LOFAR FACET CALIBRATION

Reinout van Weeren Harvard-Smithsonian Center for Astrophysics

Wendy Williams, Martin Hardcastle, Pepe Sabater, Tim Shimwell, Facet Calibration Workshop Participants

OVERVIEW

- Introduction
- Initial calibration
- Direction dependent calibration

This talk

Achieving "Tier-I type" depth and resolution

- resolution : ~ 5 arcsec
- depth: $\sim 100 \, \mu$ Jy beam⁻¹ (\sim thermal noise)

This talk

Achieving "Tier-I type" depth and resolution

- resolution : ~ 5 arcsec
- depth: ~ 100μ Jy beam⁻¹ (~ thermal noise)

Directional Dependent Calibration

Directional Dependent Calibration: Why?

Beam model not accurately known

lonosphere

I Before facet calibration

- Remove the clocks offsets
- Transfer the amplitude scale
- Remove XX and YY phase offset

Clock offsets

phase = $(TEC/v)+(clock\times v)$

Amplitude transfer

∝ frequency

XX-YY phase offsets

Target field calibration

- Standard gain calibration
 - Use GSM model (optional selfcal)
 - External model (GMRT)
- Done with 10 SB (=2 MHz) blocks

20 arcsec x 20 arcsec noise ~ mJy/beam

2 Direction Dependent Effects (DDEs)

- Degrees of freedom vs number of parameters solved for
- Relevant timescales:
 - ionosphere: 5-20 sec (Stokes I phases, I/V dependence)
 - beam: 5-20 min (XX and YY amplitudes and phases)

Assumptions

- Station beams vary slowly over time and frequency
- Phase
 ~ (TEC/frequency) + (clock×frequency)
- Both ionosphere and beam errors vary slow across the FoV

FACET CALIBRATION

- Subtract all sources from data
- Define facet centers

- Add back central source(s) defining facet
- Phase shift + average
- DDE self-calibration Cycle
- Add back all sources in facet
- Correct with solutions
- Image
- Subtract updated facet model with solutions

loop over facet

FACET LAYOUT

• 0.5 + Jy of flux

DDE SELF-CALIBRATION CYCLE (PER FACET)

takes care of spectral index across the band

- Nterms > I option
- Automatic clean masking
- slow and fast timescale calibration
- Multi-scale clean option
- DDE selfcalibration works on phase shifted frequency averaged data

Small FoV → no bandwidth smearing

limit set by ionosphere

- 2 MHz frequency averaging
- No time averaging

DDE CALIBRATION

CYCLE (PER FACET)

TEC+SCphase

- Solving for various effects on different timescales
 - I.TEC → 10-20 seconds (ionosphere)
 - 2. Gains → 5-20 min (beam)
- Need to iterate between I and 2

Gain (phase)

- This makes the calibration scheme "look" complex
- Slow convergence due to poor instantaneous uv-coverage (scheme needs to be repeated)

Gain (amp)

solution for one direction

FACET IMAGING

 Assume DDE solutions at the facet center apply to the full facet

rest of facet contains fainter sources

Facet still small w.r.t. full
FoV

phaseshift + average, but less averaging than compared to the DDE selfcal cycle as imaged area is larger now

- Imaging + Masking
 - wsclean (A. Offringa) / casapy
- FFT subtract on "full" resolution data

FACET IMAGING

facet boundary

clean mask

FACET IMAGING

facet boundary

clean mask

AFTER 4 DDE CYCLES

AFTER 4 DDE CYCLES

AFTER ~40 DDE CALIBRATORS

Primary beam correction

 Take the average primary beam (computed by awimager) and divide

AFTER ~40 DDE CALIBRATORS

Primary beam correction

• Take the average primary beam (computed by awimager) and divide

FWHM 3.5 degr

FLUXSCALE

Bootes field (Wendy Willams)

ONGOING & FUTURE WORK

- Tier-2 depth (optimistic...)
- Tier-3 depth?
- Amp+phase screens
- Stefcal + time-correlation
- All-sky issues: Automatization
 - User interaction
 - Calibration stability
 - Computing power (probably doable...)
- LBA

CODE

- Development version (Reinout, Wendy, Martin, Pepe)
 - Experimental options

https://github.com/tammojan/facet-calibration/

Tested on ~15+ fields (by ~10 users)

- low-DEC
- bright source in FoV (3C295)
- complex diffuse emission (10-15 arcmin in size)
- deep field(s)
- field close (8 degr) to CasA
- FACTOR (CITT version, David Rafferty)
 - Code clean up
 - More parallelization

Pipeline/user friendly

https://github.com/revoltek/factor

