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Flux calibration

In general (see e.g. Lorimer & Kramer 2005): LOFAR
- C=SEFD ~
T, P » Af/ f~ 0.5 (huge)
ASgys = ‘ = Coyp,
‘ G\/nptobbAf

Contributing factors

» Beam shape has strong dependence on AZ, EL, and frequency, and thus the gain, G

» Gain(f) # const

» Tsys = Tsky + Tinst

» Tsky(f) ~ f 25°

» Tinst(f) # const

» Tsrc(f) # const (ignore for now)
+

» Broken tiles (~5%)

» Coherence scaling S/N ~ N°% N — number of 48-tile stations

» Radio frequency interference (RFI), on average 25-30% (MSP data, 1 ch/sub,
normally — much less)



Flux calibration

In general (see e.g. Lorimer & Kramer 2005):

~ C=SEFD

ENCR N

25k [Czjinst(f) T Sky(fr GL GB)}

SEFD = =
N2 Acsr(£.EL)[1 = €]y /np[1 = C(f)] (st ) A f

B — digitization factor = 1 ¢ — average fraction of bad/flagged
GL, GB — Galactic longitude and latitude dipolesttiles

y — coherence factor = 0.85 ¢ — RFI fraction

N_ — number of stations used nbins — number of bins in the profile
n, — number of polarizations (2) T, — observation length (s)

A, — effective area of a 48-tile station Af — frequency channel width (Hz)



Beam models

1) “arts” model (Arts, Kant & Wijnholds 2013), improved Hamaker model

2) “arisN” model (Noutsos et al. 2015)

3) “hamaker _carozzi” model (Hamaker 2006 + Tobia Carozzi's
implementation «mscorpol», on Github)



Beam models

1) “arts”, improved Hamaker model, provides full EM simulations of a 24-tile HBA
sub-station, including edge effects and grating lobes (Hamaker's model is based on an
infinite array of elements).

In practice Note! When calibrating, for a given E
Table of 91 ELs * 361 AZs * 29 frequencies A(e)ffe i aveer;aC;eLj :)avler;ga;ll(;;?mgd}c/r?: -
: éE g:gg%:ge'gi_}j-gge%tsetsp as the stations are randomly rotated.

 Frequency, 110 — 250 MHz, 5-MHz step

2) “arisN”, maximum theoretical value of A (A,.) is scaled as ~sin(EL)~1.39 as in
Noutsos et al. (2015). For HBA, A... = 48 * 16 * min{A2/3, 1.5625}.

3) “hamaker _carozzi”, maximim theoretical value of A (A....) is corrected by a
corresponding factor calculated from the Carozzi's implementation of the Hamaker
model. In practice, we use functions from the “mscorpol” package (on Github) written by
Tobia Carozzi that calculate Jones matrices for a given HBA station, date/time and
frequency (there is also a standalone script antennajones.py to do that). Unlike “arts”
model, this model is based on a real station (it uses coordinates, cable delays and time
deltas). We used CS001, the difference for other stations is much smaller than the
nominal flux error.

Aeff is scaled by B(PSR)/B(CasA), where B= 0.5 * | |, X Jux* + Ly X L™ + Jyx X Iy + )y X )" |
The value of B(PSR) is normalized by reference value of the CasA observation B(CasA)
used in Wijnholds & van Cappelen for A/T measurements. Although, for all fregs the value
for CasA is almost 1.0 (changing in 2-3 digits after decimal point).



Flux calibration

In general (see e.g. Lorimer & Kramer 2005):

CO'p’

! G\/nptobSAf

SEFD = 20k [Tinst (f) + Taky (f, GL, GB)]

NI Aut (£ EL)[1 = €]y mp [t = C()) () A

For all three beam models all ingredients
are the same except for the value of A




Testing flux calibration with timing observations
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Timing observations of 10 slow bright pulsars.
Covering about a year (2014), ~10 sessions per PSR.

For all 10 pulsars the spectra were already fairly well measured by others:

MHz

« RFI excision - paz

and psrzap

« DM from census

observations



Flux stability

Beam model: hamaker_carozzi
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For band-integrated fluxes,
DISS is averaged out within
band width,

RISS within 10-20%

Flux dependence on
MJD is very similar
for “arts” and
“arisN” beam models

Large variations
(within a factor of 2,
-50%, +100%).
Nominal error (set by
rms of noise in off-
pulse window) is
within markers

Seemingly correlated
variation of fluxes for
different pulsars

Careful! B0823+26 and B1237+25 are moding pulsars.
(B1508+55 is also moding, but we did not see any
big profile evolution between sessions)




Summary and further work:

e All beam models are not good (S/N doesn't reflect change in SEFD)

e «khamaker_ carozzi» model seems to be the most adequate beam
model both for slow pulsars and MSPs

e A single flux measurement of a strong pulsar integrated within HBA band has
error of ~ 50%




Flux stability: SEFD wrt on-sky location

Beam model: arts
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Flux stability: SEFD wrt on-sky location

BEeam model: arisMN
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Flux stability: SEFD wrt on-sky location

Beam model: hamaker_carozzi
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Flux stability: phase-averaged S/N of profile

Beam model: arts
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(as was expected)



Correlation of fluxes, S/Ns between different PSRs
Flux = S/N * SEFD
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Depends on time, reflecting smoothly varying
observing conditions (AZ/EL of a source).
Dependence is similar for all three models
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Large (factor of 2) apparent variations), ; 05
correlated between pulsars. D 0.0

. Varies by ~50%, much larger than predicted by RISS.
Telescope gain has more complex Also is apparently slightly correlated between different pulsars

dependence on sky coordinates (reflecting some perturbations in telescope setup/condition?...)
than we can currently model. There

may be also some long-scale temporal
dependence of telescope parameters
(resulting in correlated SNR changes),
which are not reflected by current modeils.

These uncertainty causes observed flux

to fluctuate within ~50%, thus a single
observation cannot measure the flux better
than that.



Flux/mean; o - arisN, d - arts,
v - hamaker, white markers - census

Comparing
s timing fluxes to
Census fluxes
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Comparison to literature fluxes

MCMC parabola fit to the lit fluxes in 10 - 1000 MHz. MCMC gives distributions of fitted parameters.
Parabolas with mean values of parameters (black line) and +-1 sigma are shown (grey shade).
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Comparison to lit fluxes: three beam models
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Comparison to lit fluxes: three beam models
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Comparison to lit fluxes: three beam models
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Error distribution

For timing pulsars we can measure the distribution of K = Sr/So, the ratio of
the real pulsar flux Sr to observed flux So.

This distribution reflects our uncertainty about telescope parameters as well
as ISM influence.

We assume that p(K) is the same for all pulsars regardless of their brightness.

Then, for a single So measurement the probability of getting Sr=Sr
(some fixed value) is p(Sr=Sr | So=So0) = p(Sr=K*So | So) = p(K).

For the histogram of K = Sr/So, we did not use a single value for Sr, but ~200 values weighted with
probabilities from MCMC fit.



Error distribution:
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Error distribution:

arisN
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Error distribution:

hamaker carozzi
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Error distribution:
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MSSS fluxes
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MSSS fluxes, band-integrated

Rene's MSSS fluxes, band-integrated, 120-157 MHz (corrected version)
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Fluxcal software

e tsky.py — Tsky (GL, GB, freq) or (RA, DEC, freq)

@ lofar_tinst.py — T of the instrument (both HBA and LBA)
--plot — Tinst-vs-Freq diagnostic plot

e lofar_gain.py — Aeft (freq, EL) for a 48-tile station (HBA only)
--plot - diagnostic plots
--model <arts | arisN >. For hamaker_carozzi beam
model one can use corresponding function(s) after
importing it as a module

e snr.py — calculate S/N using different methods (Q-Q probability
plot, Off-pulse range, Polynomial to the baseline), so one can
choose proper method and/or other parameters
(fscrunching/bscrunching, off-pulse window) for flux
calculation



Fluxcal software (cont.)

e lofar_psrflux.py - to calculate flux density in mJy for a given
PSRFITS file (ar-file). First tscrunching all observation (so, good
only for not very long ones)
--plot, --plot-saveonly — diagnostic plots
--spectrum=#NCHAN - to produce calibrated spectrum for N
output channels, and plot
--spectrum-skip-first-channels=#INCHAN
--spectrum-skip-last-channels=#INCHAN
--model <arts | arisN | hamaker_carozzi>

e lofar_fluxcal.py — to calibrate the samples in mJy in the PSRFITS file (or
writes out new file). Calibrates separately individual sub-integrations.
Can also calibrate different Stokes separately (thanks to Maciej).

--model <arts | arisN | hamaker_carozzi>
--plot* and --spectrum™ options are also there

Both programs can read .h5 file to get number of stations. Unfortunately, info about the
flagged tiles is not yet available for Beamformed data... Currently, this info can be obtained
from Science Support and passed to a program via command-line option --flagged



Other factors
affecting flux measurements

® Scattering — hard to get S/N, it is underestimated

® Refractive scintillations.
Can change pulsar flux by a factor of ~1.5. Need long-term monitoring program
Diffractive scintillations is not a factor — averaged out, Av, < 0.2 MHz

® Beam jitter by the ionosphere.
Can be up to ~2-3 arcmins, i.e. half the Full-Core HBA TA beam (at half maximum)

® Variation of Tsys with time due to rise/set of the Galactic plane (up to 30-40%
when Galactic plane is in the FoV) and other strong background sources.
Also with pointing direction due to noise coupling effects.

Despite these factors:

« We've got ~20% agreement with EOR data for the new LOFAR pulsar J0815+4611
* Flux estimates from the MSSS images (Rene Breton) for several MSPs —
on average there is an agreement within ~40%



Summary and further work:

e All beam models are not good (S/N doesn't reflect change in SEFD)

e For the same obs, beam models can predict up to 3 times different fluxes,
depending on source elevation

e S/N of pulsars at different parts of the sky may correlate

e «khamaker_ carozzi» model seems to be the most adequate beam
model both for slow pulsars and MSPs

e A single flux measurement of a strong pulsar integrated within HBA band has
error of ~ 50%

e Flux errors are frequency-dependent

e MSSS fluxes (lower half of HBA band, band-integrated) agree with literature
spectra to within 40%

e and to do:
e Cobalt coherence tests (still have not done yet)
e Flagged tiles info - HDF5 BF metadata
e Further calibration development, e.g. take into account contribution of the
Galactic plane and background sources in FoV to Tsys
e Extending/testing on LBA data







Arts et al. beam model

«AKW» model by Arts M., Kant G., & Wijnholds S. (2013)

« 1st verson of the improved Hamaker model (2006) — BBS
* Provides full EM simulations of a 24-tile HBA sub-station,
including edge effects and grating lobes
(Hamaker's model is based on an infinite array of elements)
* Flux values with both models agree with a factor of ~1.5 for most of the MSPs

AKW model — Aeff for a given frequency range, AZ, and EL

In practice —
Table of 91 ELs * 361 AZs * 29 frequencies
« AZ, 0 — 360 deg, 1-deg step
« EL, 0 — 90 deg, 1-deg step
* Frequency, 110 — 250 MHz, 5-MHz step

Note! When calibrating, for a given EL Aeff is averaged over all azimuths,
as the stations are randomly rotated.
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Mormalized SNR
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Instrumental temperature, Tinst
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Pulsar protfile, S/N
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