
  

A technique for compressing
LOFAR visibilities
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A shrink ray gun for LOFAR data
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● Visibilities and weights make up >85% of 
the size of a measurement set

● Larger nr. channels / ms → Rel. smaller metadata

● Each visibility uses 3 x 32-bit floats

( real, imaginary, weight )
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● Compressing weights is easy:
just store 1 of the 4 polarizations

● Further quantization possible to compress 
further



  

Compression

● Compression can be lossless or lossy
● Lossless compression is limited by the 

randomness of noise
– At best a reduction from 100% to ~75% of 

the visibilities

● However, lossy compression needs to be 
tested carefully

– E.g. What are the consequences for long 
time integrations? And for flux levels?



  

Compression

● I am investigating lossy compression of 
visibilities

● Compression factor of ~4 seems possible
● I compress visibilities in 2 steps:

1) Normalize the visibilities

2) Use non-linear quantization and 
bitpacking



  

Visibility normalization
● Group visibilities of the same timestep and 

polarization
● Result: a cube of #ant x #ant x #channel 

visibilities:

Channel 1
Antenna 1 2 3 4 ...

1
2
3
4

...

Channel 2
              1 2 3 4 ...
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...

...



  

Visibility normalization
● Find per vis group a factor per antenna and per 

channel that normalizes the variance

● Antenna factors absorb different antenna noise 
levels.

● Channel factors absorb bandpass.

● Additionally, make sure highest value in time 
block can be quantized.

This is an optimization problem, but it is easy to 
generate a proximate optimum.

● The (#ant + #channels) factors are stored as 
floats, along with the quantized values



  

Visibility quantization
● Quantization is “rounding” a value to a nearby 

quantity that can be represented with fewer 
bits.

● Normalized visibilities are ~pure Gaussian 
distributed noise values.

● Optimize the quantization: make smaller errors 
near 0, because we have many more “small” 
values



  

Visibility quantization
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● Larger values → larger 
quantization errors

● Avoid bias by “dithering”:
by chance select the 2nd 
closest quantization value

● Comparable with adding 
uniformly distributed noise



  

Visibility quantization
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Fig. : A quantization example using the Gaussian­optimized least­squares quantization scheme with dithering to quantize a sinc 
function. 4­bit quantization and a single scaling factor were used. Left plot: result of encoding and decoding. Because the quanti­ 
zation is optimized for Gaussian distributed values, the quantization steps are smaller near zero. Central and right plot: average of 
3 and 100 times encoding and decoding respectively.



  

Result: 8-bit compression

Uncompressed
Compressed

 to 8 bits
(no visual difference)

Difference
(Unstructured noise)

Rms of 400 microJy

Test set: LOFAR 3c196
4 s / 36 kHz vis resolution
Calibrated after compression



  

Result: 2 bit (!!) compression

Fig. 5: Demonstration of added 2­bit compression noise using LOFAR test set C. Left image: Results of calibration, 3c196 sub­ 
traction and imaging without compression. Centre image: Same, but before processing the visibilities were compressed using the 
2­bit quantization scheme (16× compression) with the maximized truncated Gaussian distribution, truncated at 2.5σ. Right image:  
Difference between left and centre images. While the added compression noise dominates the noise in the image, the compression  
has not affected the sources and the added noise is unstructured.

● 2-bit compression: maybe not a good idea
● ...but possible for very high time/freq res
● Added noise is still random unstructured 

noise, sources have the right flux.



  

Results
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Test set C (LOFAR 4 s / 36 kHz, calibrator, before cal.) 
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Gray dashed line: Stokes V noise level



  

Results

9.5

10

10.5

11

11.5

12

2 4 6 8 10 12 14 16

Im
ag

e 
R

M
S 

(m
Jy

)

Nr. of bits 

Test set A (LOFAR 4 s / 36 kHz) 

Gauss. (not maximized)
Gaussian

Uniform
Student T

Trunc. Gaus. 1.5
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

80

90

100

110

120

130

140

150

160

170

180

2 4 6 8 10 12 14 16

Im
ag

e 
R

M
S 

(m
Jy

)

Nr. of bits 

Test set D (MWA 4 s / 80 kHz) 

Gauss. (not maximized)
Gaussian

Uniform
Student T

Trunc. Gaus. 1.5
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

● Approx. no added noise ≥ 6 bits
● data=Gaussian not always best assumption
● Assuming a truncated distribution is better

(note that this does not imply the data is 
truncated)



  

Compression factor
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Implementation

● Casacore has a transparent system 
allowing “storage managers”

● I’ve implemented a storage manager doing 
compression on the fly

● Once a storage manager of an MS is 
changed, it is smaller, but still compatible 
with all tools (casa, ndppp, wsclean, ...)



  

Implementation

● The storage manager is called

The dynamical statistical compression
 storage manager



  

Implementation

● The storage manager is called

The dynamical statistical compression
 storage manager

so in short

The Dysco storage
manager (dyscostman)



  

Results: computational 
performance

● Decompression is fast
– Single table lookup

– IO is the bottleneck

– reading+decompression is faster than 
reading the full data

● Compression is slower
– Binary dictionary search, multi-threaded

– On spinning disks, faster than full write

– On fast SSD, can be slightly slower



  

Applications
● Transparent compression with a factor 4 possible 

for LOFAR observations

● Best to apply on noisy data

– LOFAR data with 36 kHz, 4 s seems always 
noisy enough for 4x compression

● Best to apply after flagging to remove outliers that 
add extra noise

Raw data → NDPPP → Compressed set → calibrate

● Fine for uncorrected, corrected and model data, as 
long as resolution is high. Uncorrected makes 
most sense.

● Auto-correlations are currently not preserved



  

Any questions?
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