Ionospheric Calibration with SPAM

Huib Intema Leiden Observatory

2nd MSSS meeting

SPAM overview

- Source <u>Peeling & Atmospheric Modeling</u>
- Ionospheric calibration & imaging software
- Determines direction-dependent phase corrections
- Applies corrections while imaging & deconvolving
- Applicable to both compact and extended arrays
- Applicable to varying ionospheric conditions

Can SPAM approach work for MS³?

In principle YES

 SPAM calibration has improved the image quality of 74 MHz VLA-A data (35 km, 1.5 MHz BW) and 150 MHz GMRT data (30 km, 6 MHz BW) as compared to self-cal. and field-based cal.

♦ But...

- No absolute calibration accuracy available
- DR in applications limited to ~10³
- Many simplifying assumptions
- Off-line processing
- LOFAR calibration problem is more complex (e.g. multiple variable complex beams, large BWs)

SPAM recipe (à la Noordam)

- Instrumental phase calibration
- Initial (self-)calibration and sky model
- Subtraction of outlier sources from UV data (optional peeling)
- Major calibration & imaging loop:
 - Subtraction of FoV sky model from UV data
 - Peeling of apparently bright FoV sources
 - Fitting of ionosphere model to peeling solutions
 - Application of ionosphere model during facet-based imaging & deconvolution

SPAM simplifying assumptions

Ion. phase corruptions occur in thin layer at fixed height

- Ion. phase corruptions vary smoothly with viewing direction
- Observation integration time short enough to sample phase change rates properly
- Observation bandwidth small enough to neglect ionospheric wave dispersion
- Antennas/stations are sensitive enough to find several calibrators within target FoV
- Instrumental gains are constant in time and viewing direction throughout the observing run
- Ionospheric conditions are such that self-calibration is able to produce an initial calibration and sky model
- Processing is done on stokes I only

- Estimation of time-constant instrumental phases $\tilde{\phi}_i^{instr} = \langle (\phi_{in}^{cal} \tilde{\phi}_{in}^{ion}) \mod 2\pi \rangle_n$
- Estimation of phase ambiguities $\tilde{\phi}_{in}^{ambig} = 2\pi \operatorname{round}([\tilde{\phi}_{i}^{instr} - \tilde{\phi}_{in}^{ion} - \phi_{in}^{cal}]/2\pi)$
- Fit of time-varying ionospheric phase gradient

$$\chi_n^2 = \sum_i \left[(\phi_{in}^{cal} - \widetilde{\phi}_i^{instr} + \widetilde{\phi}_{in}^{ambig}) - \underbrace{\vec{g}_n \cdot (\vec{x}_i - \vec{x}_r)}_{\widetilde{\phi}_{in}^{ion}} \right]$$

Peeling

Peeling solutions are indirect measurements of antenna-based ionospheric phase errors

Multiple peelings (self-cal's) on FoV sources

 $\phi_{ikn}^{peel} = \phi_{ikn}^{ion} - \phi_{rkn}^{ion} - \phi_{ikn}^{ambig}$

External astrometric reference grid needed (NVSS, ...)

Minimize contamination

- Subtraction of best sky model using best calibration
- Shortest baselines excluded from calibration

Trade-off between #peeled sources and time-resolution

Variable solution interval per source + spline interpolation

Ionosphere model (1)

Propagation "delay" causes phase error

$$\phi^{ion} \approx \frac{e^2}{4\pi\varepsilon_0 m v} \int n_e \, dl$$

Interferometer measures differential phase error

• Turbulent behaviour on short spatial scales $D_{\phi}(r) = D_{\phi}(|\vec{r}|) = \left\langle [\phi(\vec{x}) - \phi(\vec{x} + \vec{r})]^2 \right\rangle_{\vec{x}} = (r/r_0)^{\gamma}$

Kolmogorov turbulence at ~200 km height (?)

 If dominant fluctuations occur in limited height range, a phase screen approach is justified

lonosphere model (2)

Ionosphere model (3)

Independent phase screen per time stamp

Airmass dependence

$$\phi^{ion}(\vec{p}_{ik},\zeta_{ik}) = \phi^{ion}(\vec{p}_{ik}) / \cos(\zeta_{ik})$$

Discrete Karhunen-Loeve transform (PCA)

$$\mathbf{D}_{\phi\phi} = \{ (| \vec{p}_{ik} - \vec{p}_{i'k'} |)^{\gamma} \}$$

$$\mathbf{C}_{\phi\phi} = [\operatorname{diag}(\mathbf{1}_{P}) - \frac{1}{P} \mathbf{1}_{P} \mathbf{1}_{P}^{\mathrm{T}}] [-\frac{1}{2} \mathbf{D}_{\phi\phi}] [\operatorname{diag}(\mathbf{1}_{P}) - \frac{1}{P} \mathbf{1}_{P} \mathbf{1}_{P}^{\mathrm{T}}]$$

$$\mathbf{C}_{\phi\phi} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}} \approx \widetilde{\mathbf{U}} \widetilde{\mathbf{\Lambda}} \widetilde{\mathbf{U}}^{\mathrm{T}}$$

$$\boldsymbol{\varphi} = \{ \phi^{ion}(\vec{p}_{ik}) \} \approx \widetilde{\mathbf{U}} \mathbf{q}$$

Ionosphere model (4)

Find model parameters q by minimizing

 $\chi^{2} = \sum_{k} \sum_{i} \sum_{j>i} \left[\phi_{ik}^{peel} - \phi_{jk}^{peel} \right] - \left[\phi^{ion}(\vec{p}_{ik}, \zeta_{ik}) - \phi^{ion}(\vec{p}_{jk}, \zeta_{jk}) \right] \mod 2\pi \left|^{2}$

Initial guess from overall gradient fit

Interpolation to arbitrary pierce points

$$\mathbf{D}_{\hat{\phi}\phi} = \{ (|\vec{p}_{i\hat{k}} - \vec{p}_{i'k'}|)^{\gamma} \}$$

$$\mathbf{C}_{\hat{\phi}\phi} = ([-\frac{1}{2}\mathbf{D}_{\hat{\phi}\phi}] - [\frac{1}{P}\mathbf{1}_{\hat{P}}\mathbf{1}_{P}^{\mathrm{T}}][-\frac{1}{2}\mathbf{D}_{\phi\phi}])[\mathrm{diag}(\mathbf{1}) - \frac{1}{P}\mathbf{1}_{P}\mathbf{1}_{P}^{\mathrm{T}}]$$

$$\mathbf{C}_{\phi\phi}^{-1} = \mathbf{U}\mathbf{\Lambda}^{-1}\mathbf{U}^{\mathrm{T}} \approx \widetilde{\mathbf{U}}\widetilde{\mathbf{\Lambda}}^{-1}\widetilde{\mathbf{U}}^{\mathrm{T}}$$

$$\hat{\mathbf{\phi}} = \{\phi^{ion}(\vec{p}_{i\hat{k}})\} \approx \mathbf{C}_{\hat{\phi}\phi}\mathbf{C}_{\phi\phi}^{-1}\widetilde{\mathbf{U}}\mathbf{q}$$

Ionosphere model (5)

EXAMPLE

Single time instance model fit to peeling solutions of VLA-AnB towards 7 sources

Phase comparison

EXAMPLE

Time sequences of phase solutions from different calibration schemes on 5.7 km VLA E28-W20 baseline

Imaging & deconvolution (1)

 No single correcting operation possible in visibility or image plane before/after imaging

- Integration into facet-based wide-field imaging
- Interpolate ion. model to each facet center
- Adjusted Cotton-Schwab major CLEAN cycle $I_{\hat{k}}^{res} = \operatorname{FT}[\{V_{ijn}^{res}\}] \rightarrow I_{\hat{k}}^{res} = \operatorname{FT}[\{g_{i\hat{k}n}g_{j\hat{k}n}^{+}V_{ijn}^{res}\}]$ $V_{ijn}^{res} - \operatorname{DFT}[\Delta I_{\hat{k}}^{mdl}]_{ij} \rightarrow V_{ijn}^{res} - (g_{i\hat{k}n}g_{j\hat{k}n}^{+})^{-1}\operatorname{DFT}[\Delta I_{\hat{k}}^{mdl}]_{ij}$
- Optional use of raw peeling solutions for facets centered on the peeled FoV sources

Imaging & deconvolution (2)

EXAMPLE 74 MHz VLA-A 3 hrs on NGC 4565

 -0.1
 -0.08
 -0.06
 -0.02
 0
 0.02
 0.04
 0.06
 0.08
 0.1

 field-based calibration (2 min)
 self-calibration (10 sec)
 SPAM (10 sec)

SPAM has 5-15% higher peak fluxes down to the lowest fluxes (no Wieringa effect!)

Comparison existing calibration schemes

self-calibration	field-based calibration (Cotton et al. 2004)	SPAM (Intema et al. in prep.)
 antenna gain phase fixed with direction 	 antenna gain phase varies with direction 	 antenna gain phase varies with direction
 no ionospheric model 	 measures phase gradients over array 	 meas. higher order phase over array
	 phase screen at infinite height 	 phase screen at fixed height
	 low order Zernike base functions 	 higher order KL base "functions"
 Shortest possible time resolution 	 1-2 minutes time resolution 	 Shortest possible time resolution

Areas of possible improvement

Fine-tuning of SPAM processing parameters

- Include more complex height dependence
 - Multi-layer
- Include correlated time-behaviour
 - Kalman filtering
- Include large-scale refraction effects (most prominent at low elevations)