Updates from the Cosmic Rays KSP

Pim Schellart

S. Buitink, A. Corstanje, E. Enriquez, H. Falcke, W. Frieswijk, J. Hörandel, M. Krause, A. Nelles, O. Scholten, S. Thoudam, S. ter Veen, M. van den Akker

Cosmic Rays Key Science Project

Radboud University Nijmegen, ASTRON, NIKHEF, Max-Planck-Institut für Radioastronomie, Rijksuniversiteit Groningen

Measuring cosmic ray composition

Image credit: The Auger Collaboration

10%? we can do better with radio!

Goals:

- Detect radio emission from cosmic ray air showers
- Understand radio emission from cosmic ray air showers
- Use radio emission to study cosmic rays

Multiple emission mechanisms

- Geomagnetic
 - Electrons and positrons are deflected in the geomagnetic field
 - Linearly polarized in v x B direction
- Charge excess
 - Negative charge buildup at shower front
 - Linearly polarized in radial direction away from shower axis
- + $\overline{}$ +

Cherenkov effects

Automated detection pipeline (400+ showers measured) Typical event:

Particle Detector & Radio Agree

Antenna model verification

Master thesis M Krause (available soon)

Complex polarization signature

There is a lot of information here...

90

Wavefront curvature

- Subtracting the plane wavefront solution, treating curvature as a perturbation gives ~6 ns delays at edge of the array
- This can be directly measured
 with LOFAR
- Preliminary results point to hyperbolic wavefront shape
- Wavefront curvature may provide measurement of Xmax independent of pulse power (Schröder et al. ICRC 2011)

Corstanje et al. (in prep)

Wavefront curvature

- Subtracting the plane wavefront solution, treating curvature as a perturbation gives ~6 ns delays at edge of the array
- This can be directly measured
 with LOFAR
- Preliminary results point to hyperbolic wavefront shape
- Wavefront curvature may provide measurement of Xmax independent of pulse power (Schröder et al. ICRC 2011)

Corstanje et al. (in prep)

Wavefront curvature

- Subtracting the plane wavefront solution, treating curvature as a perturbation gives ~6 ns delays at edge of the array
- This can be directly measured
 with LOFAR
- Preliminary results point to hyperbolic wavefront shape
- Wavefront curvature may provide measurement of Xmax independent of pulse power (Schröder et al. ICRC 2011)

Corstanje et al. (in prep)

First ever radio measurements of Xmax!

Conclusions

- Detect radio emission from cosmic ray air showers
 - 400+ air showers detected with LOFAR using fully automated pipeline (Schellart et al. submitted to LOFAR publication committee)
- Understand radio emission from cosmic ray air showers
 - Polarization measurements allow disentangling of emission mechanisms (Schellart et al. in prep)
 - Wavefront curvature measurements indicate hyperbolic wavefront (Corstanje et al. in prep)
 - First measurements of air shower radio emission in HBA 110 240 MHz range where Cherenkov emission is expected to be stronger (Nelles et al. in prep)
- Use radio emission to study cosmic rays
 - First ever radio measurement of Xmax! (Buitink et al. in prep)