Cosmic Rays KSP Update

Clancy James, on behalf of the Cosmic Rays Key Science Project
LOFAR status meeting, 09/03/2011

Overview

- Detecting cosmic rays requires using the transient buffer boards
- CR KSP: Encompasses most TBB-enabled science
- 4 sub-projects:

VHECR (piggyback)

 Detecting 'very high energy' cosmic ray events with individual LOFAR stations

UHEP/NuMoon (stand-alone)

•Searching for 'ultra-high energy' particles (~10²² eV cosmic-rays and neutrinos) interacting in the Moon

FRaTs (piggyback)

•Real-time detection of bright, Fast Radio Transients.

LORA (independent)

•LOFAR-Radboud Array (of particle detectors) to confirm cosmic-ray events.

VHECR Mode

- Run a piggyback search for cosmic ray events off any/all LBA observations on an individual station basis.
 - Level 1 trigger: individual dipoles.
 - Level 2 trigger: individual stations.
 - Record TBB time-domain data from all dipoles upon station trigger.

Status:

- observations can be specified from the OTB.
- imaging data can be returned simultaneously.
- 23/02/2011: 8-hour run with CS002, CS024, RS307.
- TBB data is good! (fix of CS002 switch worked)

Bugs/to-do

- TBBs still sometimes require a 48 V reset.
- Perform observations on all stations: check for faults/RFI.
- TBB data-writer must be started manually.
- Cannot be specified from MoM.

Analysis pipeline works! Example:

- 96-LBA outer antennas, RS307. 96-LBA outer antennas, RS307.
 - 58° fitted elevation (far-field)
 - Left: individual diploe fields.
 - Right: even antennas added inphase.
- 50 EBA dater arrichmas, NSSO
 58° fitted elevation (far-field)
- Left: individual diploe fields.
- Right: even antennas added inphase.

(figs courtesy of Arthur Corstanje)

RFI (esp RS307)

- Real-time trigger includes cut on elevation (pass: >30°).
- Pulse trains: antennas trigger on different peaks.
- Fitted elevation distorted: get past the cut!
- Need to (re-)implement a counter to overcome this.

(fig. courtesy of Arthur Corstanje)

Arrival-direction reconstruction

- Observations 23/02/2011
 - Specified in the OTB.
 - RS307, CS002, CS024.
 - 8 hr stable run.
 - 2994 triggered events.

Analysis:

- Red: trigger times only.
- Blue: using triggered data.
- Use cuts based on pulse shape.
- Fits for near- and far-field.

LORA

- 5 'stations' x 4 detectors in the LOFAR superterp
- Each detector: sees high-energy secondary particles from cosmic ray interactions in the atmosphere.

Goal: give 100% confirmation of VHECR events + energy calibration.

- Status:
 - All detectors deployed Feb 2011*
 - CS 005 station operating remotely,

We can take data remotely!

Fine calibration pending Other stations need network switches *Thanks to Jan Nijboer, Menno Norden, and Klaus Stuurwold

Reconstructed arrival directions

60 hr run mid-February

1628 4-fold coincidences

4 stations + timing => arrival direction

(fig courtesy of Satyendra Thoudam)

Known isotropy distorted by:

- Non-uniform detector geometry
- Uncalibrated timing offsets

Next step: LORA+VHECR

- Simultaneous LORA+VHECR on same stations.
- Match arrival directions & times: detect very-high energy cosmic rays.
- This is running as we speak! (so keep speaking?)

Technical Stuff: TBBs and Triggering

- Someone wants to trigger and return TBB data (e.g. FRaTs)
- How do you get to the data? CR KSP and ASTRON must solve this jointly.
- Method 2010:
 - Log onto each RSP board at each station.
 - Start up an imperfect data-writer manually.
 - Send TBB start/stop/send data commands to each RSP board.
- Recent Improvements:
 - TBB control handles all start/stop/dump commands (P. Donker)
 - Plan for MAC handling of 'trigger requests' ~finalised.
 - Plan for MoM/scheduler management of piggyback modes ~finalised.
- Next steps:
 - We need the LCCG to assign a priority for getting these plans implemented (because it takes valuable developer time).
 - Adapt beamformed data-writer to handle TBB hdf5 data (who?).
 - Until this is done, we still have to use 'hacked' methods.

FRaTs: Fast Radio Transients

- Analyse dynamic-spectrum data in quasi-real-time for strong dispersed pulses.
- Trigger and return TBB data.
- Act as motivation to develop real-time triggering
- Piggyback off pulsar Christmas observations:
 - Level 1: threshold on power in each sub-band.
 - Level 2: require coincidence between sub-bands.
 - Level 3: anti-coincidence with DM 0/other beams.
- Outcomes:
 - Many false triggers!
 - No TBB data dumped.
 - Detected PSR B0834+05
- Next steps:
 - Parallelise code.
 - Implement level 3 trigger.
 - Run automatically.
 - Improve sensitivity.

Not implemented!

UHEP Mode/NuMoon

Dagkesamanskii & Zheleznykh (1989)

UHEP/NuMoon

- Ultra-high energy particle mode:
 - Dedispersed tied-array beams track the Moon looking for bandlimited impulses and trigger TBBs.
 - Very technically challenging.
 - Implementation > (>>?) 1 year away.
 - Other groups working on many aspects, e.g. ionospheric calibration, tied beamforming, coherent dedispersion, triggering etc.

Progress:

- Determining optimal trigger algorithm (paper in progress)
- Sensitivity to cosmic rays:
 - Prediction of sensitivity to cosmic rays by James et al.
 - Calculation by ter Veen et al. confirmed this.
- UHEP mode targeting both cosmic rays and neutrinos

The elephant in the room

- The current TBBs are not be long enough to capture UHEPtriggered pulses due to trigger dead-time.
- No TBB data = reduced sensitivity + inability to discriminate vs RFI.
- Reduced science vs increased cost: exact tradeoff will not be known until preliminary (non-TBB) UHEP observations have begun.

Offline Analysis

- 'cr-tools' analysis suite.
 - Developed for TBB data
 - Depends on common libraries, e.g. for hdf5.
 - Designed to work within LOFAR framework
 - Vulnerable to software shenanigans
 - (was down for 16 days due to DAL move)

• Pipelines:

- v1 VHECR pipeline completed (< 1 processor/station).
- v1 LORA pipeline completed.
- LORA+VHECR combined: to start soon.
- NuMoon: not for a long time!
- FRaTs/dynamic spectrum: v1 in progress.
- All-sky-imaging: optimised v2 complete.

VHECR: top-level

- Specifying VHECR through MoM: have a 'TBB piggyback' button.
- Settings:
 - Turn TBB piggyback off. [initial default]
 - Allow piggyback observations. [eventual default]
 - Set TBBs to time-domain data, but no piggyback.
 - Set TBBs to sub-band data, but no piggyback.
 - Choose my specialised TBB template I have created earlier.
- Scheduler will add appropriate TBB piggyback settings based on other observation parameters.
 - Initially, VHECR only.
 - Eventually: FRaTs, VHECR multistation ('HECR'), others...
- Very close to being able to implement this

Trigger Handling

• Next steps:

