
  

Bit modes

The station to correlator

data format

André Offringa -- Kapteyn Astronomical Institute

Lofar status meeting 23-02-2011



  

About bit modes

● The nr of beams and bandwidth are limited 
by the transport from station to BG.

● We can send 244 beamlets: for example 
48 beams with 1 MHz or 48 MHz in 1 
beam.

● We currently send 16 bit samples
● If samples can be send with 8 or 4 bits, we 

can send 2 resp 4 times as many
● But what is the effect on the data?



  

Current RCP data format
● Stations send a stream of “beamlets”
● Each beamlet contains a stream of sub-

band data (1024 clock ticks / sample)
● Each time step consists of

– Two polarizations with

– real and imaginary values of

– 16 bit integers (in C: “signed short”)

– Thus 8 bytes/time step/beamlet

– 8 x (200Ms/1024) x #beamlets(=244) B/s

– ≈ 380 MB/s (=3.04 gbit)



  

Data used for analysis
● Set recorded for RFI analysis by Rob van 

Nieuwpoort and John Romein
● “Raw” RCP data
● The set:

– 5 LBA sub-bands
● 27 MHz: 27 MC
● 36 MHz: Model airplanes
● 50 MHz: “clean” band
● 55.1, 55.3 MHz: TV

– 3 stations: CS004, RS205, RS208



  



  

Beamlet stream

● What does such a stream look like?



  

Beamlet stream



  

Beamlet stream



  

Implemented in “RFI Gui”

● The RCP format was implemented in the 
RFI Gui (File → Open file → pick file with 
extension “.raw”)

● Different modes to open RCP set:
– A single beamlet stream

– Concatenate beamlets as channels

– FFT a single beamlet

● All from a single station



  

Implemented in “RFI Gui”



  

Testing flagging strategies...



  

How to discard 8 or 12 bits?

● Common ways from information theory:
– Encoding

● E.g., Hofman or Rice encoding

– Prediction
● E.g. as in FLAC: linear prediction

– Quantization
● (Possibly Non-linear) scaling and truncation

– Encapsulation
● Dynamicly changing above parameters



  

How to discard 8 or 12 bits?

● First impression:
– Encoding not trivial

– Values are not easily
predictable – near
Nyquist rate

– Distribution is not uniform → uniform 
quantization (“signed short”) not ideal.

– Values “seldom” use more then 8 bits

● Proper quantization most trivial solution
– Allow dynamic changes?



  

How to quantize?

(Excluding sign bit!)



  

How to quantize?

(Excluding sign bit!)



  

How to quantize to 8 bits?

● 1 out of 1000 samples uses > 8 bits
● Rough est error of clipping to 8 bits:

– Single real sample with value of v:

(assuming if |v| > 127 then |v| = 127)

– Total absolute error:

– Total relative error: (~SNR loss) 
E =∫ P vv dv≈1/1000×64≈0.06

v =max 0,∣v∣−128

Q =E /E ∣v∣≈0.06 /10≈ 1%



  

How to quantize to 8 bits?
● 1 out of 10000 samples uses > 9 bits
● Error of truncation of bit 10-16:

● Error of removing bit 1:

● Hence, bit 1 is more important than bit 8

E =∫ P v v dv≈1/10000×128≈0.013
v =max 0,∣v∣−256

Q=E /E ∣v∣≈0.013 /10≈0.1%

v =∣v∣mod 2
E ≈0.5
Q≈0.5/10≈ 5%



  

How to quantize to 8 bits?

● Fourier transform is uniform, thus total 
error in real domain = total error in 
Fourier domain

● Quantization / clipping high values effect 
all channels

● Clipping high values compares to slightly 
non-linear system: RFI “harmonics” 
(→flagging will lower total error)



  

How to quantize to 8 bits?

● Clipping values to least significant 8 bits 
seems a good first approach.

● This results in a 1% expected error (thus 
increase of noise).

● Hence, would make LOFAR almost twice 
as efficient.



  

How to quantize to 8 bits?
● The minimum total error can be achieved 

by integrating the distri-
bution.

● E.g.: exponential quanti-
zation in higher values
   v            → v
0-64          → v
65-65536  → dlog(v-64 + c)+64-dlog(c)
                      approx good values: d=1.045, c=20

● Total error now ~ 0.1%
● Technologically feasible (by table lookup)



  

More on quantization error



  

4 bit mode

● Most trivial solution: remove bits
● One solution is to “keep” bits 3, 4 and 5 

and the sign bit.
● This results in a 20%-30% avg 

error/sample.
● This does imply it is most “efficient” to look 

at four fields at the same time
● Note that a signed short can represent 

more negative values then positive 
values



  

4 bit mode

● More advanced solution: table lookup

● Little better, about 10-20% expected error

..-257 -8 0..1 0

-256..-33 -7 2..4 1

-32..-21 -6 5..8 2

-20..-14 -5 9..13 3

-13..-9 -4 14..20 4

-8..-5 -3 21..32 5

-4..-2 -2 33..256 6

-1..0(!) -1 257 .. 7



  

Bit mode implementation status

● Who is doing what?
● Info from Stefan Wijnholds:

– Arie Doorduin is working on 
implementation of bit modes.

– Recent document by Eric Kooistra on 
required changes to FPGA pipeline

– Where and how to round numbers is being 
discussed, Stefan is also involved.



  

Conclusions

● Trivial clipping to 8 bits results in 1% error
● Mapping function with table lookup can 

improve this to 0.1% error.
● 4 bits is more complicated, but still 

efficient, leading to about 20% error.
● (Dynamic) optimization per station, sub-

bands might improve error further.
● These are all preliminary results: further 

testing is needed for optimal strategies.
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