

averager.timestep =4 # compresses 5 time -slots , i.e. 5s

averager.type=averager

The visibilities after averaging only and after demixing are compared in Fig 28. You can clearly see
how the demixing has removed the strong A-team signal.

Depending on the use of the cluster, it will take about ∼ 10−12 minutes to demix and flag the data
(see the percentage progress bar). Inspecting the log file, you will see that the total data flagged for
each of the flagging steps is 4.7%, 5.6% and 1.2% respectively.

Edit the msin and msout fields of the parset to do the same for the second sub-band.
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Figure 28: SB000. Top: Plotting the XX visibility amplitude against time – averaging only. Bottom:
After demixing. Colourise by ‘Antenna1’ to obtain these colours.
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The flagged and demixed data set should now be in your working directory and each MS should have
a total size of 120 MB, which is much more manageable than before. You can use msoverview to look
at a summary of this data set using.

> msoverview in=L74762_SAP000_SB000_uv.MS.dem.dppp verbose=True

Some of the tasks that are used will make changes to the MS file, so let’s make a copy of the com-
pressed data set for safety,

> cp -rf L74762_SAP000_SB000_uv.MS.dem.dppp L74762_SAP000_SB000_uv.MS.dem.dppp.copy

10.3.3 Post-compression data inspection and flagging

We will use the CASA task plotms to inspect the data. Figure 29 shows the Amp. vs Time and Amp.
vs UV distance (wavelengths) for SB000. We can see that there are a few short baselines with large
fluctuating amplitudes. We will do some limited flagging for now.

Figure 29: SB000. Plotting the XX visibility amplitude against UV distance in wavelengths.
Colourise by ‘Antenna2’ to obtain these colours.

Plotting amplitude against baseline we see that the amplitudes for all baselines to RS305LBA are too
low. Also CS302LBA seems to have unusually large amplitudes on most of its baselines.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_flag1.parset .

> cat NDPPP_HBA_preprocess.parset

msin = L74762_SAP000_SB000_uv.MS.dem.dppp

msin.datacolumn=DATA

msout =

steps=[flag1 , clip]

flag1.type=preflagger

flag1.baseline = [ [CS302LBA], [RS305LBA] ]
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10.3.4 Combining Measurement Sets

With the HBA we were able to obtain good solutions for 3C 295 within a single subband. At LBA,
this is not the case, due to the lower sensitivity of the LBA antennae. For this reason we need to first
combine the subbands so we can obtain a single solution in frequency per solution time interval. This
is done by:

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP.combineMS.parset .

> cat NDPPP.combineMS.parset

msin = L74762_SAP000_SB00 [01] _uv.MS.dem.dppp

msin.datacolumn = DATA

msout = 3C295_LBA_BAND0.MS

steps = []

10.3.5 Calibration with DPPP

Here we will use DPPP to calibrate the combined MS. We use the same sky model as before:

> cp /globaldata/COOKBOOK/Tutorial/3c295/models/3C295TWO.skymodel .

> cat 3C295TWO.skymodel

# (Name, Type, Patch, Ra, Dec, I, ReferenceFrequency=’150.e6’, SpectralIndex) = format

, , 3c295, 14:11:20.64, +52.12.09.30

3c295A, POINT, 3c295, 14:11:20.49, +52.12.10.70, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

3c295B, POINT, 3c295, 14:11:20.79, +52.12.07.90, 48.8815, , [-0.582, -0.298, 0.583, -0.363]

The parset file can be found at

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP.calibrate.parset .

> cat NDPPP.calibrate.parset

msin=3 C295_LBA_BAND0.MS

msout=.

msout.datacolumn=CORRECTED_DATA

steps=[gaincal , applybeam]

gaincal.sourcedb =3 C295TWO.sourcedb

gaincal.caltype=diagonal

gaincal.nchan=0

gaincal.solint =4

gaincal.usebeammodel=true

gaincal.applysolution=true

This is a very simple parset file that solves and corrects the data. Here we are combining all the
channels (“nchan=0”) and using a solution interval of 16 sec (“solint=4”, the time resolution of the
data is 4 sec). The longer time interval compared to the HBA is again to improve the signal-to-noise.
To run DPPP, use the following command:

> DPPP NDPPP.calibrate.parset > log.dppp.solve 2>&1 &

The calibration process should be completed in a few minutes. You can simultaneously run a similar
command for the second sub-band. When DPPP is complete we can look at the calibrated data with
parmdbplot.py. Select a few stations and look at the solutions. Figures 30 and 31 shows some solution
plots. It is clear that there are a few spikes in the solutions.
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> python /globaldata/COOKBOOK/Tutorial/3c295/scripts/plot_solutions_all_stations_v2.py -p -a \

3C295_LBA_BAND0.MS/instrument/ lba_sb000_gains

> display lba_gains_amp.png

> display lba_gains_phase.png

Figure 30: Left: The solutions for CS003LBA. Right: The solutions for RS406LBA.

Once again, we can inspect the corrected data with casaplotms. Figure 32 shows the corrected Amp.
vs. Time plots. From this we see again that there are some scans with bad solutions and there is a lot
of scatter overall to high amplitudes.

Now we will do some basic flagging with NDPPP using the aoflagger on the CORRECTED DATA.
Fig. 33 shows the Amp. vs UV distance plots after flagging.

> cp /globaldata/COOKBOOK/Tutorial/3c295/parsets/lba/NDPPP_LBA_flag.parset .

> cat NDPPP_LBA_flag.parset

msin = 3C295_LBA_BAND0.MS

msin.datacolumn=CORRECTED_DATA

msout =

steps=[ aoflagger]

aoflagger.autocorr=F

aoflagger.timewindow =0

aoflagger.type=aoflagger

> NDPPP NDPPP_LBA_flag.parset > log.ndppp.flag 2>&1 &

This should flag about 3-4% of the data.

10.3.6 Imaging

Here we will again use WSClean see Chapter 7 to do the deconvolution. At 60 MHz the LOFAR (NL
Remote) field of view is 4.5 deg and the resolution should be around 8′′. First, to make a dirty image:

> wsclean -name 3C295_LBA -mgain 0.85 -niter 5000 -threshold 0.01 \

-scale 15asec -minuv-l 80 -maxuv-l 2000 -weighting-rank-filter 3 \

-size 2500 2500 -trim 2048 2048 -cleanborder 0 3C295_LBA_BAND0.MS

Fig. 34 shows the cleaned corrected image. One can see 3C 295 at the centre of the field as well as a
few other sources. The noise is around 0.15 Jy/beam and 3C 295 has a flux density of 136 Jy.
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Figure 31: Top: Phase solutions for all stations (polarizations in different colours). Bottom: Ampli-
tude solutions for all stations.
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Figure 32: Top: Plotting the corrected XX visibility amplitude against time.

Figure 33: Top: Plotting the XX visibility amplitude against UV distance after flagging.
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Figure 34: The cleaned LBA image for 3C 295. The scale is set to [-0.5, 5].
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11 Useful resources48

11.1 Webpages

The LOFAR wiki is a key resource, and you need an account to access the software areas. You can reg-
ister for an account here: http://www.lofar.org/operations/doku.php?id=start&do=register

Essential pages on the wiki are:

Main imaging wiki page: http://www.lofar.org/wiki/doku.php?id=software:standard_imaging_
pipeline

DPPP: http://www.lofar.org/wiki/doku.php?id=engineering:software:tools:ndppp

BBS: http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs

BBS parset parameters: http://www.lofar.org/operations/doku.php?id=engineering:software:
tools:bbsconfigurationsyntax

11.2 Useful analysis scripts

A compilation of some practical python scripts is available at the LOFAR-Contributions GitHub
repository:

https://github.com/lofar-astron/LOFAR-Contributions

The scripts provided are49:

• autoflagger.py: flags autocorrelations in a Measurement Set

• average.py: averages images from multiple sub bands together

• average weights.py: averages images weighting them by the inverse of their variance.

• baseline.py: plots amplitude/phase vs time/uvdistance/elevation

• CallSolFlag.py: flags calibrated data

• closure.py: prints closure phase vs time/elevation for selected antennas

• coordinates mode.py: routines to work with astronomical coordinates

• plot.py: inspect gain solutions

• solfetch.py: modules required for solflag.py

• solflag.py: carries out solution-based flagging

• solplot.py: modules required for solflag.py

48This Chapter is maintained by R. F. Pizzo, pizzo[at]astron[dot]nl
49If you have other scripts that could be useful for other commissioners, please contact Aleksandar Shulevski at

shulevski[at]astron[dot]nl
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• uvcoverage.py: plots the uv coverage for a Measurement

• plot flags.py: plots “images” of frequency versus time on a baseline-by-baseline basis, with the
pixel values equal to the visibility amplitudes

• img2fits.py: converts CASA images to fits images

• compare gaincal.py: plots CASA and BBS gain solutions against each other for comparison.
It can also plot CASA vs CASA and BBS vs BBS. Only supports gain solutions, and only if a
solution was computed for each integration time

• traces.py: plots L,M tracks for the zenith, azimuth and elevation of the NCP, CasA, CygA, and
the target against time for a given MS or time range. Observer location is fixed to Dwingeloo.
It is easy to add other sources of interest, or to modify the observer location, but it does require
editing the Python code. The script is useful to check the elevation of possible interfering
sources like CasA and CygA

• casapy2bbs: written by Joris van Zwieten. Converts a clean component image produced by
casa into a skymodel file readable by BBS. See also modelclip.py.

• embiggen.csh: increases the size of plotted points in postscript files. Useful when producing ps
output from e.g. uvplot.py.

• lin2circ.py: given a Measurement Set with a DATA column given in XX,XY,YX,YY corre-
lations, converts to circular correlations RR,RL,LR,LL and writes them to a column in the
Measurement Set.

• modelclip.py: sorts a skymodel file with respect to Stokes I flux, and truncates the list of sources
such that N% of the total flux is kept in the model (where N is specified on the command line).
Useful for clean component skymodels produced by e.g. casapy2bbs.

• msHistory.py: prints information from the HISTORY table of a Measurement Set. Useful for
obtaining a quick listing of the parset values used in e.g. DPPP.

• plotElevation.py: given a Measurement Set, plots the elevation of the target source as a function
of time

• split ms by time.py: extracts part of a Measurement Set (selected by timerange) and writes out
to a new Measurement Set. Optionally excludes selected antennas.

• uvcov.py: plots uv coverage for one or more Measurement Sets. If all Measurement Sets are
for the same source at the same time (in other words are different subbands of the same ob-
servation), then use the ’-s’ option to save a lot of time. Do NOT use that option if the input
Measurement Sets are not coincident in time.

• uvplot.py: plots data from a Measurement Set in several combinations, in a per-baseline fashion.
Not as flexible as casaplotms, but should be faster.

• uvrms.py: performs RM Synthesis on the data in a Measurement Set.

• fixlofaruvw.py: corrects the faulty UVW column header. Use this on all data sets recorded
before 20/03/2011 to get the astrometry correct. This script changes the MEASINFO.Ref label
in the UVW column to J2000.

• plot Ateam elevation.py: it makes plots of the elevation and angular distance of the Ateam and
other sources (Sun, Jupiter) given a Measurement Set.
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• do demixing.py: applies the demixing routine from Bas vdTol to the data to get rid of the
A-team sources. The instructions are at the top of the file.

• CutBeamFromSkyModel.py: given a skymodel, it produces two sub-skymodels, the first con-
taining all the components within a particular radius from a given coordinate, the second all the
rest.

• modskymodel.py: it can shift skymodels by a given angular amount. It can manipulate sky-
models also in other ways, like masking them and updating their spectral index values.

• listr v2.py: it is a clone of the old AIPS matrix listing of data files. For the data or corrected-
data column, it lists amplitudes (or phases) averaged by baseline over a specified time interval.
It does also cross-hands and identifies the antennas.

• fromsky.py: it converts a BBS skymodel file into the MODEL DATA column of a visibility
dataset.

• flagnancorrected.py: it searches CORRECTED DATA column for NaN and flags them.

• flagnandata.py: it searches DATA column for NaN and flags them.

• Solution Plotter.py: it plots amplitude, phase solutions per antenna and the differential TEC on
a baseline.

• skymodel to ds9reg.py: it plots the output of gsm.py with ds9.

11.3 Contact points

Some key contact points are listed below:

• LOFAR Imaging Cookbook - Aleksandar Shulevski (shulevski[at]astron[dot]nl)

• DPPP - Ger van Diepen (diepen[at]astron[dot]nl), Tammo Jan Dijkema
(dijkema[at]astron[dot]nl, and David Rafferty
(rafferty[at]strw[dot]leidenuniv[dot]nl)

• AOFlagger - André Offringa (offringa[at]astron[dot]nl)

• BBS - Tammo Jan Dijkema (dijkema[at]astron[dot]nl), Vishambhar Nath Pandey
(pandey[at]astron[dot]nl)

• AWImager - Tammo Jan Dijkema
(dijkema[at]astron[dot]nl), and Bas van der Tol (tol[at]astron[dot]lnl)

• Python-casacore/TaQL/Casacore - Ger van Diepen (diepen[at]astron[dot]nl) and Tammo Jan
Dijkema
(dijkema[at]astron[dot]nl

• SAGECAL, Shapelets - Sarod Yatawatta (yatawatta[at]astron[dot]nl)

• PyBDSM, LSMTool - David Rafferty (rafferty[at]strw[dot]leidenuniv[dot]nl)

• RM Synthesis - Marco Iacobelli (iacobelli[at]astron[dot]nl)
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Several tools for manual data reduction useful for expert users are described in the appendices that
follow.

A Calibration with BBS51

BBS is a software package that was designed for the calibration and simulation of LOFAR data. This
section provides a practical guide to reducing LOFAR data with BBS. Do not expect a description
of the optimal way to calibrate LOFAR data that works on all possible fields. Much still has to be
learned about the reduction of LOFAR data. This chapter should rather be viewed as a written record
of the experience gained so far, through the efforts of many commissioners and developers.

NOTE: the most common calibration scenarios can now be performed in DPPP, which is a lot faster
(at least 10 times). Please first see if your calibration can be done with DPPP, see Chapter 5.

A.1 Overview

The sky as observed by LOFAR is the ”true” sky distorted by characteristics of the instrument (station
beam, global bandpass, clock drift, . . . ) and the environment (ionosphere). The goal of calibration
(and imaging) is to compute an accurate estimate of the “true” sky from the distorted measurements.

The influence of the instrument and the environment on the measured signal can be described by
the measurement equation. Calibration involves solving the following inverse problem: Given the
measured signal (observations) and a parameterized measurement equation (model), find the set of
parameter values that minimizes the difference between the model and the observations.

The core functionality of BBS can conceptually be split into two parts. One part concerns the simula-
tion of visibilities given a model. The other part concerns estimating best-fit parameter values given a
model and a set of observed visibilities. This is an iterative procedure: A set of simulated visibilities is
computed using the current values of the parameters. Then, the values of the parameters are adjusted
to minimize the difference between simulated visibilities and observed visibilities, and an updated set
of simulated visibilities is computed. This continues in a loop until a convergence criteria is met.

BBS has two modes of running. The first is to run as a stand-alone tool to calibrate one subband. If
a single subband does not contain enough signal, BBS offers the possibility to use data from multi-
ple subbands together for parameter estimation. This is called global parameter estimation. In this
chapter, we will focus on the stand-alone version; only in Section A.10 we will treat the global solve.

As input, BBS requires an observation (one or more subbands / measurement sets), a source catalog
(see Section A.3), a table of initial model parameters (see Section A.5), and a configuration file
(also called parset, see Section A.8) that specifies the operations that need to be performed on the
observation as a whole. As output, BBS produces a processed observation, a table of estimated model
parameters, and a bunch of log files.

A.2 Usage

To calibrate a single MS, execute the calibrate-stand-alone script on the command line:

> calibrate-stand-alone -f <MS> <parset> <source catalog>

51This section is maintained by Tammo Jan Dijkema (dijkema@astron.nl). It was originally written by Joris van
Zwieten and Reinout van Weeren.
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The important arguments provided to the calibrate-stand-alone script in this example are:

• <MS>, which is the name of the MS to process.

• <parset>, which defines the reduction (see Section A.8).

• <source catalog>, which defines a list of sources that can be used for calibration (see Sec-
tion A.3).

• The -f option, which overwrites stale information (the instrument table and sky model) from
previous runs.

You can run the script without arguments for a description of all the options and the mandatory
arguments, such as the -v option to get a more verbose output.

A.3 Source catalog

The source catalog / sky model defines the sources that can be used (referred to) in the reduction. It is
a plain text file that is translated by the makesourcedb tool into a form that BBS can use. (Internally,
the script converts the catalog file to a sourcedb by running makesourcedb on it, before starting
BBS.)

A sky model can be created by hand using a text editor. Using tools like awk and sed, it is relatively
straight-forward to convert existing text based catalogs into makesourcedb format. Various catalog
files created by commissioners have been collected at /globaldata/COOKBOOK/Models on the CEP
cluster.

Alternatively, a catalog file in makesourcedb format can be created using the gsm.py tool. This
tool extracts sources in a cone of a given radius around a given position on the sky from the Global
Sky Model or GSM. The GSM contains all the sources from the VLSS, NVSS, and WENSS survey
catalogs. See Section A.4 for more information about the GSM and gsm.py.

Below is an example catalog file for 3C196. In this example, 3C196 is modelled as a point source with
a flux of 153 Jy and a spectral index of -0.56 with a curvature of -0.05212 at a reference frequency of
55.468 MHz.

# (Name ,Type ,Ra,Dec ,I, ReferenceFrequency = ’55.468e6’, SpectralIndex) = format

3C196 , POINT , 08:13:36.062300 , +48.13.02.24900 , 153.0 , , [-0.56, -0.05212]

Another example catalog file describes a model for Cygnus A. It is modelled as two point sources that
represent the Eastern and the Western lobe respectively, with a flux ratio of 1:1.25.

# (Name , Type , Ra, Dec , I) = format

CygA.E, POINT , 19:59:31.60000 , +40.43.48.3000 , 1.25

CygA.W, POINT , 19:59:25.00000 , +40.44.15.7000 , 1.0

For each source, values should be specified for the fields listed in the header line, in the same order.
The only mandatory fields are: Name, Type, Ra, and Dec. The declination separators have to be dots,
not colons, unless you want the declination to be interpreted as hours (i.e., multiplied by a factor 15).

If a field is left blank (e.g. the ReferenceFrequency in the 3C196 example above), the default value
specified in the header line is used. If this is not available, then the application defined default value
is used instead.

When a catalog contains sources defined by shapelets as well as point sources or Gaussian sources, it
is easiest to create two catalog files (one containing the shapelet sources and one containing the rest).
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Using the append option of the makesourcedb tool, a single sourcedb containing all the sources can
then be created and fed to the calibrate-stand-alone script using the --sourcedb option.

For more information about the recognized fields, default values, and units, please refer to the make-
sourcedb documentation on the LOFAR wiki52.

A.3.1 Gaussian sources

A Gaussian source can be specified as follows.

# (Name , Type , Ra, Dec , I, Q, U, V, ReferenceFrequency =’60e6’, \

SpectralIndex =’[0.0]’, MajorAxis , MinorAxis , Orientation) = format

sim_gauss , GAUSSIAN , 14:31:49.62 ,+13.31.59.10 , 5,,,,,[-0.7], 96.3, 58.3, 62.6

Note that the header line beginning with ”# (Name, ...” must be a single line, and has been spread
over multiple lines here for clarity (indicated by a backslash). There is a known issue about the
definition of the Orientation: it’s defined relative to the north of some image and not relative to
’true’ north. This is only relevant if the Gaussian is not symmetric, i.e. the major axis and minor axis
differ, and you are transferring a Gaussian model component to another pointing over a large angular
distance.

A.3.2 Spectral index

The spectral index used in the source catalog file is defined as follows:

log10(S) = log10(S0)+ c0log10

(
ν

ν0

)
+ c1

[
log10

(
ν

ν0

)]2

+ . . .+ cn

[
log10

(
ν

ν0

)]n+1

(6)

with ν0 being the reference frequency specified in the ReferenceFrequency field, c0 the spectral
index, c1 the curvature, and c2, . . . ,cn the higher order curvature terms. The SpectralIndex field
should contain a list of coefficients [c0, . . . ,cn].

A.3.3 Rotation measure

For polarized sources, Stokes Q and U fluxes can be specified explicitly, or implicitly by specifying
the intrinsic rotation measure RM, the polarization angle χ0 at λ = 0, and the polarized fraction p.

In the latter case, Stokes Q and U fluxes at a wavelength λ are computed as:

Q(λ ) = p I(λ ) cos(2χ(λ )) (7)
U(λ ) = p I(λ ) sin(2χ(λ )) (8)
χ(λ ) = χ0 +RM λ

2 (9)

Here, I(λ ) is the total intensity at wavelength λ , which depends on the spectral index of the source.

The intrinsic rotation measure of a source can be specified by means of the field RotationMeasure.
The polarization angle χ0 at λ = 0 and the polarized fraction p can be specified in two ways:

• Explicitly by means of the fields PolarizationAngle and PolarizedFraction.

52http://www.lofar.org/operations/doku.php?id=engineering:software:tools:
makesourcedb
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• Implicitly, by means of the fields Q, U, and ReferenceWavelength.

When specifying Q and U at a reference wavelength λ0, the polarization angle χ0 at λ = 0, and the
polarized fraction p will be computed as:

χ0 =
1
2

tan−1(
U
Q
)−λ

2
0 RM (10)

p =

√
(Q2 +U2)

I(λ0)
(11)

Here, I(λ0) is the total intensity at reference wavelength λ0, which depends on the spectral index of
the source. Note that the reference wavelength λ0 must be > 0 if the source has a spectral index.

A.4 GSM53

The Global Sky Model or GSM is a database that contains the reported source properties from the
VLSS, WENSS and NVSS surveys. The gsm.py script can be used to create a catalog file in
makesourcedb format (see Section A.3) from the information available in the GSM. As such, the
gsm.py script serves as the interface between the GSM and BBS.

A catalog file created by gsm.py contains the VLSS sources that are in the field of view. For every
VLSS source, counterparts in the other catalogs are searched and associated depending on criteria
described below. Spectral index and higher-order terms are fitted according to equation 6 in Sec-
tion A.3.2.

On CEP, there is a GSM database instance and is loaded with all the sources and their reported
properties from the VLSS, WENSS and NVSS surveys. The WENSS survey is actually split up into
two catalogs according to their frequencies: A main (δ ≤ 75.8, ν = 325 MHz) and a polar (δ ≥ 74.5,
ν = 352 MHz) part. The VLSS and NVSS surveys are taken at 73.8 MHz and 1400 MHz, respectively.

The python wrapper script gsm.py can be used to generate a catalog file in makesourcedb format
and can be run as:

> gsm.py outfile RA DEC radius [vlssFluxCutoff [assocTheta]]

The input arguments are explained in Table 5. The arguments RA and DEC can be copy-pasted from
the output of ‘msoverview‘ to select the pointing of your observation. A sensible value for radius is,
5 degrees.

The gsm.py script calls the function expected fluxes in fov() in gsmutils.py that does the
actual work. It makes a connection to the GSM database and selects all the VLSS sources that
fulfill the criteria. The area around every found VLSS source (out to radius assocTheta) is searched
for candidate counterparts in the other surveys. The dimensionless distance association parameter,
ρi,?, is used to quantify the association of VLSS source−candidate counterpart further. It weights
the positional differences by the postion errors of the pair and follows a Rayleigh distribution (De
Ruiter et al., 1977). A value of 3.717 corresponds to an acceptance of missing 0.1% genuine source
associations (Scheers, 2011). The dimensionless radius is not an input argument to gsm.py, but it is
to the above mentioned function. For completeness, we give its definition below:

ρi,? ≡
√

(αi cosδi−α? cosδ ?)2

σ2
αi
+σ2

α?

+
(δi−δ ?)2

σ2
δi
+σ2

δ ?

, (12)

53This section was contributed by Bart Scheers.
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Parameter Unit Description
outfile string Path to the makesourcedb catalog file.

If it exists, it will be overwritten.
RA, DEC degrees Central position of conical search.
radius degrees Extent of conical search.
vlssFluxCutoff Jy Minimum flux of VLSS sources in outfile.

Defaults to 4 Jy.
assocTheta degrees Search radius centred on VLSS source

for which counterparts are searched.
Defaults to 0.00278 degrees (10 arcsec, taking into account the
VLSS resolution of 80 arcsec).

Table 5: The parameters and criteria that are used for creating the initial Global Sky Model.

Here the sub- and superscripts ? refers to the VLSS source and i to its candidate counterpart in one
of the other surveys.

After being associated (or not), the corresponding fluxes and frequencies are used to fit the spectral-
index and higher-order terms according to equation 6 in Section A.3. Therefore, we use the python
numpy.poly1d() functions. If no counterparts were found a default spectral index of −0.7 is as-
sumed.

Another optional argument when calling the function expected fluxes in fov() in gsmutils.py

is the boolean storespectraplots. When true and not performance driven, this will plot all the
spectra of the sources in the catalog file, named by their VLSS name.

Special cases

There might be cases that a VLSS source has more than one WENSS counterpart. This might occur
when the mutiple subcomponents of a multicomponent WENSS source are associated to the VLSS
source. WENSS sources that are flagged as a subcomponent (’C’) are omitted in the inclusion. Only
single component WENSS sources (’S’) and multicomponent WENSS sources (’M’) are included in
the counterpart search.

A.5 Instrument tables

When calibrating, we try to estimate parameters in the measurement equation. The values of these
model parameters are stored in a so-called “parmdb” (table). Usually, this parmdb is stored inside
a measurement set and is called instrument. To inspect or create a parmdb, use the command
parmdbm54. To view the contents of a parmdb, use the tool parmdbplot.py (section A.12).

A parmdb can contain two sorts of parameters: normal parameters that are both time and frequency
dependent, and default parameters that are neither frequency nor time dependent. The default param-
eters can be used as fallback if a model parameter is not known, but they can also be used in some
schemes for transferring solutions, see section A.14.

Before even starting the actual BBS, there need to be values in the parmdb, because they are used
as starting values by BBS55. For gains (Gain and DirectionalGain), the default starting value of
0 is not adequate. For this reason, the calibrate-stand-alone script implicitly creates a default

54http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm
55For calibration with DPPP this is not necessary.
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parmdb that contains initial values of 1 for these parameters.

Please note that if you create your own parmdb, you will almost always want to include the default
adddef commands listed below to set the correct defaults for Gain, DirectionalGain. Otherwise,
estimating these parameters will not work correctly. The default parameters are automatically created
if you use calibrate-stand-alone with the option -f or --replace-parmdb. To set default values
in a parmdb manually, use the following commands in parmdbm56.

adddef Gain:0:0:Ampl values=1.0

adddef Gain:1:1:Ampl values=1.0

adddef Gain:0:0:Real values=1.0

adddef Gain:1:1:Real values=1.0

adddef DirectionalGain:0:0:Ampl values=1.0

adddef DirectionalGain:1:1:Ampl values=1.0

adddef DirectionalGain:0:0:Real values=1.0

adddef DirectionalGain:1:1:Real values=1.0

A.6 Model

As already mentioned, BBS consists of two parts: a part to solve equations and a part to simulation of
visibilities given a sky model. This section is about the latter. BBS uses the measurement equation,
which is an equation that describes all effects that happen to the signal that was sent by the sky, before
they are captured in your data. All these effects are Jones matrices: 2× 2 matrices that work on the
two components (the two polarizations) of your data. An important thing to note is that these Jones
matrices do not commute: the order in which they are matters.

The most commonly used effects that BBS can handle are given in Table 6, in the order that they
are applied (from sky to antenna). The direction dependent effects are different for each patch you
specify in your source model.

The two most commonly used effects, Gain and DirectionalGain, have only one option: Phasors.
When set to True (or T), the gains are expressed like A · eiφ , otherwise they are specified in the form
a+ b · i. While mathematically equivalent, this does make a difference because the solver in BBS
solves for real variables. When you are solving for phases or amplitudes only, it is necessary to
specify Phasors = True. Specify this like

Model.Gain.Phasors = T

For configuration of the beam model that is used, see Section A.6.1.

A.6.1 Beam model

The beam model tries to emulate all kinds of distortions to the signal that are caused by the beam of
the station. These effects are split into two parts: the element beam, which is the response of a single
dipole, and the array factor, which emulates the effect of combining the signal of the many dipoles
in a station. In HBA, the array factor model also models the effect of the analog tile beam former.

To have a look at different elements of the beam, you can specifically use only the element beam or
only the array factor (if you don’t know the details, you need both the element beam and the array
factor, which is the default). The options are:

56http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm
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Effect Description Jones matrix

ScalarPhase A phase that is equal for both dipoles
(

eαp 0
0 eαp

)
Rotation57 Faraday Rotation without frequency dependency

(
cos(αp) −sin(αp)
sin(αp) cos(αp)

)
FaradayRotation58 Faraday Rotation, ρp = αp · (channel wavelength)2

(
cos(ρp) −sin(ρp)
sin(ρp) cos(ρp)

)
DirectionalTEC TEC (ionosphere), φp =

−8.44797245·109αp
channel frequency

(
eφp 0
0 eφp

)
Beam* The LOFAR beam model. See A.6.1

DirectionalGain Directional gain
(

α:0:0:p α:0:1:p
α:1:0:p α:1:1:p

)
CommonScalarPhase* Scalar Phase

(
eα 0
0 eα

)
CommonRotation59 Rotation

(
cos(α) −sin(α)
sin(α) cos(α)

)
TEC TEC (ionosphere), φ = −8.44797245·109α

channel frequency

(
eφ 0
0 eφ

)
Gain* Gain

(
α:0:0 α:0:1
α:1:0 α:1:1

)
Clock Clock, φ = α ·2π · channel frequency

(
eφ 0
0 eφ

)
Table 6: Effects that BBS handles. The first half are direction dependent effects (DDEs), which means
that the effect is different for each patch. The bottom effects are direction independent effects (DIEs).

Effects indicated with a * are supported in DPPP. The last column shows the Jones matrix that is
inserted in the measurement equation, in terms of the actual parameter α that ends up in the

instrument table. For directional effects, each direction (patch) p gets its own Jones matrix Gp with
its own parameter αp. The representation of Gain jones matrices is affected by the setting Phasors

and which of the elements of the matrix you enable.

Model.Beam.Mode = ELEMENT # only element beam

Model.Beam.Mode = ARRAY_FACTOR # only array factor

Model.Beam.Mode = DEFAULT # both element beam and array factor (default)

The tile beam former in the HBA tiles forms a beam for a certain reference frequency. When modeling
this beam, the beam model should of course do this for the same frequency. Usually, this works
automatically: the reference frequency is stored in the measurement set. Things are different when
you compress a number of subbands as channels into one measurement set (usually done with DPPP).
Then each ‘channel’ was beamformed at a different reference frequency. In this case, the reference
frequency is only right for one of the ‘channels’. To handle this case well, there is an option that tells
the beam model to use the channel frequency (which is usually the center frequency of the compressed
subband). This option is:

Step.Solve.Model.Beam.UseChannelFreq = T

Note that the beam model is a direction dependent effect like any other in BBS. That means that over
a patch, the beam is assumed to be constant (it is evaluated at the centroid of the patch). This may
change in the future.

A.7 Solver

BBS performs parameter estimation on the measurement equation to find parameters that best match
the observed visibilities. To improve signal to noise, one can assume that the parameters are constant
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for a number of time samples or a number of frequencies. In this way, there are more measurements
available to estimate the same parameter. To specify these, use Step.<name>.Solve.CellSize.Time
and Step.<name>.Solve.CellSize.Freq. The unit of CellSize.Time is number of time slots, so
CellSize.Time=1 corresponds to the correlator integration time. If CellSize.Time=0, one solution
is calculated for the entire scan.

The underlying solver is a Levenberg-Marquardt solver. Several parameters exist to this solver, how-
ever the defaults should be fine.

A.8 Example reductions

The sequence of operations that BBS will perform on the data are defined in a configuration or parset
file60. The BBS documentation on the LOFAR wiki documents all the options (see the LOFAR
wiki61), and it is highly recommended that you obtain a hardcopy of this for future reference.

A BBS parset file consists of two sections: The Strategy section, which defines the operations (or
steps) to be carried out, and the Step section, which defines the details of each step. The following
sections describe a few typical reductions along with the corresponding parset.

The parsets shown in the following sections are intentionally verbose. Often, default settings have
been included for clarity. For example, the default input column is DATA. The line
Strategy.InputColumn = DATA is therefore redundant and can be left out.

A.8.1 Simulation

Given a source catalog and (optionally) a table of model parameters, BBS can be used to compute
simulated uv-data (without noise)62. Simulated data can sometimes be useful as a debugging aid.
Imaging simulated data can provide an impression of what you would expect to see with an ideal
telescope under ideal conditions and without noise. Comparing observed data to simulated data can
provide useful clues, although in practice this is limited to cases where the signal to noise ratio of the
observed data is high.

Simulated data produced by BBS (or any other software package) can also be used as model data
during calibration using the same parset syntax as described in Section A.11.

An example parset file63 to simulate uv-data for all the sources in the source catalog is shown below.

# simulation.parset

Strategy.InputColumn = DATA

Strategy.TimeRange = []

Strategy.Baselines = *&

Strategy.ChunkSize = 100

Strategy.Steps = [predict]

Step.predict.Operation = PREDICT

Step.predict.Model.Sources = []

Step.predict.Output.Column = MODEL_DATA

60Examples of these files can be found in /globaldata/COOKBOOK/Parset.
61http://www.lofar.org/operations/doku.php?id=engineering:software:tools:bbs
62Use DPPP’s predict step for this, it is much more efficient.
63This example can be found in /globaldata/COOKBOOK/Parset/simulation.parset.
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A.8.2 Gain calibration (direction independent)

The following parset64 describes a direction independent gain calibration. The meaning of each pa-
rameter is the same as in Section A.8.1 unless otherwise stated. Enabling / disabling of model com-
ponents can be either done by a short-hand T and F which is equivalent to explicit True and False.

# uv -plane -cal.parset

Strategy.InputColumn = DATA

Strategy.TimeRange = []

Strategy.Baselines = *&

Strategy.ChunkSize = 100

Strategy.Steps = [solve , correct]

Step.solve.Operation = SOLVE

Step.solve.Model.Sources = [3C196]

Step.solve.Model.Gain.Enable = T

Step.solve.Solve.Parms = ["Gain :0:0:*" , "Gain :1:1:*"]

Step.solve.Solve.CellSize.Freq = 0

Step.solve.Solve.CellSize.Time = 1

#Step.solve.Model.Beam.Enable = True <-de-comment if you want to apply the beam

Step.correct.Operation = CORRECT

Step.correct.Model.Gain.Enable = T

Step.correct.Output.Column = CORRECTED_DATA

#Step.correct.Model.Beam.Enable = True <-de-comment if you want to apply the beam

The CORRECT step performs a correction of the uv-data for a particular direction. This can be done
for exactly one source from the skymodel. If Model.Sources contains multiple sources, BBS will
throw an exception, because it cannot correct for more than one direction at a time.

BBS also accepts an empty source list in the CORRECT step. In that case it will correct for the phase
center direction of the MS. This does then, of course, not include direction dependent effects such
as DirectionalGain, DirectionalTEC, et cetera, which are inherently bound to a patch name and
therefore can only be corrected for if a patch name is specified. This implicit behaviour must be kept
in mind when correcting your data.

Note that a CORRECT step cannot be “undone”. If a CORRECTED DATA column is used for further
calibration later on, one has to be aware of the consequences. For example, if in the first correct the
beam was enabled, this prevents proper use of the beam in the following steps65.

A.8.3 Gain calibration (direction dependent) with source subtraction

This section has been adapted from a document written by Annalisa Bonafede66. In the following, we
report the parset67 file and skymodel used for the subtraction of Cas A and Cyg A from the observation
of the radio source 3C380.

The parset includes the following steps:

• Solve for the gain in the direction of each source in the source catalog.

• Subtract the sources CygA.E, CygA.W, and CasA, each with their own individual gain.

64This example can be found in /globaldata/COOKBOOK/Parset/uv-plane-cal.parset.
65This is important when doing a self calibration. In that case only the CORRECTED DATA column should be used

for imaging, while a next calibration step should go back to take the DATA column as input to refine the calibration.
66a.bonafede[at]jacobs-university[dot]de
67This example can be found in /globaldata/COOKBOOK/Parset/image-plane-cal.parset.
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• Correct the data for the gain in the direction of 3C380 (the target).

# image -plane -cal.parset

#

Strategy.ChunkSize = 100

Strategy.Steps = [solve , subtract , correct]

Step.solve.Operation = SOLVE

Step.solve.Model.DirectionalGain.Enable = T

Step.solve.Solve.Parms = [" DirectionalGain :0:0:*" ," DirectionalGain :1:1:*"]

Step.solve.Solve.CellSize.Freq = 0

Step.solve.Solve.CellSize.Time = 5

Step.subtract.Operation = SUBTRACT

Step.subtract.Model.Sources = [CygA.E, CygA.W, CasA]

Step.subtract.Model.DirectionalGain.Enable = T

Step.correct.Operation = CORRECT

Step.correct.Model.Sources = [3C380]

Step.correct.Model.DirectionalGain.Enable = T

Step.correct.Output.Column = CORRECTED_DATA

The source catalog used for calibration is reported below68:
############################################################

# 3C380 -bbs.skymodel

# (Name , Type , Ra, Dec , I, ReferenceFrequency , SpectralIndex) = format

CygA.E, POINT , 19:59:29.99 , +40.43.57.53 , 4421, 73.8e6 , [-0.7]

CygA.W, POINT , 19:59:23.23 , +40.44.23.03 , 2998, 73.8e6 , [-0.7]

CasA , POINT , 23:23:24.0 , +58.48.54.0 , 20000

3C380 , POINT , 18:29:31.8 , +48.44.46.0 , 1, 178.e6, [ -0.7]

The flux of 3C380 has been set to the arbitrary value of 1 Jy. Its spectral index has been roughly
estimated by comparing VLSS and 3C flux. The subtraction can also be performed without specifying
the correct flux of the sources and determining the flux of the target source with self calibration.

The resulting image in shown in Figure 35, compared to the map obtained without subtraction.

A.9 Tweaking BBS to run faster

BBS can take a long time to calibrate your huge dataset. Luckily, there are some ways to tune it. You
have to know a bit about how BBS works to do this.

BBS views the data as a grid of time slots times vs channels (see Figure 36). A solution cell is defined
as the number of timeslots times the number of channels on which a constant parameter solution is
computed. For example, if you specify CellSize.Freq = 1, a different solution is computed for
every channel independently. In Figure 36, the solution cells are outlined with blue lines.

Because the evaluation of the model is computationally expensive, and a lot of intermediate results
can be reused, the model is evaluated for a number of cells simultaneously. There is a trade-off here:
if one cell would converge to a solution very slowly, the model is evaluated for all the cells in the
cell chunk, even the ones that have converged. The number of cells in a cell chunk is specified by
CellChunkSize, which specifies the number of solution cells in the time direction. Dependent on the
amount of frequency cells, a value of CellChunkSize = 10 -- 25 could be good.

68This source catalog is available in /globaldata/COOKBOOK/Models.
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Figure 35: The radio source 3C380 imaged by LOFAR at 135 MHz (observation ID L2010 08567).
Left panel: Self calibration has been applied with directional-gain correction and subtraction of Cyg
A and Cas A. Right panel: Self calibration has been applied without correction. The lowest contour
level is at 3 mJy beam−1; subsequent contour levels are spaced by factors of

√
2. The resolution is

83.29”×59.42”. The negative contour is in red.

First, BBS loads a lot of timeslots into memory. The amount of timeslots is specified by ChunkSize.
If you specify ChunkSize = 0 then the whole MS will be read into memory, which will obviously
not work if your data is 80 Gb large. Depending on the number of baselines and channels, usually 100
is a good choice. Monitor the amount of memory that is used (for example by running top) to see if
you’re good. The ChunkSize should be an integer multiple of CellSize.Time × CellChunkSize,
so that in every chunk the same number of cell chunks are handled and all cell chunks have the same
size.

Multithreading

BBS can do a bit of multithreading. Be warned in advance that if you use N threads, BBS will most
likely not run N times faster. Again, a bit of tweaking may be necessary.

The multithreading is done on solve part, not on the model building part. So it works only on problems
that are ‘solve-dominated’. The multithreading is performed over the solution cells. For this to give
any speedup, there need to be at least as many solution cells as the number of threads. You usually get
a decent speed-up if the number of solution cells is about 5–6 times the number of threads. So if you
solve over all frequencies (the number of frequency cells is 1), CellChunkSize = 5 × nThreads

should give you some speedup.

You can instruct calibrate-stand-alone69 to run with multithreading with the parameter -t or

69Currently, it is not possible to combine multithreading with a global solve or with the calibrate script.
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Figure 36: The different solve domains and chunk parameters for BBS. In this example,
CellSize.Time=8, CellSize.Freq=8, ChunkSize=32, CellChunkSize=2 (do not use these val-
ues yourself, they are probably not good for actual use).

--numthreads:

calibrate-stand-alone --numthreads 8 <MS> <parset> <source catalog>

A.10 Global parameter estimation

BBS was designed to run on a compute cluster, calibrating across multiple subbands which reside
on separate compute nodes. BBS consists of three separate executables: bbs-controller, bbs-re-
ducer, and bbs-shared-estimator. The bbs-controller process monitors and controls a set of
bbs-reducer processes, and possibly one or more bbs-shared-estimator processes. Each sub-
band is processed by a separate bbs-reducer process. When working with calibrate-stand-alo-
ne, the script actually launches one bbs-reducer for you. To setup a calibration across subbands,
the script calibrate can be used, which sets up the appropriate processes on different nodes.

Each bbs-reducer process computes a set of equations and sends this to the bbs-shared-estimator
process assigned to the group it is part of. The bbs-shared-estimator process merges the set of
equations with the sets of equations it receives from the other bbs-reducer processes in the group.
Once it has received a set of equations from all the bbs-reducer in its group, the bbs-shared-es-

timator process computes a new estimate of the model parameters. This is sent back to all bbs-re-
ducer processes in the group and the whole process repeats itself until convergence is reached.

A.10.1 Setting up your environment

Before using the distributed version of BBS, you will have to set up a personal database. In principle,
this needs to be done only once. You only have to recreate your database when the BBS SQL code
has changed, for example to support new functionality. Such changes are kept to a minimum.

Also, on each lce or locus node that you are going to use you need to create a working directory.
Make sure you use the same path name on all the nodes . This has to be done only once.

The distributed version of BBS requires a file that describes the compute cluster (an example of such
a file is cep1.clusterdesc70) and a configuration or parset71 file that describes the reduction.

70You can copy this file from /globaldata/COOKBOOK/Files.
71Examples can be found in /globaldata/COOKBOOK/Parset.
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For each MS that we want to calibrate it is necessary to create a vds file that describes its contents and
location. This can be done by running the following command:

> makevds cep1.clusterdesc <directory>/<MS>

After this, all vds files need to be combined into a single gds file, ready for calibration and/or imaging.
This is done by typing:

> combinevds <output file>.gds <vds file 1> [<vds file 2> ...]

Instead of specifying the list of input vds files, you could type *.vds. Note that the combine step is
required even if we want to calibrate a single subband only, although normally you would calibrate a
single subband using the stand-alone version of BBS (see Section A.2).

A.10.2 Usage

To calibrate an observation with the distributed version of BBS on the Groningen cluster, execute the
calibrate script on the command line:

> calibrate -f --key <key> --cluster-desc ~/imaging.clusterdesc --db ldb001 \

--db-user postgres <gds file> <parset> <source catalog> <working directory>

which is a single command, spread over multiple lines, as indicated by a backslash. The important
arguments provided to the calibrate script in this example are:

• <key>, which is a single word that identifies the BBS run. If you want to start a BBS run while
another run is still active, make sure that the runs have different keys (using this option).

• <gds file>, which contains the locations of all the MS (subbands) that constitute the obser-
vation. It should be given here by its full path, for example /data/scratch/<username>/<global
gds file>.

• <parset>, which defines the reduction (see Section A.8).

• <source catalog>, which defines a list of sources that can be used for calibration (see Sec-
tion A.3).

• <working directory>, which is the working directory where BBS processes will be run and
where the logs will be written (usually /data/scratch/<user name>). It should be created
on each compute node that you intend to use. You can use the cexec command for this (see
Section 1.2).

• The -f option, which overwrites stale information from previous runs.

You can run the calibrate script without arguments for a description of all the options and the
mandatory arguments. You can also use the -v option to get a more verbose output. Note that the
arguments of calibrate are very much like72 those of calibrate-stand-alone.

The calibrate script does not show progress information, which makes it difficult to estimate how
long a BBS run will take to complete. One way around this is to log on to one of the compute

72Actually, both scripts use different terminology, sky-db in the one is called sourcedb in the other. This will be
fixed.
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nodes where BBS is processing, change to your local working directory, and monitor one of the
bbs-reducer log files. These log files are named <key> kernel <pid>.log. The default key is
default, and therefore you will often see log files named e.g. default kernel 12345.log. The
following command will print the number of times a chunk of visibility data was read from disk:

> grep "nextchunk" default_kernel_12345.log | wc -l

You can compute the total number of chunks by dividing the total number of time stamps in the
observation by the chunk size specified in the parset (Strategy.ChunkSize). Of course, if you
make the chunk size large, it may take BBS a long time to process a single chunk and this way of
gauging progress is not so useful. Generally, it is not advisable to use a chunk size larger than several
hundreds of time samples. This will waste memory. A chunk size smaller than several tens of time
stamps is also not advisable, because it leads to inefficient disk access patterns.

A.10.3 Defining a global solve

Solving across multiple subbands can be useful if there is not enough signal in a single subband to
achieve reasonable calibration solutions, i.e. the phase and amplitude solutions look more or less
random. Basically, there should be enough source flux in the field for calibration. Of course, one first
has to verify that the sky model used for calibration is accurate enough, because using an inaccurate
sky model can also result in bad calibration solutions.

To enable global parameter estimation, include the following keys in your parset. Note that the value
of the Step.<name>.Solve.CalibrationGroups key is just an example. This key is described in
more detail below.

Strategy.UseSolver = T

Step.<name>.Solve.CalibrationGroups = [3,5]

The Step.<name>.Solve.CalibrationGroups key specifies the partition of the set of all available
subbands into separate calibration groups. Each value in the list specifies the number of subbands that
belong to the same calibration group. Subbands are ordered from the lowest to the highest starting
frequency. The sum of the values in the list must equal the total number of subbands in the gds file.
By default, the CalibrationGroups key is set to the empty list. This indicates that there are no
interdependencies and therefore each subband can use its own solver. Global parameter estimation
will not be used in this case (even if Strategy.UseSolver = T).

When using global parameter estimation, it is important to realize that drifting station clocks and the
ionosphere cause frequency dependent phase changes. Additionally, due to the global bandpass, the
effective sensitivity of the telescope is a function of frequency. Therefore, at this moment, it is not
very useful to perform global parameter estimation using more than about 1–2 MHz of bandwidth
(5–10 consecutive subbands).

A few examples of using global parameter estimation with 10 bands would be:

• Estimate parameters using all bands together:

Step.<name>.Solve.CalibrationGroups = [10]

• Estimate parameters for the first 5 bands together, and separately for the last 5 bands together:

Step.<name>.Solve.CalibrationGroups = [5,5]
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• Do not use global parameter estimation (even if Strategy.UseSolver = T):

Step.<name>.Solve.CalibrationGroups = []

• Estimate parameters for band 0 separately, bands 1–3 together, bands 4–5 together, and bands
6–9 together (note that 1+3+2+4=10, the total number of subbands in our example).

Step.<name>.Solve.CalibrationGroups = [1,3,2,4]

A.11 Pre-computed visibilities

Diffuse, extended sources can only be approximately represented by a collection of point sources. Ex-
porting clean-component (CC) models from catalogues (e.g. VLSS, WENSS) or first iteration major
cycle selfcal images tend to contain many CCs, ranging up to 50,000. By using casapy2bbs.py these
can be imported into a BBS catalog file, but processing these can take long and memory requirements
might not even allow their usage at all.73

An alternative lies in (fast) Fourier transforming model images directly into uv-data columns. These
can then be used in BBS as model data. The import can be done with a tool called addUV2MS.

The first argument is the MS to which the uv-data is to be added. The second argument is a CASA
image (extension .model). The filename of the image is stripped of its leading path and file extension.
This is then the column name it is identified by in the parset, and can be seen in the MS. For example:

> addUV2MS -w 512 L24380SB030uv.MS.dppp.dppp $HOME/Images/3C196_5SBs.model

This will create a column of name 3C196 5SBs, containing the uv-data FFT’ed from this model image,
using 512 w-projection planes. You can run addUV2MS multiple times with different images, or also
with several images as additional command arguments, to create more than one uv-data column.
While this works in principle with normal images, it is advisable to use clean component model
images generated by CASA. A few notes of caution though:

• The image must have the same phase center as the MS, because the internal CASA-routine
which is used, does not do any phase shifting.

• For wide field images you should set an appropriate value for the number of w-planes used in
the w-projection term (default=128).

• Direction dependent effects cannot be handled for “large” images. This means the image has to
be small on the scale over which the direction dependent effects change.

• addUV2MS temporarily overwrites the frequency in the input images to match that in the MS. It
restores the original frequency, but only one (multi-frequency channel images aren’t supported).
Aborting the run may leave you then with a model image having an incorrect frequency entry.

• Successive runs with the same input model image will overwrite the data in the respective
column.

The column name generated by addUV2MS can be used in the BBS parset as:

Step.<name>.Model.Sources = [@columnname]

73On CEP3, catalog files with up to ca. 10,000 CCs can be processed until the nodes run out of memory.
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Figure 37: The main window of parmdbplot.

You can use casabrowser to find out which data columns are available in a given MS. Be careful
about dots in the filename, and verify that your model refers to the name of the created column.
Running addUV2MS -h will give you more information about its usage.

You can use cexecms to add model uv-data to more than one MS, for example:

> cexecms "addUV2MS -w 512 <FN> $HOME/Images/3C1965_SBs.model" \

"/data/scratch/pipeline/L2011_08175/*"

A.12 Inspecting the solutions

You can inspect the solutions using the python script parmdbplot.py. To start parmdbplot.py from
the command line, you should first initialize the LofIm environment (see Section 1.3). Then you can
type, for example:

> parmdbplot.py SB23.MS.dppp/instrument/

The first thing you should see after starting the script should be the main window (see Figure 37).
Here you can select a set of parameters of the same type to be plotted together in a single plot. Note
that some features will not be available if you select multiple parameters. Parmdbplot is able to
properly handle the following solution types: Gain, DirectionalGain, CommonRotationAngle, Ro-
tationAngle, CommonScalarPhase, ScalarPhase, Clock, TEC, RM. The last three (Clock, TEC and
RM) are properly converted into a phase – they are stored differently in the parmdb internally.

The “Use resolution” option is best left unchecked. If it is checked, the plotter tries to find a resolution
that will yield a 100× 100 grid in frequency× time. Usually, you just want to use the sampling
intervals that are present in the parmdb. In that case, leave the box unchecked.

Once you click the “Plot” button, a window similar to the Figure 38 should pop up. We discuss the
controls on the top of the window from left to right. The first is a drop down box that allows you to
select the axis (frequency, time) to slice over. By default, this is set to frequency, which means that
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Figure 38: The plot window of parmdbplot.

Figure 39: The plot window of parmdbplot with a phase sum

the x-axis in the plot is time and that you can step along the frequency axis using the spin control (the
second control from the left).

The “Legend” checkbox allows you turn the legend on or off (which can be quite large and thus
obscure the plot, so it is off by default). The “Polar” checkbox lets you select if the parameter value
is plotted as amplitude/phase (the default) or real/imaginary. The “Unwrap phase” checkbox will
turn phase unwrapping on or off. The button “Block y-axis” is useful when stepping over multiple
frequency solutions: if checked, the y-scale will remain the same for all plots. “Use points” can be
checked if you want points (instead of lines) for amplitude plots.

The last checkbox lets you choose the unit for the x-axis. By default, it is the sample number. If you
chose, in the main window, to use a time resolution of 2 seconds, then the number 10 on the x-axis
means 10× 2 = 20 seconds. If you enable “Values on x-axis”, it will show the number of minutes
since the start of the observation.
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The “Phase reference” drop down box allows you to select the parameter used as the phase reference
for the phase plots (the phase reference is only applied in amplitude/phase mode).

When the phase reference is set, one can use the “phase sum” drop-down menu (see Fig. 39). This
menu allows the user to select among all the other parameters related to the same antenna and add
the phases to those plotted. All the selected phases are referenced to the ”phase reference” antenna.
This procedure is useful if one solves for Phase and Clock (or TEC) and wants to look at the global
phase effect. Note that the phase effects are just added together with not specific order. This is only
physically correct if the effects commute.

The slider on the left of the plots allows you to make an exponential zoom to the median value of
amplitude plots. This can be helpful if you have one outlier in the solution which sets the scale to
1000 when you are actually interested in the details around 0.001.

The controls on the bottom of the window are the default matplotlib controls that allow you to pan,
zoom, save the plot, and so on.

For a quick overview of solutions, and to compare lots of solutions at a glance, you can also use the
solplot.py74 script by George Heald:

>solplot.py -q *.MS/instrument/

Running the script with -h will produce an overview of possible options.

A.13 The global bandpass

This section describes estimates of the global bandpass for the LBA band and HBA bands. The band-
pass curves were estimated from the BBS amplitude solutions for several observations of a calibrator
source (Cygnus A or 3C196).

A.13.1 LBA

The global bandpass has been determined for the LBA band between 10-85 MHz by inspecting the
BBS solutions after calibration of a 10-minute observation of Cygnus A. Calibration was performed
using a 5-second time interval on data flagged for RFI (with RFIconsole), demixed, and compressed
to one channel per sub band. The LBA beam model was enabled during the calibration. The bandpass
was then derived by calculating the median of the amplitude solutions for each sub band over the
10-minute observation, after iterative flagging of outliers.

Figure 40 shows the amplitudes found by BBS for each sub band, normalized to 1.0 near the peak
at ≈ 58 MHz. The time and elevation evolution of the bandpass has also been investigated. In
general, the bandpass is approximately constant on average over the elevation range probed by these
observations, implying that the effects of the beam have been properly accounted for.

A.13.2 HBA

The global bandpass for the HBA bands was determined in the same basic way as the LBA global
bandpass. Three one-hour observations of 3C196 from April 2012 were used (one each for HBA-
low, HBA-mid, and HBA-high). No demixing was done. A two-point-source model was used for
calibration. The resulting bandpass is shown in Figure 41. Note that several frequency intervals in the
HBA-high observation were affected by severe RFI.

74Available at the LOFAR-Contributions GitHub repository: https://github.com/lofar-astron/LOFAR-Contributions
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Global Bandpass Using Median over all Stations

Figure 40: The global bandpass in LBA between 10–85 MHz.
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(c) HBA-high

Figure 41: The global bandpass for the HBA.
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A.14 Gain transfer from a calibrator to the target source75

In order to calibrate a target field without an a priori model, one way forward is to observe a well-
known calibrator source, use it to solve for station gains, and apply those to the target field in order
to make a first image and begin self-calibrating. There are two tested methods for utilizing calibrator
gains in LOFAR observations. Additional methods may become possible later.

• Observe a calibrator source before a target observation, using the same frequency settings, with
a short time gap between calibrator and target. This is the same approach as is used in traditional
radio telescopes and allows using the full bandwidth in the target observation. However, it is
not suggested for long target observations, because the calibrator gains may only remain valid
for a relatively short time.

• Observe a calibrator in parallel with a target observation, using the same frequency settings for
both beams. This has the disadvantage that half of the bandwidth is lost in the target observation,
but the time variation of the station gains will be available.

The recommended approach for dealing with both of these cases is outlined below.

A.14.1 The “traditional” approach

When doing calibration transfer in the normal way, i.e. the calibrator and target are observed at differ-
ent times, some work needs to be done before the gain solutions of the calibrator can be transferred to
the target. This is because the calibrator solutions tell the gain error of the instrument at the time the
calibrator was observed, and in principle not of when the target was observed. The implicit assump-
tion of the traditional approach is that the gain solutions are constant in time. The frequencies of the
calibrator observation should in principle match those of the target.

The above means that the calibration of the calibrator should lead to only one solution in time. This
can be achieved by setting CellSize.Time to 0. After this is done, the validity of this solution
should be extended to infinity by using the export function of parmdbm. Full documentation for that
program is available on the LOFAR wiki76.

In order to achieve time independence you should use these settings in the BBS parset77:

Strategy.ChunkSize = 0 # Load the entire MS in memory

Step.<name >. Solve.CellSize.Time = 0 # Solution should be constant in time

Step.<name >. Solve.CellChunkSize = 0

Export the calibrator solutions so that they can be applied to target field (see the LOFAR wiki for
details). For example:

> parmdbm

Command: open tablename=’3c196_1.MS/instrument ’

Command: export Gain* tablename=’output.table ’

Exported record for parameter Gain :0:0: Imag:CS001HBA0

Exported record for parameter Gain :0:0: Imag:CS002HBA0

... more of the same ...

Exported record for parameter Gain :1:1: Real:RS307HBA

Exported record for parameter Gain :1:1: Real:RS503HBA

Exported 104 parms to output.table

Command: exit

75George Heald (heald[at]astron[dot]nl) contributed to the writing of this section.
76http://www.lofar.org/operations/doku.php?id=engineering:software:tools:parmdbm
77Note that these settings would be dangerous for a long observation!
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An alternative scheme to make the solutions of the calibrator observation time independent is to have
a smaller CellSize.Time, and afterwards take the median78. This way, time cells where calibration
failed do not affect the solutions. To follow this scheme, calibrate the calibrator as you would do
normally, for example with CellSize.Time=5. To make the solutions time independent, use the tool
parmexportcal.py (see parmexportcal --help or its documentation79. For example, if you have
calibrated the calibrator and stored the solution in cal.parmdb, you can take the median amplitudes
as follows:

parmexportcal in=cal.parmdb out=cal_timeindependent.parmdb

By default, parmexportcal takes the median amplitude, and the last phase. This is because the phase
always varies very fast, and taking the median does not make sense. One can also chose not to transfer
the phase solution of the calibrator at all, by setting zerophase to false in parmexportcal.

More advanced schemes for processing calibrator solutions before transferring them to the target can
be applied using LoSoTo, see section 6. An example could be flagging the calibrator solution, and
then averaging it (instead of taking the median).

To apply the gain solutions to target field, one can use BBS. For the calibrate-stand-alone script,
use the --parmdb option. Use a BBS parset which only includes a CORRECT step. Now you should
have a calibrated CORRECTED DATA column which can be imaged.

A.14.2 The LOFAR multi-beam approach

Unlike other radio telescopes, LOFAR has the ability to observe in multiple directions at once. We
are currently experimenting with transferring station gains from one field (a calibrator) to a target
field. So far it seems to work quite well, with limitations described below. The requirements for this
technique are:

• The calibrator and target beams should be observed simultaneously, with the same subband
frequency. Future work may change this requirement (we may be able to interpolate between
calibrator subbands), but for now the same frequencies must be observed in both fields.

• Any time and/or frequency averaging performed (before these calibration steps) on one field
must be done in exactly the same way for the other field.

• The calibrator beam should not be too far from the target beam in angular distance. Little
guidance is currently available for the definition of “too far”, but it appears that a distance of
10 degrees is fine at ν = 150 MHz, while 40 degrees (at the same frequency) might well be too
far. Future experiments should clarify this limitation.

• In HBA, the distance limit is also driven by the flux density of the calibrator, and the attenuation
by the tile beam. For a good solution on the calibrator, ensure that the sensitivity is sufficient to
provide at least a signal-to-noise ratio of 2−3 per visibility. The tile FWHM sizes and station
SEFDs are available online.

In order to do the calibration, and transfer the resulting gains to the target field, follow these steps:

1. Calibrate the calibrator using BBS. Ensure that the beam is enabled:

78This is the calibration scheme that the LOFAR pipelines follow.
79http://www.lofar.org/operations/doku.php?id=engineering:software:tools:

parm-export
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Step.<name>.Model.Beam.Enable = T

The time and frequency resolution of the solutions can be whatever is needed for the best results.

2. (Optional) Perform some corrections to the calibrator solutions, for example flagging, smooth-
ing or interpolation. This is best done in LoSoTo, see section 6.

3. Apply the gain solutions to the target field. For the calibrate script, use the --instrument-db
option. For the calibrate-stand-alone script, use the --parmdb option. Use a BBS parset
which only includes a CORRECT step. Again, ensure that the beam is enabled. The source list
for the CORRECT step should be left empty:

Step.<name>.Model.Sources = []

4. Before proceeding with imaging and self-calibration, it may be advisable to flag and copy the
newly created CORRECTED DATA column to a new dataset using DPPP.

A.15 Post-processing

The calibrated data produced by BBS can contain outliers that have to be flagged to produce a decent
image. It is recommended to visually inspect the corrected visibilities after calibration. Outliers can
be flagged in various ways, for instance using AOFlagger (see Section 3) or DPPP (see Section 4).

A.16 Troubleshooting

• Bugs should be reported using the LOFAR issue tracker80.

• If BBS crashes for any reason, be sure to kill all BBS processes (bbs-controller, bbs-reducer,
and bbs-shared-estimator) on all of the nodes you were working on before running again.

• After calibrating many frequency channels (e.g. for spectral line imaging purposes), the spec-
tral profile could show an artificial sin-like curve. This is due to the fact that BBS applied
a single solution to all the input channels. To avoid this, it is important to set the parame-
ter Step.<name>.Solve.CellSize.Freq to a value higher than 0, indicating the number of
channels that BBS will try to find a solution for (0 means one solution for all the channels). You
can inspect the solutions with parmdbplot to judge if this is required.

• The <key name>*.log files produced by BBS may provide useful information about what
went wrong. Inspect these first when BBS has crashed. The log files from bbs-reducer are
usually located on the compute nodes.

• BBS expects information about the antenna field layout to be present in the MS. The data
writer should take care of including this, but in some cases it can fail due to problems during
the observation. The program makebeamtables can be used to manually add the required
information to an existing MS. Documentation is available on the LOFAR Wiki81.

80http://support.astron.nl/lofar_issuetracker
81http://www.lofar.org/operations/doku.php?id=engineering:software:tools:

makebeamtables
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A.16.1 Common problems

In the following some error messages are reported together with the solution we have found to fix
them.

• Station <name> is not a LOFAR station or the additional information

needed to compute the station beam is missing.

Solution: Run makebeamtables on all subbands to add the information required to compute
the station beam model.

• [FAIL] error: setupsourcedb or remote setupsourcedb-part process(es)

failed

Solution: Check your source catalog file. You can run makesourcedb82 locally on your catalog
file to get a more detailed error message:

makesourcedb in=<catalog> out="test.sky" format="<"

• [FAIL] error: clean database for key default failed

Solution: Check if you can reach the database server on ldb002 and make sure that you created
your personal database correctly.

82http://www.lofar.org/operations/doku.php?id=engineering:software:tools:
makesourcedb
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B Sky Model Construction Using Shapelets83

In this chapter, we give a tutorial overview of sky model construction using shapelets and other source
types suitable for self calibration. Note that shapelets decomposition should be used in the case we
are dealing with extended sources.

B.1 Introduction

In this tutorial, we present construction of accurate and efficient sky models for calibration of LOFAR
data, using shapelets. However, we do not present any theoretical material on shapelets and their
strengths and weaknesses for use in self calibration. We refer the reader to Yatawatta (2010; 2011)
for a more mathematical presentation on these subjects.

We always work with FITS images for our model construction. Therefore, it is assumed that you
already have an image of the sky that is being observed, which is good enough to create a sky model
from. You can obtain a FITS image of the sky that is being observed in many ways. For example,
you can use images made by other instruments (at a probably different frequency/resolution) and one
such source is Sky View84. You can also do a rough calibration of the data and make a preliminary
image of the sky. And if you are hardcore, you can also manipulate an empty FITS file to create the
shape that you want to model (we shall discuss this later).

The FITS file contains more information than that is shown as the image. Since we are dealing with
images made with radio interferometers, almost all images have been deconvolved (e.g. by CLEAN).
The Point Spread Function (PSF) plays an important role in deconvolution. Most FITS files have
information about the approximate PSF that we will be using a lot. This information is stored in the
header of the FITS file with the keywords BMAJ,BMIN, and BPA. The BMAJ and BMIN keywords give
the PSF width as the major and minor axes of a Gaussian. The BPA keyword gives the position angle
(or the rotation) of the Gaussian. We will learn how to manipulate these keywords (or add them if
your FITS file is without them) later.

Throughout this tutorial, we will calibrate an observation of Virgo-A around 50 MHz. In Fig. 42, we
have shown an image of Virgo-A made by the VLA at 74 MHz. The red circle on top right corner
shows the PSF for this image. Although the frequency and resolution does not match the LOFAR
observation, we will be using this image to build a sky model.

Looking closer at Fig. 42, we see that there is bright compact structure at the center and weak diffuse
structure surrounding it. You should always keep in mind the golden rule in source modeling: A point
source is best modeled by a point source and nothing else. Almost always, you will have images with
both compact structure (best modeled by point sources) and extended structure (best modeled using
shapelets). In our example, we need to model the central compact structure as point sources and the
remainder as shapelets. See Yatawatta (2010) for a theoretical explanation.

B.2 Software Overview

There are several steps needed in building a good sky model. You can skip some steps depending
on particular requirements (and if you can use other software to do the same). We give a general
overview of various tools used in different stages of sky model construction. All the software is
installed in /opt/cep/sagecal/bin in the CEP clusters.

83The author of this chapter is Sarod Yatawatta (yatawatta[at]astron[dot]nl).
84http://skyview.gsfc.nasa.gov/cgi-bin/skvadvanced.pl
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Figure 42: Virgo-A image made by the VLA at 74 MHz. The red circle on top right corner is the PSF.

B.2.1 modkey

The program modkey is used to modify keywords in FITS files. For example, if you want to modify
the BMAJ keyword in the example.fits FITS file

modkey -f example.fits -k BMAJ -d 0.1

will set the value of BMAJ to 0.1. If this key does not exist, it will be created. Try using

modkey -h

for more usage examples.

B.2.2 fitscopy

Most FITS files will be too large to work with. The sources that you want to model will be only in
small areas of the large FITS file. The program fitscopy will create a smaller FITS file by selecting
a smaller rectangle from the larger FITS file. For example, if you want to select the area given by the
pixels [x0,y0] bottom left hand corner and [x1,y1] top right hand corner of the file large.fits

fitscopy large.fits small.fits x0 y0 x1 y1

will do the trick.

B.2.3 ds9 and kvis

We use both ds9 and kvis to display FITS file as well as display regions (ds9) and annotations
(kvis).
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B.2.4 Duchamp

The source extraction program Duchamp is written by Matthew Whiting85. We will only be using
Duchamp to create a mask file for a given FITS image. A mask is a FITS file with the same size as the
original image, but with zeros everywhere except at the selected pixels. Here is a simple configuration
file for creating a mask for example.fits FITS file

##########################################

imageFile example.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

minPix 5

flagATrous 0

snrRecon 10.

snrCut 5.

threshold 0.030

minChannels 3

flagBaseline 0

flagKarma 1

karmaFile duchamp.ann

flagnegative 0

flagMaps 0

flagOutputMask 1

flagMaskWithObjectNum 1

flagXOutput 0

############################################

The threshold for pixel selection is given by the threshold parameter which is 0.03 in the above
example. After creating the configuration file, and saving it as myconf.txt, you can run Duchamp as

Duchamp -p myconf.txt

This will create a mask file called example.MASK.fits which we will be using at later stages.

NOTE: Only versions later than 1.1.9 produce the right output.

B.2.5 buildsky

We mentioned before that whenever we have compact structure, it is best modeled by using point
sources. The program buildsky creates a model with only point sources for a given image. However,
we must have a mask file. So if we have example.fits image and example.MASK.fits mask file,
the simplest way of using this is

buildsky -f example.fits -m example.MASK.fits

This will create a file called example.fits.sky.txt that can be used as input for BBS. It also
creates a ds9 region file called example.fits.ds9.reg that you can use to check your sky model.

You can see other options by typing

buildsky -h

85http://www.atnf.csiro.au/people/Matthew.Whiting/Duchamp/
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B.2.6 restore

We use restore to restore a sky model onto a FITS file. The sky model can be specified in two
different ways. It can directly read a BBS sky model like:

# Name, Type, Ra, Dec, I, Q, U, V, MajorAxis, MinorAxis, Orientation,

# ReferenceFrequency, SpectralIndex= with ’[]’

# NOTE: no default values taken, for point sources

# major,minor,orientation has to be all zero

# Example:

# note: bmaj,bmin, Gaussian radius in degrees, bpa also in degrees

Gtest1, GAUSSIAN, 18:59:16.309, -22.46.26.616, 100, 100, 100, 100,

0.222, 0.111, 100, 150e6, [-1.0]

Ptest2, POINT, 18:59:20.309, -22.53.16.616, 100, 100, 100, 100, 0,

0, 0, 140e6, [-2.100]

and also it can read an LSM sky model like (see chapter on SAGECAL for more information)

## this is an LSM text (hms/dms) file

## fields are (where h:m:s is RA, d:m:s is Dec):

## name h m s d m s I Q U V spectral_index RM

## extent_X(rad) extent_Y(rad) pos_angle(rad) freq0

P1C1 1 35 29.128 84 21 51.699 0.061585 0 0 0 0 0 0 0 0 1000000.0

using -o 0 for BBS and -o 1 or -o 1 for LSM. Note that buildsky will now (version 0.0.6)
only produce LSM with 3rd order spectra. Spectral indices use natural logarithm, exp(ln(I0)+ p1 ∗
ln( f/ f0)+ p2∗ ln( f/ f0)

2 + . . .) so if you have a model with common logarithms like
10(log(J0)+q1∗log( f/ f0)+q2∗log( f/ f0)2+...) then, conversion is I0 = J0, p1 = q1, p2 = q2/ln(10), p3 =
q3/(ln(10)2) and so on.

As you can see, both above sky models are the same. In addition, the LSM sky model can be used
to represent Gaussians (name starting with G), disks (name starting with D) and rings (name starting
with R).

Once you have such a sky model (text file sky.txt), and a FITS file called example.fits, you can
do many things:

restore -f example.fits -i sky.txt

will replace the FITS file with the sky model, so the original image will be overwritten;

restore -f example.fits -i sky.txt -a

will add the sky model to the image; and

restore -f example.fits -i sky.txt -s

will subtract the sky model from the FITS file.

You can also use solutions obtained by SAGECal when you restore a sky model:

restore -f example.fits -i sky.txt -c sagecal_cluster.txt -l sagecal_sky.txt
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will use the solution file sagecal sky.txt and the cluster file sagecal cluster.txt while restor-
ing the sky model. New solution files created by SAGECal has 3 additional lines at the beginning.
Newer versions (0.0.10) of restore will properly handle this.

As before, you can see more options by typing

restore -h

B.2.7 shapelet gui

The GUI used in decomposing FITS file to shapelets is called shapelet gui. Once you run this
program you will be seeing the GUI as in Fig. 43.

Figure 43: The shapelet gui initial screen.

The essential parameters can be changed by using View->Change Options menu item. Once you
select this, you will see the dialog as in Fig. 44. We will go through the options in Fig. 44 one by one.

• Cutoff This parameter is used to select the rectangle of pixels where most of the flux in the
image is concentrated. A cutoff of 0.9 will select all the pixels above 0.1 of the peak flux. By
using cutoff of 1.0, the whole image is selected.

• max If this value is not 0, pixels above this value will be truncated to this value.

• min If this value is not 0, pixels below this value will be truncated to 0.

• Max Modes The maximum number of shapelet basis functions used. If you enter 100 here, a
10× 10 array of shapelet modes will be used. Use a small number here to save memory. The
default value of −1 makes the program determine this automatically.

• Scale This is the scale (or β ) of the shapelet basis. The default value of −1 makes the program
determine this automatically.
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Figure 44: The options dialog for shapelet decomposition.

• Use Mask Instead of using a cutoff, we can also use a mask to select the pixels for shapelet
modeling. The mask can be created using Duchamp. If this option is enabled, for the image
example.fits FITS file, you must have the example.MASK.fits mask file in the same loca-
tion. Note: make sure that flagMaskWithObjectNum 0 is used for the input for Duchamp.

• a, b, theta These parameters are used in linear transforms. It is possible to scale and rotate your
image before you do a shapelet decomposition. This is not yet implemented in BBS.

• p, q Normally, the center of the shapelet basis is selected to be the center of the FITS file.
However, you can give any arbitrary location of your FITS file as the center by changing p and
q. These have to be in pixels.

• Convolve modes with PSF As we mentioned before, almost all images will have a PSF. If the
PSF is larger than the pixel size, it is useful to enable this option. The PSF is obtained by using
the BMAJ,BMIN,BPA keywords of the FITS file.

• Use FITS PSF It is also possible to give another FITS file as the PSF. This generally has to be
much smaller than the image.

• Use L1 regularized LS Instead of using normal L2 minimization to find the shapelet decom-
position, you can also use L1 regularization. The difference in results is negligible in most
cases.

It is advised to always enable Use Mask and Convolve modes with PSF options to get best perfor-
mance. You can also get more information on all these options by clicking the Help button.

Finally, after fine tuning your options, you can select File->Open to select your FITS file and it
will produce an output like Fig. 45. If you are not satisfied with the result, you can go back and
View->Change Options to re-tune your parameters. Once you have done that, you can decompose
the same FITS file by selecting View->Decompose from the menu.

Apart from displaying the output, each time you decompose a FITS file, shapelet gui will produce
several files. Most importantly, for your input example.fits image, it will produce
example.fits.modes text file that can be used in BBS. Here is an extract of one such file:

23 23 27.273176 58 49 1.217289
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Figure 45: Output of shapelet modelling: (top left) original image (top right) shapelet modes (bottom
left) residual image (bottom right) shapelet model.

9 1.255970e-03

0 1.864041e+01

1 5.311269e+00

2 3.354807e+01

3 7.081891e+00

4 3.743916e+01

5 1.209364e+01

6 2.458361e+01

7 7.033823e+00

8 8.411157e+00

-- many more rows --

# BBS format:

## NAME shapelet 23:23:27.273176 58.49.1.217289 1.0 thisfile.fits.modes

The thing to note from the above listing is the last line. It shows you exactly how to enter this into
BBS. You have to create a text file such as

#

FORMAT = Name Type RA Dec I IShapelet

Ex1 shapelet 23:23:27.273176 58.49.1.217289 1.0 example.fits.modes

where we have copied the last line, changing the source name to whatever we like (in this case Ex1)
and changing the last field to example.fits.modes.
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B.2.8 convert skymodel.py

This script converts sky models in BBS format to LSM format and vice versa.

Usage: convert_skymodel.py [options]

Options:

-h, --help show this help message and exit

-i INFILE, --infile=INFILE

Input sky model

-o OUTFILE, --outfile=OUTFILE

Output sky model (overwritten!)

-b, --bbstolsm BBS to LSM

-l, --lsmtobbs LSM to BBS

B.3 Step by Step Example

In this section, we will use most of the programs described before to calibrate a LOFAR observation
of Virgo-A. We will use Fig. 42 (FITS file vira-cen.fits) to build the initial sky model.

B.3.1 Initial point source model

As we mentioned in section B.1, the central compact part in Fig. 42 is best modeled using point
sources. Therefore, we create the following as input to Duchamp

imageFile vira-cen.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

minPix 5

flagATrous 0

snrRecon 10.

snrCut 5.

threshold 10.010

minChannels 3

flagBaseline 0

flagKarma 1

karmaFile duchamp.ann

flagnegative 0

flagMaps 0

flagOutputMask 1

flagMaskWithObjectNum 1

flagXOutput 0

After running Duchamp with this input file, we select only the bright compact center (that is the reason
for using 10.01 as threshold) as seen on Fig. 46. Now we run buildsky to build the sky model for
this as

buildsky -f vira-cen.fits -m vira-cen.MASK.fits
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Figure 46: Compact center indicated by the red curve.

This will create the first part of the sky model for BBS (file vira-cen.fits.sky.txt):

# (Name, Type, Ra, Dec, I, Q, U, V,

ReferenceFrequency=’60e6’, SpectralIndexDegree=’0’,

SpectralIndex:0=’0.0’, MajorAxis, MinorAxis, Orientation) = format

# The above line defines the field order and is required.

P1C1, POINT, 12:30:45.93, +12.23.48.07, 172.155091, 0.0, 0.0, 0.0

P1C2, POINT, 12:30:47.39, +12.23.51.92, 141.518663, 0.0, 0.0, 0.0

P1C3, POINT, 12:30:47.34, +12.23.31.64, 173.054910, 0.0, 0.0, 0.0

P1C4, POINT, 12:30:48.90, +12.23.40.67, 177.304557, 0.0, 0.0, 0.0

P1C5, POINT, 12:30:48.75, +12.23.21.23, 155.029319, 0.0, 0.0, 0.0

Using ds9 we can also see our sky model as in Fig. 47.

B.3.2 Initial shapelet model

Next, we need to model the extended structure inf Fig. 42. However, before we do this we have to
subtract our point source model from this figure. We use restore to do this

restore -f vira-cen.fits -i vira-cen.fits.sky.txt -s

which gives us the new image as in Fig. 48. Note that the bright central part in Fig. 48 is almost
subtracted. It is not completely gone, and some parts of it is negative. Nevertheless, this is all right for
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Figure 47: Compact center modeled by two point sources (green circles).

now because we are only building an approximate sky model. Now we need to create another mask
for this image for the diffused structure. We use to following file for Duchamp.

imageFile vira-cen.fits

logFile logfile.txt

outFile results.txt

spectraFile spectra.ps

minPix 5

flagATrous 0

snrRecon 10.

snrCut 5.

threshold 1.010

minChannels 3

flagBaseline 0

flagKarma 1

karmaFile duchamp.ann

flagnegative 0

flagMaps 0

flagOutputMask 1

flagMaskWithObjectNum 0

flagXOutput 0

Note that we have used a lower threshold (1.01) this time, compared to the previous value. Once
running Duchamp, we get the mask as indicated by Fig. 49.

Now we are ready to build the shapelet model. We first change some parameters using View->Change

Options. We set Cutoff to 1.0, Max Modes to 200, and the center p to 75 and q to 74 to move the
origin of the shapelets a bit. Furthermore, we enable Use Mask and Convolve Modes with PSF

options. Then we use File->Open to select vira-cen.fits as input. After a few seconds, we get
the result as in Fig. 50.

We can easily create an input to BBS for this shapelet model as follows:

#
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Figure 48: Diffused structure after subtracting the center.

Figure 49: Mask for the diffused structure.

FORMAT = Name Type RA Dec I IShapelet
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Figure 50: Shapelet model of the diffused structure.

VirAD shapelet 12:30:48.317433 12.23.27.999947 1.0 vira-cen.fits.modes

B.3.3 Using both shapelets and point sources together

Here is the complete sky model using both point sources and shapelets:

# (Name, Type, Patch, Ra, Dec, I, Q, U, V, ReferenceFrequency=’60e6’,

SpectralIndex=’[0.0]’, Ishapelet) = format

# The above line defines the field order and is required.

, , CENTER, 12:30:45.00, +12.23.48.00

P1C1, POINT, CENTER, 12:30:45.93, +12.23.48.07, 172.155091, 0.0, 0.0, 0.0

P1C2, POINT, CENTER, 12:30:47.39, +12.23.51.92, 141.518663, 0.0, 0.0, 0.0

P1C3, POINT, CENTER, 12:30:47.34, +12.23.31.64, 173.054910, 0.0, 0.0, 0.0

P1C4, POINT, CENTER, 12:30:48.90, +12.23.40.67, 177.304557, 0.0, 0.0, 0.0

P1C5, POINT, CENTER, 12:30:48.75, +12.23.21.23, 155.029319, 0.0, 0.0, 0.0

VirAD, shapelet, CENTER, 12:30:48.317433, 12.23.27.999947, 1.0, , , ,

vira-cen.fits.modes

Note that the above model gives CENTER as the patch direction.

B.3.4 Simulation

Once we have the point source and shapelet sky models, we can run BBS. After this is done, you are
free to do whatever you like with these sky models.
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First and foremost, it is advised to do a simulation with your sky model and the measurement set that
you need to calibrate to make sure your sky model is correct. Moreover, this is also useful to check
if there are any errors in flux scales. For a point source, there cannot be any error in flux. However,
for an extended source, the flux will be slightly lower than your model in the image. This is because
the Fourier transform preserves the integral of flux and not the peak value. So, it is urged to do a
simulation first before doing any calibration. We have shown the simulated image in Fig. 51.

Figure 51: Simulated image of Virgo-A. The red ellipse is the PSF.

By looking at Fig. 51, we do not see any major discrepancy in our sky model (although we have lower
resolution) so we go ahead with calibration.

B.3.5 Calibration

You can use the normal calibration procedure you adopt with any other LOFAR observation here. So
we will not go into details. We have shown the image made after calibration in Fig. 52.

NOTE: It is advised to use uniform weights to compare the calibrated image to the model image.

Using Fig. 52, we can repeat our sky model construction to get a better result. This of course depends
on your science requirements.

B.3.6 Residual

A better way to check the accuracy of your sky model is to subtract this model from the calibrated
data and make an image of the residual. In Fig. 53, we have shown the residual for two subbands
of 1.5 hour duration at 55 MHz. We clearly see an off center source (about 2 Jy) on top right hand
corner.
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Figure 52: Calibrated image of Virgo-A (uniform weights).

Figure 53: Residual image of Virgo-A. An off center source is present on top right hand corner.
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B.3.7 Recalibration

Once you have the residual image, you can also include to off center sources and update the sky model
to re-calibrate the data.

B.4 Conclusions

We have given only a brief overview of the software and techniques in extended source modeling using
shapelets. There are many points that we have not covered in this tutorial. However, we hope you (the
user) will experiment and explore all available possibilities. Questions/Comments/Bug reports can be
sent to yatawatta[at]astron[dot]nl.
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C SAGECAL86

This chapter is a step by step description of the SAGECAL method for self-calibration of LOFAR
data. The mathematical framework of the algorithm can be found in Yatawatta et al. 2009 and
Kazemi et al. 2011. The contents are applicable to the latest version (0.3.8) of SAGECAL and older
versions are obsolete. The latest source code can be obtained from http://sagecal.sf.net.

C.1 Introduction

The acronym SAGECAL stands for Space Alternating Generalized Expectation Maximization Cal-
ibration. The Expectation Maximization is used as a solution to maximum likelihood estimation to
reduce the computational cost and speed of convergence. The commonly used Least Squared calibra-
tion method involves the inversion of a matrix corresponding to the full set of unknown parameters;
where the convergence to a local minimum impels a slow speed of convergence and significant com-
putational cost. The SAGE algorithm, on the other hand, allows to compute a direct estimation of
subsets unknown parameters, providing faster convergence and/or reduced computational costs. If K
is the number of sources and N are the stations, the computational cost scales as O((KN)2) for the
Least Squared, while is O(KN2) for the Expectation Maximization.

BBS uses the Least Squared algorithm to solve the Measurement Equation. The maximum number of
directions for which solve using directional gains with BBS is currently limited to 5 or 6 directions;
this is a consequence of the limited computing power available in CEP2 and CEP3. The typical
LOFAR Field customarily requires to solve for a number of directions generally higher than 5 or 6,
this is due to the wide field of view (FOV), variable beam pattern and ionospheric errors. SAGECAL
has been tested to solve to a maximum of 300 directions (in the GPU EoR cluster not in CEP2 or
CEP3) and 512 stations. The version installed in the CEP clusters is not optimized so that other users
can also use the same node while SAGECAL is running; e.g. a total of about 50 directions have been
successfully tested in CEP1 cluster.

C.2 Using SAGECAL

C.2.1 Data preparation

Before running SAGECAL, you need to take a few precautions. First of all, the data format is the
Measurement Set (MS), so no extra conversions are necessary. Averaging in time is not essential, but
it is definitely recommended in order to work with smaller datasets (you can average down to e.g. 10
seconds). If data have been already demixed, this step is not needed. The MS can have more than
one channel. Also it is possible to calibrate more than one MS together in SAGECAL. This might be
useful to handle situations where the data is very noisy. An interesting note about SAGECAL: If the
conventional demixing could not be performed on your data (e.g. if the A-team was too close to the
target source) you will be able to successfully remove the A-team sources using this new algorithm
by working on averaged data(!)
Another procedure you will need apply to your data before SAGECAL is to calibrate them in the
standard way with BBS, solving for the four G Jones elements as well as for the element beam. After
BBS, you will need to flag the outliers using DPPP. You are now ready to start the algorithm.

All the programs related to the SAGECAL can be found in /opt/cep/sagecal/bin/ or see /home/saro-
d/bin for the latest build.

86The authors of this chapter are Emanuela Orrú (e.orru[at]astro[dot]rug[dot]nl) and Sarod Yatawatta
(yatawatta[at]astron[dot]nl).
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C.2.2 Model

Make an image of your MS (using casapy or awimager). You can use Duchamp to create a mask
for the image. To create a sky model, you can adopt buildsky for point sources and shapelet gui in
case of extended emission (see Chapter B) . Note that you are free to use any other source finder
(like PyBDSM - see (Chapter 8)) if you feel more confident with it. A new functionality has been
implemented to transform the the BBS model into the model format used by SAGECAL (Chapter B.
The important is that in the sky model any source name starting with ’S’ indicates shapelet, ’D’ a
disk, ’R’ a ring, ’G’ a Gaussian, while others keys are point sources. In the following, we report a few
useful sky models examples:

## name h m s d m s I Q U V spectral_index RM extent_X(rad) extent_Y(rad)

## pos_angle(rad) freq0

P1C1 0 12 42.996 85 43 21.514 0.030498 0 0 0 -5.713060 0 0 0 0 115039062.0

P5C1 1 18 5.864 85 58 39.755 0.041839 0 0 0 -6.672879 0 0 0 0 115039062.0

# A Gaussian mjor,minor 0.1375,0.0917 deg diameter, pa 43.4772 deg

G0 5 34 31.75 22 00 52.86 100 0 0 0 0.00 0 0.0012 0.0008 -2.329615801 130.0e6

# A Disk radius=0.041 deg

D01 23 23 25.67 58 48 58 80 0 0 0 0 0 0.000715 0.000715 0 130e6

# A Ring radius=0.031 deg

R01 23 23 25.416 58 48 57 70 0 0 0 0 0 0.00052 0.00052 0 130e6

# A shapelet (’S3C61MD.fits.modes’ file must be in the current directory)

S3C61MD 2 22 49.796414 86 18 55.913266 0.135 0 0 0 -6.6 0 1 1 0.0 115000000.0

Note that it is also possible to have sources with 3rd order spectra (with -F 1 option). Here is such an
example:

## name h m s d m s I Q U V spectral_index0 spectral_index1 spectral_index2

## RM extent_X(rad) extent_Y(rad) pos_angle(rad) freq0

PJ1C1 18 53 33.616 86 10 19.559 0.008594 0 0 0 -5.649676 -2.0 -60.0 0 0 0 0 \

152391463.2

But all the sources should have either 1st order or 3rd order spectra, mixing is not allowed.

The number of directions you want to solve for are described in the cluster file. In here, one or more
sources corresponding to the patch of the skymodel you need to correct for are combined together as
the following example:

## cluster_id chunk_size source1 source2 ...

0 1 P0C1 P0C2

1 3 P11C2 P11C1 P13C1

2 1 P2C1 P2C2 P2C3

Note: comments starting with a ’#’ are allowed for both sky model and cluster files.
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C.2.3 SAGECAL

SAGECAL will solve for all directions described in the cluster file and will subtract the sources listed
in the sky model. Note that if you are not interested in the residual data, putting negative values for
cluster id will not subtract the corresponding sources from data. Run SAGECAL as follows:

sagecal -d my.MS -s my_skymodel -c my_clustering -t 120 -p my_solutions

This will read the data from the DATA column of the MS and write the calibrated data to the COR-
RECTED DATA column. If these columns are not present, you have to create them first. If you need
to calibrate more than one MS together, first create a text file with all the MS names, line by line.
Then run

sagecal -f MS_names.txt -s my_skymodel -c my_clustering -t 120 -p my_solutions

Running sagecal -h will provide the additional options, some of them are:

-F sky model format: 0: LSM, 1: LSM with 3 order spectra : default 0

-I input column (DATA/CORRECTED_DATA) : default DATA

-O ouput column (DATA/CORRECTED_DATA) : default CORRECTED_DATA

-e max EM iterations : default 3

-g max iterations (within single EM) : default 2

-l max LBFGS iterations : default 10

-m LBFGS memory size : default 7

-n no of worker threads : default 6

-t tile size : default 120

-x exclude baselines length (lambda) lower than this in calibration : default 0

Advanced options:

-k cluster_id : correct residuals with solution of this cluster : default -99999

-j 0,1,2... 0 : OSaccel, 1 no OSaccel, 2: OSRLM, 3: RLM: 4: RTR, 5: RRTR: default 0

Use a solution interval (e.g. -t 120) that is big enough to get a decent solution and not too big to make
the parameters vary too much (about 20 minutes per solution is a reasonable value).
In case of both bright and faint sources in the model, you might need to use different solution intervals
for different clusters. In order to do that you need to define the values of the second column of the
cluster file in such a way that the cluster with the longest solution interval is 1. While the cluster with
shorter solution interval will be equal to n, where n is the number of times the longer solution interval
is divided. This means that if -t 120 is used to select 120 timeslots, cluster 0 will find a solution using
the full 120 timeslots, while cluster 1 will solve for every 120/3=40 timeslots. The option -k will
allow to correct the residuals using the solutions calculated for a specific direction which is defined
by the cluster id. The -k option is analogue to the correct step in BBS. See the simulations section
later in this chapter for more detailed use of this.

You are now ready to image the residual data. Successively, run “restore” (see Sect. B) on the residual
image before updating the sky model and starting another loop of SAGECAL. SAGECAL cycles can
be done till you are satisfied by the end product.

C.2.4 Robustness

Many have experienced flux loss of weaker background sources after running any form of directional
calibration. There is a new algorithm in SAGECAL that minimizes this. To enable this, use -j 2 option
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while running SAGECAL. The theory can be found in Kazemi and Yatawatta, 2013. Also for best
speed and robustness, it is recommended to use -j 5. Also for number of stations greater than 64, -j 5
option is faster and less memory consuming.

C.3 Simulations

After running SAGECAL, you get solutions for all the directions used in the calibration. Using these
solutions, it is possible to correct the data for each direction and make images of that part of the
sky. This will in theory enable to image the full field of view with correct solutions applied to each
direction. This is a brief description on how to do it. We will use an example to illustrate this. Assume
you have run SAGECAL as below:

sagecal -d my.MS -s my_skymodel -c my_clustering -t 120 -p my_solutions

Now you have the my solutions file that contains solutions for all the directions given in my clustering
file. The -a 1 option or -a 2 option enables simulation mode in SAGECAL. If -a 1 is given, the sky
model given by my skymodel and my clustering is simulated (with gains taken from solutions if -p
my solutions is given) and written to the output data. If -a 2 is given, the model given by my skymodel
and my clustering is simulated (with the gains if -p my solutions is given), and then added to the input
data (-I option) and written to the output data (-O option).

There is one additional thing you can do while doing a simulation: correction for any particular
direction. By using -k cluster id , you can select any cluster number from the my clustering file to
use as the solutions that are used to correct the data. If the cluster id specified is not present in the
my clustering file, no corrections will be applied.

Simulating the full sky model back to the data might be too much in some cases. It is also possible
to simulate only a subset of clusters back to the data. This is done by specifying a list of clusters to
ignore during the simulation, using -z ignore list option. Here, ignore list is a text file with the cluster
numbers (one per line) to ignore. Note also that even while clusters are ignored, their solutions can
still be used to correct the data (so these options are independent from each other).

Thus, by cleverly using the -a, -k and -z options, you can get an image that is fully corrected (using
SAGECAL solutions) for all directional errors and moreover, simulations take only a fraction of the
time taken for calibration.

C.4 Distributed Calibration

It is possible to use SAGECAL to calibrate a large number of subbands, distributed across many
computers. This is done by using OpenMPI and SAGECAL together and see sagecal-mpi -h for
further information.
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D Faraday Rotation Measure Synthesis87

Firstly described by Burn (1966) and then extended and implemented by Brentjens & de Bruyn (2005)
Faraday Rotation Measure (RM)-synthesis is a powerful detection technique. for interpreting polar-
ized emission data in order to separate the contributions of different sources lying on the same line of
sight. In this chapter, we provide a brief overview of the principles and the available tools suitable for
imaging multiple polarized structures along the line of sight.

D.1 Overview

Synchrotron emission radiated by relativistic electrons accelerated by magnetic fields is linearly po-
larized, the (intrinsic) plane of polarization being orthogonal to the component of the magnetic field
in the plane of the sky. Moreover the polarization angle (χ) can be rotated when propagating through
a magnetised plasma, the amount of rotation being a function of wavelength (λ ). This effect is called
Faraday rotation and the amount of rotation is described by the Faraday depth (φ ) as:

φ = 0.81
∫ observer

source
ne~Bd~s (13)

, with ne being the electron density measured in cm−3, ~B the magnetic field measured in µG and the
path-length~s is expressed in parsecs.

Synchrotron radiation can be probed by polarimetric radio observations. In the simplest case of
emission and rotation regions being separated (and beam depolarization can be neglected), the amount
of rotation of the polarisation plane and the φ are characterised by:

χ = χ0 +λ
2
φ (14)

and the amount of rotation φ can be found as the slope of a polarization angle versus wavelength
squared plot. In such a case the Faraday depth is equal to the rotation measure (RM) at all wavelengths.

However polarization angle often does not depend linearly on λ 2, thus making a linear fit inappro-
priate. RM-Synthesis is based on the fact that the complex polarized intensity (P) can be calculated
as a Fourier transform of the Faraday dispersion function (F) in Faraday space with the coordinate φ

which is the Faraday depth, i.e.:

P(λ ) =
∫

∞

−∞

F(φ)e2iφλ 2
dφ (15)

. Performing the inverse Fourier transform of P one obtains F which is the polarized intensity emerg-
ing from a region with Faraday depth φ .

Therefore RM-Synthesis is a Fourier transformation of Stokes U and Q maps, performing a de-
rotation of Faraday rotated emission using a set of assumed φ values. Unfortunately, the inversion of
equation 15 is limited in practice by the fact that P can be measured only for λ 2 > 0 and in only in a
finite spectral band (Brown et al. 2009). The lower bound λmin limits the detection of objects which
are extended in Faraday space, while the upper bound λmax suppresses the detection of small-scale
structures of the object in Faraday space. Moreover the lack of negative λ 2 affects the reconstruction
of the intrinsic polarization angle. Finally, a poor sampling within the observed bandwidth prevent
the reconstruction of objects at large Faraday depths. As a result, the resolution in φ -space depends
on λ 2 coverage and resolution.

Note that the reconstructed Faraday dispersion function is the convolution of the actual Faraday dis-
persion function with the “RM Spread Function” (RMSF), corresponding to a point spread function

87This chapter is maintained by M. Iacobelli, iacobelli[at]astron[dot]nl.
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Figure 54: Rotation measure spread function (RMSF) of a test observation with smooth λ 2 coverage
(bad channels were flagged). In this example the resolution in Faraday depth space is: RMSFFWHM =
3.00 rad m−2 and sidelobes are not prominent.

(PSF) in φ -space. Thus, the FWHM of the RMSF determines the precision with which one can de-
termine the φ at the peak of a Faraday dispersion function (see e.g. Fig. 54). In case of a complex
and/or poor reconstructed Faraday dispersion function, RMSF sidelobes can make the interpretation
difficult thus requiring a deconvolution operation (Heald 2009).

To summarise, RM-Synthesis can disentangle emission and rotation layers. However in case of mixed
emitting and Faraday-rotating region an incomplete λ 2 coverage will result in loss of sensitivity with
poor or no detection. To be applied, RM-Synthesis requires wide-band polarimetry with the λ 2 cov-
erage and resolution determining its basic parameters: resolution in φ , sensitivity to extended φ -
structures, the highest φ value detectable. Inputs of RM-Synthesis are Stokes U and Q maps obtained
from carefully calibrated Measurement Sets (MS). Main outputs of the RM-Synthesis are:

• the computed RMSF (users should check it carefully).

• data cubes mapping polarised intensity / polarisation angle as a function of spatial coordinates,
the third dimension being the Faraday depth.

Therefore, RM-Synthesis frames show the distributions of polarized intensity / polarisation angle in
the plane of the sky at various Faraday depths. The output cubes can be displayed by using a FITS
viewer (e.g. DS9,kvis).
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D.1.1 Tools

Currently, two different python implementation of RM-synthesis are available88:

• RMSynthesis (in CEP3 activate with use RMSynthesis). This Python script perform a basic
(no RMclean) RM-synthesis, provided a FITS cube with Stokes Q images, a FITS cube with
Stokes U images, and a text file containing the frequencies of these images. To check options
just execute rmsynthesis in your terminal.

• Pyrmsynth (in CEP3 activate with use RMSynthesis and execute rm synthesis.py. This
script performs RM-synthesis, either simply by Fourier transformation (to produce a dirty im-
age) or using the RMCLEAN method as described by Heald (2009). The software reads in a
parameter file. The code works on sets of FITS files containing images from a single sub-band,
or some other subset of the observed frequencies. As a default, the code assumes all Stokes
parameters to be saved in one FITS file. There is an additional option that allows for the han-
dling of separately save Q and U FITS files. User defined frequency weights can be included by
providing a text file in which each line contains a weight to be applied to each frequency. The
name of this file must be “weight.txt”. Additionally output files are: a plot of the RMSF and
a Stokes V cube. Also available is library rm tools (use import rm tools within a python
script). To check options execute rm synthesis.py --help in your terminal.

88They are installed on the CEP3 cluster (see Chapter 1) and can also be downloaded at RMSynthesis and Pyrmsynth
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E Automated Self-Calibration89

The standard technique of self-calibration (iterative updates of both sky model and direction-independent
instrumental gains) is available in the form of a python script that automatically utilizes BBS, DPPP,
awimager, and PyBDSM in a pre-defined loop algorithm. Further development of the python script
into an operational form that can be run by the Radio Observatory is underway. It is assumed that
before attempting to perform self-calibration, the LOFAR data set has been flux calibrated (e.g. by
the Radio Observatory using the Standard Imaging Pipeline).

This section provides a brief guide to using selfcal.py on a LOFAR dataset, and details the internal
procedures. The script is written to be completed without user interaction and in a consistent man-
ner; therefore, there are very few options that can be set at runtime. Additional details are available at:

http://www.lofar.org/operations/doku.php?id=commissioning:selfcal

E.1 Overview

The goal of the self-calibration (selfcal) process is to improve the quality of the final image, through
an iterative process. At each iteration, a calibration step is performed90 to update the instrumental
gain table. An image of the full field of view is then created at a particular angular resolution, and
the source finder is used to update the sky model that is then used for the next calibration round. In
early iterations, the data are imaged at low angular resolution. In each iteration, the image resolution
is improved such that successive models have an increasing level of detail, and the calibration of the
remote stations progressively improves. The iterative process is continued until the image resolution
obtained is the best resolution possible with the data (taking into account the observing frequency and
longest available baseline). In figure 56, the highlighted segments of the pipeline correspond to the
ones used within the selfcal process (including the loop itself).

E.2 Availability

Work is in progress to implement the selfcal procedure within the Standard Imaging Pipeline. At
present, the stand-alone selfcal version is available on CEP2, CEP3 and on Flits (ASTRON Astron-
omy Group cluster). On CEP2 and CEP3, the stand-alone selfcal.py is included in the daily build.
On Flits, the most recent version of the stand-alone selfcal.py is maintained by N. Vilchez.

To utilize the stand-alone selfcal.py at your own facility, the LOFAR trunk must be installed
(selfcal.py is included in the LOFAR trunk available through svn, not in releases yet). To ob-
tain the LOFAR trunk software, LOFAR svn access is required. Installation details are available at:

http://www.lofar.org/wiki/doku.php?id=engineering:software:lofar-cmake

89This section is maintained by Nicolas Vilchez (vilchez[at]astron[dot]nl) and George Heald
(heald[at]astron[dot]nl).

90In the current version, the automatic script performs phase calibration only.
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Figure 55: Illustration of the selfcal process in the Standard Imaging Pipeline.

E.3 Selfcal: the stand-alone version

E.3.1 Usage

On CEP2 and CEP3 the latest version of selfcal.py is installed, but you need to setup your envi-
ronment by typing91:

> use LofIm

in order to make use of the daily build from the LOFAR trunk. Alternatively, you may add LofIm to
the .mypackages file in your home directory.

Note that the LofIm package conflicts with the LUS package (especially for awimager). To use
selfcal.py, you must disable LUS from your environment (i.e. erase LUS from the .mypackages

file in your $HOME directory).

The self-calibration procedure is initiated by typing selfcal.py at the command prompt. To access
usage information, type selfcal.py -h and the following will appear:

Usage: selfcal.py PATH/parsetFile

OR

Usage: selfcal.py --obsDir= --outputDir= [Options: --skyModel=

--nbCycle= --outerfovclean= --VLSSuse= --annulusRadius= --startResolution=

--endResolution= --resolutionVector= --mask= --UVmin= --startingFactor= --FOV=

--nofPixelPerBeam= --robust= --maskDilation=]

and a detailed list of parameters.

Only “obsDir” and “outputDir” (which specify the input and the output directories) are required for a
successful selfcal.py run. All other parameters have sensible default values as determined through

91On Flits, selfcal.py is directly installed, no use command is required.
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commissioning.

The selfcal.py parameters are:

• Required Parameters:

1. obsDir (string): This is the observation directory which contains data (or frequency
merged data generated by mergeSB.py; see §E.3.2)
Data must contain the same number of subbands, have the same frequency range and the
same pointing centre. Checks are done internally. The obsDir must contain ONLY data,
no additional files. Due to this, if the outputDir is in the obsDir tree, the code will crash.
The full path must be provided.

2. outputDir (string): This is the output directory where the selfcal process will be exe-
cuted. If it doesn’t exist, it will be created automatically.
The full path must be provided.

• Optional Parameters:

1. skyModel (string, default:‘none’): This option allows the user to provide a skymodel
instead of using the VLSSuse option. The skymodel must be BBS compatible. The full
path of the file must be provided.
NB: If the skyModel option is used, the VLSSuse parameter must be not set.

(a) Case 1: VLSSuse=yes: GSM sky model (VLSS) is used for initial calibration
(b) Case 2: VLSSuse=no: low resolution (90 arcsec) skymodel is used for initial calibra-

tion (generated with first-pass image from the input data)
(c) Case 3: skyModel is specified (and VLSSuse=no): your own skymodel is used for

initial calibration

2. nbCycle (int, default:10): This is the number of selfcal cycles to perform. It must be
between 5 and 20. The selfcal process will start at 15 times the best possible resolution
and decrease the resolution at each cycle in linear steps.

3. outerfovclean (string, default:‘no’): accepts ‘yes’ or ‘no’. If this option is activated, a
preprocessing cleaning to subtract sources from outside the field of view will be applied
before the selfcal process.
A first low resolution image will be generated (using core stations only) to obtain a
sky model. This preliminary image has 30arcsec pixel size and a larger field of view
(fov=FOV+2×annulusRadius degrees). A skymodel is extracted and separated into an
‘annulus’ skymodel (containing sources with angular distance >FOV/2 deg from the tar-
get) and a ‘centre’ skymodel (containing sources with angular distance <FOV/2 deg from
the target). The ‘annulus’ skymodel is then subtracted from the visibilities. This cleaning
is an iterative process and will continue until there are less than 10% of sources from the
original annulus skymodel (typically 2-3 iterations are needed).

4. VLSSuse (string, default:yes): accepts ‘yes’ or ‘no’: Use the VLSS-based skymodel for
the first iteration of selfcal (as generated by gsm.py).
If the user does not want to use VLSS skymodel (VLSSuse=no), the code will create
a preliminary image (see the outerfovclean parameter described above), and use the
‘center’ skymodel as the input skymodel.

5. annulusRadius (float, default:1): In degrees; if outerfovclean=yes, you can select the
radius of the outer annulus from which sources will be subtracted. By default, the value is
1 deg, i.e. the field of view will be 5+2×1 = 7 deg, and all sources which are less than
1 degree of the edge of the field of view will be subtracted.
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6. startResolution (float, default:15× the best resolution available from the data): The
resolution to use in the first selfcal cycle. If not set, the starting resolution is automatically
computed in arcseconds, using
Starting Resolution = 15×λ/max(baseline).
NB: the startResolution option conflicts with resolutionVector and startingFactor
parameters.
NB: if startResolution is provided, endResolution must also be provided.

7. endResolution (float, default:best resolution available in the data): The resolution to use
in the final selfcal cycle. If not set, the best resolution available is calculated using:
Best Resolution = λ/max(baseline)
NB: the endResolution option conflicts with resolutionVector parameter, but not
with startingFactor

NB: if endResolution is provided, startResolution does not need to be provided.

8. resolutionVector (list of float: e.g. resolutionVector=x1, x2, x3 (do not use
parentheses), default:[none]): Select the resolution for each cycle. Format: list of float in
arcseconds.
NB: the resolutionVector option conflicts with startResolution, endResolution
and startingFactor parameters.

9. mask (string, default:‘yes’): accepts ‘yes’ or ‘no’: Use clean masks when imaging.

10. maskDilation (integer, default:0): If mask is used (generated a from PyBDSM-extracted
sky model), it is possible to dilate it. 0 means no dilation, 1 means extend the mask regions
by 1 pixel in all directions, etc.
For more details see the PyBDSM export image documentation.

11. UVmin (float, default:0 or 0.1 in klambda): Set the awimager parameter UVmin for each
imaging run. If unset, UVmin=0.1 will be used for observations with declinations below
35 degrees, otherwise UVmin=0. It is recommended to use UVmin=0 if the user is interested
in imaging extended or diffuse emission.

12. startingFactor (int, default:15): The resolution of the initial selfcal cycle is set by
startingFactor × Best Resolution, or startingFactor × endResolution.
NB: the startingFactor option conflicts with startResolution and resolutionVector
parameters, but not with endResolution

13. FOV (float, default:5): Select the image size (in degrees).

14. nofPixelPerBeam (float, default:4): Number of pixels per synthesized beam.

15. robust (float, default:none): If the robust parameter is specified, it will be kept constant
for all selfcal cycles. If unset, the robust parameter varies iteratively from 1 to -2. Must
be in the interval: [2;-2]

• Future Parameters:

1. catalogType (string, default:‘none’): accepts ‘GSM’ or ‘PYBDSM’: catalogType is
used together with the peeling and DDC options. It is required to be able to select in the
initial catalog the brightest source (or sources) to peel.

2. peeling (string, default:‘no’): accepts ‘yes’ or ‘no’: If peeling=yes, the brightest
source (or sources) in the initial catalog will be peeled.
NB: the peeling and DDC options conflict. Do not use both at the same time.

3. DDC (string, default:‘no’): accepts ‘yes’ or ‘no’: Same as peeling option, except that the
subtraction is not applied, just the Direction Dependent Calibration.
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4. nofDirections (int, default:1): Number of directions (i.e. brightest sources) required to
peel or to apply the Direction Dependent Calibration.

The output directory will be automatically created if it does not exist. If the output directory already
exists, it is advisable to delete the output of any previous runs to avoid conflicts. Note that if the
selfcal process crashes, it is not possible to resume from the point where the crash occurred; a new
run (starting from scratch) would be required.

E.3.2 Required Data Format

To process visibility data with the selfcal.py script, flux-calibrated data must be written in the
CORRECTED DATA column of your Measurement Sets. Selfcal currently only performs phase calibra-
tion. Flux calibration is assumed to have been completed (e.g. by the Observatory using the Standard
Imaging Pipeline) before running selfcal.py; additional amplitude calibration is not performed
(yet) by the self-calibration procedure.

The self-calibration routine assumes that the input visibility data have been grouped in sets of con-
tiguous subbands, where the sets typically are made of 10-20 subbands. To facilitate the grouping of
subbands and to ensure that the input visibility data are formatted in the way expected by selfcal.py,
a helper function is provided and should be used before running self-calibration.

The script, called mergeSB.py, accepts intermediate or final visibility (MS) data from the Radio
Observatory pipeline. These datasets are named following a specific convention. Therefore the names
of the MS visibility datasets follow a specific pattern:

• Intermediate data: L123456 SAP123 SB123 uv.MS.dppp

• Final data: L123456 SB123 uv.dppp.MS

These visibility datasets are equivalent and may be used interchangeably for mergeSB.py and
selfcal.py.

If the names of your visibility datasets are different, but you still feel that they are prepared properly
for use in the self-calibration routine, then you will have to manually change the name of the Mea-
surement Sets to conform with one of the two naming conventions provided above. In addition, please
be aware that the Measurement Sets will be grouped alphabetically (using the ls order); therefore be
sure that the subband numbers are given as 001, 002, etc.

For the input to selfcal.py, the names of the frequency merged Measurement Sets do not need to
follow any convention (except that the chronological order of a set of snapshots must somehow be
reflected in the alphabetical order of the MS names). The procedures in selfcal.py will always
work on the CORRECTED DATA column, which is created by mergeSB.py. To avoid confusion it is
highly recommended to use the two scripts together, unless you want to work on only one subband.

To combine subbands, type mergeSB.py at the command prompt. If you provide no arguments (or
type mergeSB.py -h) then the required parameters are listed:

MISSING Parameters

Usage: mergeSB.py --obsDir= --outputDir= --column2Merge= Optional:

--nofChannelPerSubband= --checkNames]

If nofChannel2Merge is not provided, the default behavior is to merge the data to a frequency reso-
lution corresponding to 1 channel per subband. The default value for checkNames is yes.
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• Required Parameters:

1. obsDir (string): This parameter specifies a directory containing only a set of single-
subband Measurement Sets (MS) that should be merged (per time chunk). This directory
should contain the Measurement Sets for all available time chunks, and all subbands per
time chunk, that the user wants to merge. For example if you want to use selfcal.py on
a dataset that consists of 10 time chunks and one group of 5 contiguous subbands, then
the obsDir must contain 10× 5 = 50 MSs. It is often the case that one or more Mea-
surement Sets are missing. This is acceptable, because DPPP (which is used to merge the
subbands) will fill missing frequency values with flagged data, corresponding to missing
Measurement Sets. This is true as long as the first and the last subband are present for all
time chunks.
The path given for --obsDir must be a full path.

2. outputDir (string): This parameter specifies the output directory for merged Measure-
ment Sets. In this directory, two subdirectories will be created. The first one, named
Merged-Data, will contain the merged time chunks. This subdirectory should be used
afterwards as the --obsDir parameter for selfcal.py. The second subdirectory, named
DPPP Parset, will contain the parsets that are used for merging the subbands. The user
can inspect these parsets to find out how the subbands have been merged by mergeSB.py.
The path given for --outputDir must be a full path.

3. column2Merge (string): This is the name of the column to merge. Usually CORRECTED DATA

is used (awimager will only use the CORRECTED DATA column).
Usually, this should be set to either DATA or CORRECTED DATA.

• Optional parameters:

1. nofChannelPerSubband (int, default:1): This is the number of channels per subband
required after the subband concatenation. By default, mergeSB.py averages to 1 channel
per subband.

2. checkNames (string, default:‘yes’): [OPTION NOT ACTIVATED AT THE MOMENT]
mergeSB.py checks the names of the MSs (to verify that they are either intermediate or
final pipeline data products, see documentation). If checkNames is set to ‘no’, a warning
appears if the input MS names do not respect the expected nomenclature, but mergeSB.py
will continue without exiting.

E.3.3 Selfcal implementation details

The self-calibration process consists of a set of individual tasks. These are run in a sequence which
is looped, and at each cycle (iteration) the image resolution is increased to improve the sky model,
allowing a better phase calibration to be performed at the next step.

The individual tasks that are combined within a single iteration are:

1. Calibration with a skymodel using calibrate-stand-alone (BBS)

2. Flagging using DPPP

3. Imaging using awimager

4. Sky model extraction using the PyBDSM source finder.92
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Figure 56: Illustration of the iterations performed by the selfcal process.

The diagram in Figure 56 shows an example of the self-calibration process. Within a cycle, each time
chunk is calibrated separately using BBS, then each of them is flagged using DPPP. It is necessary
to calibrate and flag them separately because it is not possible (at the moment) to calibrate non-
continuous time-concatenated MSs using BBS. After this step (which is parallelized on 8 cores), the
MSs are concatenated in time using the msconcat command from the pyrap.tables python module.

92The PyBDSM manual is available at http://tinyurl.com/PyBDSM-doc (html version) or
ftp://ftp.strw.leidenuniv.nl/pub/rafferty/PyBDSM/PyBDSM-1.8 manual.pdf (pdf version).
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Figure 57: Results of selfcal process with an example HBA dataset at approximately 140 MHz.
There are clear improvements in the image noise after performing self-calibration. The noise levels
in the three images are 30, 10, and 2 mJy/beam for the cases of: no phase calibration (left panel),
standard GSM-based phase calibration (middle), and self-calibration (right panel). The thermal noise
is estimated to be approximately 0.7 mJy/beam for this dataset.

Next, awimager images the time concatenated MS with specific parameters. To finish, a sky model
is extracted using pybdsm on the newly created image.

The algorithm is designed to improve the angular resolution in each cycle. This means that selfcal
must include longer baselines at each iteration. Moreover, the robust parameter is also changed in each
iteration to give additional weight to longer baselines. The default behavior is to start at robust=1
(nearly natural weighting) at low resolution (15 times the best resolution) and end at robust=-2
(uniform weighting) when including all available baselines. As described in §E.3, the progression of
imaging parameters from one iteration to the next can be modified by the user.

E.3.4 Selfcal examples

In Figure 57, an example of the self-calibration process is shown for HBA-low. The example dataset
had the following properties:

• 31 time chunks

• 10 contiguous subbands

• Best beam resolution = 5′′

An example of using self-calibration on an example LBA dataset is shown in Figure 58. This LBA
dataset contains 10 subbands and the total duration of the observation was 4.5 h. Ionospheric effects
become very strong on baselines longer than about 20 km (in this particular example), so the direction
independent strategy does not improve the data quality for angular resolution less than about 50′′

in this particular case. If this example is representative, then selfcal can be expected to improve
calibration on baselines out to approximately 20 km, depending on ionospheric conditions at the time.
Further improvements will require direction dependent calibration. At present, with both HBA and
LBA datasets, the selfcal process typically manages to obtain a final image noise about 2-3 times the
theoretical thermal noise.
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Figure 58: Results of selfcal process with LBA (∼60 MHz). The noise levels in the image is 22
mJy/beam. The thermal noise is estimated to be approximately 11 mJy/beam for this dataset.
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F The AW imager93

F.1 Introduction

In this section we will describe the necessary steps needed to perform successful imaging of LOFAR
data using the AWimager94.

Note that the AWimager is still in the development phase, therefore this documentation is very dy-
namic and it is currently meant to provide the basic instructions on how to use the code.

In particular, a new version of the AWImager is scheduled for mid 2015. This new version will have
more features, like multi-frequency clean. The options for AWImager2 are different (more intuitive)
than that of AWImager. It will be documented in the next release of the Cookbook.

F.2 Background

The AWimager is specially adapted to image wide fields of view, and imaging data produced by
non-coplanar arrays, where the W term in the measured visibilities is not negligible. Furthermore,
AWimager corrects for direction dependent effects (LOFAR beam and ionosphere) varying in time
and frequency. The used algorithm is A-projection.

The algorithm is implemented using some CASA libraries.

F.3 Usage

To run AWimager, you first need to setup your environment using:

use Lofar

Before running AWimager, it is necessary to calibrate the dataset and correct the visibilities towards
the phase center of the observation. This can now be done by not specifying any direction in the
correct step of BBS.

Step.correct.Model.Sources = []

AWimager can run in a parallel fashion. The number of processing cores (n) to be used during imaging
can be specified:

export OMP_NUM_THREADS=n

If not specified, all cores will be used.
AWimager is quite memory hungry, so the number of cores should be limited in case it fails due a
’bad alloc’ error.

93This Chapter is maintained by Bas van der Tol (tol[at]astron[dot]nl).
94Cyril Tasse, Bas van der Tol, Joris van Zwieten, Ger van Diepen, Sanjay Bhatnagar 2013, Applying full polarization

A-Projection to very wide field of view instruments: An imager for LOFAR. A&A, 553, A105
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F.4 Output files

AWimager creates several image output files. Note that in the following list <image> is the image
name given using the image parameter.

• <image>.model is the uncorrected dirty image.

• <image>.model.corr is the dirty image corrected for the average primary beam.

• <image>.restored and <image>.restored.corr are the restored images.

• <image>.residual and <image>.residual.corr are the residual images.

• <image>.psf is the point spread function.

• <image>0.avgpb is the average primary beam.

Furthermore, a few other files might be created for AWimager’s internal use.

F.5 Parameters

An extensive list of the parameters that can be used by the AWimager can be obtained by typing:

awimager -h

Eventually, to run the imager, you can type:

awimager ms=test.MS image=test.img weight=natural wprojplanes=64 npix=512

cellsize=60arcsec data=CORRECTED_DATA padding=1. niter=2000

timewindow=300 stokes=IQUV threshold=0.1Jy operation=csclean

which is one command spread over multiple lines.

It is also possible to specify these parameters in a parset and run it like:

awimager parsetname

Many parameters can be set for the AWimager. Several of them are currently being tested by the
commissioners. The most important parameters are listed below.

F.5.1 Data selection

These parameters specify the input data.

• ms

The name of the input MeasurementSet.

• data

The name of the data column to use in the MeasurementSet. The default is DATA.

• antenna

Baseline selection following the CASA baseline selection syntax
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• wmax

Ignore baselines whose w-value exceeds wmax (in meters).

• uvdist

Ignore baselines whose length (in wavelengths) exceed uvdist.

• select

Only use data matching this TaQL selection string. For example, sumsqr(UVW[:2])<1e8 se-
lects baselines with length <10km.

F.5.2 Image properties

These parameters define the properties of the output image.

• image

The name of the image.

• npix

The number of pixels in the RA and DEC direction

• cellsize

The size of each pixel. An unit can be given at the end. E.g. 30arcsec

• padding

The padding factor to use when imaging. It can be used to get rid of effects at the edges of the
image. If, say, 1.5 is given, the number of pixels used internally is 50% more.

• stokes

The Stokes parameters for which an image is made. If A-projection is used, it must be IQUV.

F.5.3 weighting

These parameters select the weighting scheme to be used.

• weight

Weighting scheme (uniform, superuniform, natural, briggs (robust), briggsabs, or radial)

• robust

Robust weighting parameter.

F.5.4 Operation

This parameter selects the operation to be performed by awimager.

• operation

The operation to be performed by the AWimager.

– csclean = make an image and clean it (using Cotton-Schwab).
– multiscale = use multiscale cleaning
– image = make dirty image only.
– predict = fill the data column in the MeasurementSet by predicting the data from the

image.
– empty = make an empty image. This can be useful if only image coordinate info is needed.
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F.5.5 Deconvolution

These parameters control the deconvolution algorithm. Only those parameters that are applicable to
the selected operation will be used.

• niter

The number of clean iterations to be done. The default is 1000.

• gain

The loop gain for cleaning. The default is 0.1.

• threshold

The flux level at which to stop cleaning. The default is 0Jy.

• uservector

Comma separated list of scales (in pixels) to be used by multiscale deconvolution

F.5.6 Gridding

These parameters control the AW-projection algorithm.

• wprojplanes

The number of W projection planes to use.

• maxsupport

The maximum of W convolution functions. The default is 1024.

• oversample

The oversampling to use for the convolution functions. The default is 8.

• timewindow

The width of the time window (in sec) where the AW-term is assumed to be constant. Default
is 300 sec. The wider the window, the faster the imager will be.

• splitbeam

Evaluate station beam and element beam separately? The default is true. AWimager will work
much faster if the correction for the station and element beam can be applied separately. This
should only be done if the element beam is the same for all stations used.

For more details, the user can refer to the Busy Wednesday comissioning reports95 (specifically those
from September 28 and October 26 2011).

95http://www.lofar.org/operations/doku.php?id=commissioning:busy_wednesdays
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G GNU screen

For some long running processes, as the flagging (DPPP, see Sect. 4), the calibration (BBS, see
Sect. A) or creating a large image, it can be handy to have a session running on one of the cluster
nodes, and then leave that running the background overnight. This can be done by putting the task in
the background and use a command like disown. Sometimes, however, it is more convenient to have
a program running the in the foreground. In such a case, it is difficult to log out without killing the
process. GNU screen to the rescue.

GNU screen (short: screen) is a utility that creates a virtual terminal that stands on its own, and can
be put in the background or foreground at will. Multiple terminals (“tabs”) are also possible. A
disadvantage of GCN screen is that it will not use with X-windows (forwarding) and scrolling back
for previous output does not always work. For a long-during command line task, however, it is very
useful.

Have a first look at screen using the help option:

screen -help

Use: screen [-opts] [cmd [args]]

or: screen -r [host.tty]

Options:

-a Force all capabilities into each window’s termcap.

-A -[r|R] Adapt all windows to the new display width & height.

-c file Read configuration file instead of ’.screenrc’.

-d (-r) Detach the elsewhere running screen (and reattach here).

-dmS name Start as daemon: Screen session in detached mode.

-D (-r) Detach and logout remote (and reattach here).

-D -RR Do whatever is needed to get a screen session.

-e xy Change command characters.

-f Flow control on, -fn = off, -fa = auto.

-h lines Set the size of the scrollback history buffer.

-i Interrupt output sooner when flow control is on.

-l Login mode on (update /var/run/utmp), -ln = off.

-list or -ls. Do nothing, just list our SockDir.

-L Turn on output logging.

-m ignore $STY variable, do create a new screen session.

-O Choose optimal output rather than exact vt100 emulation.

-p window Preselect the named window if it exists.

-q Quiet startup. Exits with non-zero return code if unsuccessful.

-r Reattach to a detached screen process.

-R Reattach if possible, otherwise start a new session.

-s shell Shell to execute rather than $SHELL.

-S sockname Name this session <pid>.sockname instead of <pid>.<tty>.<host>.

-t title Set title. (window’s name).

-T term Use term as $TERM for windows, rather than "screen".

-U Tell screen to use UTF-8 encoding.

-v Print "Screen version 4.00.03 (FAU) 23-Oct-06".

-wipe Do nothing, just clean up SockDir.

-x Attach to a not detached screen. (Multi display mode).

-X Execute <cmd> as a screen command in the specified session.
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The detach and attach commands are the ’background’ and ’foreground’ commands. Now start screen
for real (from a frontend or compute node):

> screen

You will get a new terminal, but otherwise everything looks the same. You can exit this ’new’ terminal
using exit or control-D (depending on your shell). It is more fun, however, to detach the screen
session, while running a command in the foreground. So simply execute sleep for half a minute:

> sleep 30

and detach screen, by typing control-a control-d. All screen commands start with a special
control key, which by default is control-a. You should now have been returned to your previous
terminal. Now list the available screen instances:

> screen -list

There is a screen on:

8090.pts-64.lfe001 (Detached)

1 Socket in /var/run/screen/S-rol.

This shows you which screen(s) are running. You can have multiple screens, although that may be
confusing. Now re-attach to this screen:

screen -r

You will get back to the screen terminal, which may still be running sleep (or it might just have
ended).

Now create a new ’tab’ inside screen. Use control-a control-c (c for ’create’). You end up in the
new tab. If you want to switch to the previous tab, use control-a 0; the numbers 0 to 9 specify a
tab. You can also use control-a " to get a list of tabs, and use the arrows keys & enter to select the
tab (in case you have more than ten tabs). Lastly, to toggle back and forth between two tabs, you can
simply type control-a control-a.

In case you accidentally loose your internet connection, your session to your the LOFAR cluster will
quit. ’Screen’, however, will still be running. If you login again to the machine where you started
screen, you can see it:

> screen -list

There is a screen on:

8090.pts-64.lfe001 (Attached)

1 Socket in /var/run/screen/S-rol.

Note that it says Attached; you can’t simply attached to it using screen -r, you first have the detach
the (now defunct) old screen session, and then reattach to it:

screen -d -r

Inside screen, there are a lot more commands that you can use. Type control-a ? to get a help
view (space or enter to exit). The above sample session should keep you going for most tasks anyway.
Note that you can easily ssh to machines from within screen (just like normal), although forwarding
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X (’-Y’ option) won’t work. So starting screen from the frontend node and then logging in to one or
more compute nodes to run DPPP, BBS and/or mwimager can work nicely.

For people who don’t like the the control-a shortcut, you can redefine this key in a file called .screenrc
(in your home directory. Enter the following line:

escape ^Jj

If you have problems with the delete key, try this in .screenrc:

bindkey -k kD

bindkey -d -k kD

There are many other options; see for example http://www.emacswiki.org/emacs/GnuScreen. In par-
ticular, if you want to dump out what is in screen’s buffer (not only what you see on the screen, but
also whatever is in its scrollback buffer), you can:

• press Control-a

• type ”:hardcopy -h output.txt” (output.txt can be whatever you want)

Then you can open output.txt with a text editor to have a look at what screen had in its mem-
ory. To make screen remember more lines, you can edit /.screenrc so that the line containing
”defscrollback” says something like

defscrollback 10000
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