

Bit modes

The station to correlator

data format

André Offringa -- Kapteyn Astronomical Institute

Lofar status meeting 23-02-2011

About bit modes

● The nr of beams and bandwidth are limited
by the transport from station to BG.

● We can send 244 beamlets: for example
48 beams with 1 MHz or 48 MHz in 1
beam.

● We currently send 16 bit samples
● If samples can be send with 8 or 4 bits, we

can send 2 resp 4 times as many
● But what is the effect on the data?

Current RCP data format
● Stations send a stream of “beamlets”
● Each beamlet contains a stream of sub-

band data (1024 clock ticks / sample)
● Each time step consists of

– Two polarizations with

– real and imaginary values of

– 16 bit integers (in C: “signed short”)

– Thus 8 bytes/time step/beamlet

– 8 x (200Ms/1024) x #beamlets(=244) B/s

– ≈ 380 MB/s (=3.04 gbit)

Data used for analysis
● Set recorded for RFI analysis by Rob van

Nieuwpoort and John Romein
● “Raw” RCP data
● The set:

– 5 LBA sub-bands
● 27 MHz: 27 MC
● 36 MHz: Model airplanes
● 50 MHz: “clean” band
● 55.1, 55.3 MHz: TV

– 3 stations: CS004, RS205, RS208

Beamlet stream

● What does such a stream look like?

Beamlet stream

Beamlet stream

Implemented in “RFI Gui”

● The RCP format was implemented in the
RFI Gui (File → Open file → pick file with
extension “.raw”)

● Different modes to open RCP set:
– A single beamlet stream

– Concatenate beamlets as channels

– FFT a single beamlet

● All from a single station

Implemented in “RFI Gui”

Testing flagging strategies...

How to discard 8 or 12 bits?

● Common ways from information theory:
– Encoding

● E.g., Hofman or Rice encoding

– Prediction
● E.g. as in FLAC: linear prediction

– Quantization
● (Possibly Non-linear) scaling and truncation

– Encapsulation
● Dynamicly changing above parameters

How to discard 8 or 12 bits?

● First impression:
– Encoding not trivial

– Values are not easily
predictable – near
Nyquist rate

– Distribution is not uniform → uniform
quantization (“signed short”) not ideal.

– Values “seldom” use more then 8 bits

● Proper quantization most trivial solution
– Allow dynamic changes?

How to quantize?

(Excluding sign bit!)

How to quantize?

(Excluding sign bit!)

How to quantize to 8 bits?

● 1 out of 1000 samples uses > 8 bits
● Rough est error of clipping to 8 bits:

– Single real sample with value of v:

(assuming if |v| > 127 then |v| = 127)

– Total absolute error:

– Total relative error: (~SNR loss)
E =∫ P vv dv≈1/1000×64≈0.06

v =max 0,∣v∣−128

Q =E /E ∣v∣≈0.06 /10≈ 1%

How to quantize to 8 bits?
● 1 out of 10000 samples uses > 9 bits
● Error of truncation of bit 10-16:

● Error of removing bit 1:

● Hence, bit 1 is more important than bit 8

E =∫ P v v dv≈1/10000×128≈0.013
v =max 0,∣v∣−256

Q=E /E ∣v∣≈0.013 /10≈0.1%

v =∣v∣mod 2
E ≈0.5
Q≈0.5/10≈ 5%

How to quantize to 8 bits?

● Fourier transform is uniform, thus total
error in real domain = total error in
Fourier domain

● Quantization / clipping high values effect
all channels

● Clipping high values compares to slightly
non-linear system: RFI “harmonics”
(→flagging will lower total error)

How to quantize to 8 bits?

● Clipping values to least significant 8 bits
seems a good first approach.

● This results in a 1% expected error (thus
increase of noise).

● Hence, would make LOFAR almost twice
as efficient.

How to quantize to 8 bits?
● The minimum total error can be achieved

by integrating the distri-
bution.

● E.g.: exponential quanti-
zation in higher values
 v → v
0-64 → v
65-65536 → dlog(v-64 + c)+64-dlog(c)
 approx good values: d=1.045, c=20

● Total error now ~ 0.1%
● Technologically feasible (by table lookup)

More on quantization error

4 bit mode

● Most trivial solution: remove bits
● One solution is to “keep” bits 3, 4 and 5

and the sign bit.
● This results in a 20%-30% avg

error/sample.
● This does imply it is most “efficient” to look

at four fields at the same time
● Note that a signed short can represent

more negative values then positive
values

4 bit mode

● More advanced solution: table lookup

● Little better, about 10-20% expected error

..-257 -8 0..1 0

-256..-33 -7 2..4 1

-32..-21 -6 5..8 2

-20..-14 -5 9..13 3

-13..-9 -4 14..20 4

-8..-5 -3 21..32 5

-4..-2 -2 33..256 6

-1..0(!) -1 257 .. 7

Bit mode implementation status

● Who is doing what?
● Info from Stefan Wijnholds:

– Arie Doorduin is working on
implementation of bit modes.

– Recent document by Eric Kooistra on
required changes to FPGA pipeline

– Where and how to round numbers is being
discussed, Stefan is also involved.

Conclusions

● Trivial clipping to 8 bits results in 1% error
● Mapping function with table lookup can

improve this to 0.1% error.
● 4 bits is more complicated, but still

efficient, leading to about 20% error.
● (Dynamic) optimization per station, sub-

bands might improve error further.
● These are all preliminary results: further

testing is needed for optimal strategies.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

