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Main issue: available information, ill conditioning

Traditional Calibration algorithms: h5se
4 Phase assumed

- Fit for Jones matrices \\ / to be constant

I~

- But Jones matrices vary over time/freq: \
- Limit usable bandwidth T T
- Limit usable time chunk — freq

- Need for ~10 to ~100 discrete directions
- /[antenna /polarisattion /datachunk
- tens of thousands of free parameters

lll conditioning is dangerous
(source supression, fake high dynamic range, etc)



Our goal: adressing ill-conditioning

Two independent aspects:

- Physics-based approach (opposed to Jones-based approach)
- constraining Clocks, TEC-screen — directly from visibilities
- All physical effects have a smooth frequency behaviour
- We are not limited in bandpass anymore!

phAase

- Much less degrees of freedom
(~100-1000x)

- Much more usable data
(~10-100x)

A
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(~10-100x)

- Physical effects are not stable in time though....
- Kalman filter!

— freq



Kalman Filters ? (iterative versus recursive)

- Different from Levenberg-Maquardt or EM:
- Kalman filters do not try to fit the data at best
- “Minimum mean square estimators™. fit the data given information on the
expected state
They “track more than they solve”
- Kalman filters use a recursive sequence (as opposed to iterative for LM,
EM etc)

Problem: the process to
measurement equation is non-linear



Non-linear Kalman Filters....

Process domain: Data domain:
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Representation issues....

Equivalent to 1-
Dimentional raw-data .
images With 1D-Poststamps
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KaFCa (Kalman Filter for Calibration)

TEC-screen,
Clocks, beams, etc
& Covariance matrix

S

Filter

|

TEC-screen,
Clocks, beams, etc
& Covariance matrix

@ t+1

Data stream @ t+1
- All baseline
- All polarisations

- All frequencies
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Simulated dataset (ionosphere TEC-screen
+ Clock drift)

- LOFAR HBA (1500 baselines, 4 pols)
- 30 subbands from 100 to 150 MHz
- SIN=5

- variable ionosphere TEC-screen
- Variable clock drift

- 18.000 data points / [ time bin (30s)]
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Measurement )
Equation )
V?qum.f (X) —Dps!u(X)Xs D(Ili“,(x) (2)

Clocks G (X) :=exp (2miv dty(x)) 1

plyv

lonosphere D¢ (x) :=exp (iln/ : T‘;(x)) I



Simulated dataset (ionosphere TEC-screen
+ Clock drift)




Clocks solutions
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KaFCa on Real data!

- 50 subbands
- ME: TEC-screen, clocks, constant offset



