
Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-1--LOFAR Project

©
ASTRON 2007

Monitor And Control
Architectural Design Document

Verified:
Name Signature Date Rev.nr.

Accepted:
Work Package Manager System Engineering Manager Program Manager
Ruud Overeem

Andre Gunst

Jan Reitsma

© ASTRON 2007
All rights are reserved. Reproduction in whole or in part is
prohibited without written consent of the copyright owner.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-2--LOFAR Project

©
ASTRON 2007

Distribution list:

Group: For Information:
ASTRON

Document history:

Revision Date Chapter / Page Modification / Change

1.0 29 September, 2001 - Creation

2.0 11 October, 2002 All Special issue for SSSR

2.1 25 November, 2002 All Major rework

2.2 18 February, 2003 All Added comments R. Kleefman

2.3 20 February, 2003 GCF layer Major update

2.4 21 February, 2003 All Prepare for internal review

2.5 12 March, 2003 All Added review comments MAC-team.

2.6 21 October, 2003 GCF storage layer Added chapters 5.5.1 and 5.5.2

2.7 4 January, 2004 GCF Added integration PVSS.

3.0 25 March, 2007 All Rewrote document to reflect current design
ideas.

3.1 30 March 2007 All Update after internal review.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-3--LOFAR Project

©
ASTRON 2007

Abstract

Doing an observation with the LOFAR telescope requires that several thousand programs work precisely
together. Not only are these programs distributed over almost hundred physical different locations, they also
run on different hardware platforms. Robust control is necessary to guarantee correct cooperation between
these programs.

The Monitor And Control package is responsible for the coordination between all these programs and
reporting the problems to the operator of the instrument. The MAC package offers the operator full insight in
the state of all hardware- and software parts of the instruments and allows the operator to control the
instrument.

This document describes the architectural concepts and design choices of the MAC package1. It shows how
the package is able to control an instrument as complex as LOFAR, how the package is made robust to
minimize failures and how the operator can interfere with the observations.

1 The MAC software was originally designed and developed by a third party. The GCF framework they
delivered turned out to be very good and is still in use after some minor changes. The controller concept
turned out to be too unstable and unusable for production software. The controller concept was redesigned
and rebuild in 2006. This document describes this new concept.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-4--LOFAR Project

©
ASTRON 2007

Table of contents:
1 Introduction.. 5

1.1 Purpose of this document... 5
1.2 LOFAR subsystem overview .. 5
1.3 Document reference ... 6
1.4 Definitions ... 6
1.5 Acronyms and Abbreviations.. 6
1.6 Document overview .. 7

2 Introduction MAC architecture... 8
2.1 MAC hardware architecture.. 10
2.2 MAC software architecture ... 11
2.3 MAC control architecture .. 12

3 The SCADA package PVSS ... 13
3.1 Deployment of PVSS in MAC ... 13
3.2 Database setup and maintenance.. 14
3.3 Synchronization with SAS .. 14
3.4 Maintenance sessions of the database .. 14
3.5 Runtime maintenance of the LOFAR instrument.. 14

4 Generic Control Framework .. 16
4.1 Layer architecture ... 16
4.2 Property concept... 17
4.3 Datapoints and applications ... 18
4.4 Datapoint hierarchy... 20

5 Monitor and Control concept ... 22
5.1 Monitor and Control chains... 23
5.2 Main control over TCP/IP ... 23
5.3 Monitoring via PVSS... 24
5.4 Controller template ... 24
5.5 Control commands.. 25

6 Subsystem relations .. 27
6.1 SAS... 27
6.2 SHM.. 28
6.3 Station software .. 28
6.4 WAN.. 29
6.5 CEP... 29

Appendix A: PVSS manual abstract .. 31
Appendix B: Requirements compliance... 38

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-5--LOFAR Project

©
ASTRON 2007

1 Introduction

1.1 Purpose of this document

When designing a Monitor And Control package three major design issues come in mind: distributed, robust
and (near) real-time. This document gives an answer how these issues are solved in the MAC package. The
document starts with explaining the lower- and mid-layers of MAC. After the reader is familiar with some
terms and mechanisms the top-layer of MAC, containing the controllers and monitor programs, is described.

1.2 LOFAR subsystem overview

Because the Monitor and Control subsystem manages the whole LOFAR telescope it has interactions with all
other subsystems of LOFAR. The functional block diagram below shows the environment of the MAC
subsystem.

Figure 1: System overview of the environment of the MAC package.

The SAS (Specification, Administration and Scheduling) subsystem contains the start-up parameters for
every observation-related program of LOFAR. It is used for specifying observations and for storing runtime
metadata of the observations. The Station consists of the receivers, hardware drivers and signal processing
(beam-forming) components. The CEP (central processing) subsystem provides further signal processing
and contains functionality for image-, pulsar post-processing and much more.

The Monitoring and control segment (MAC) contains the monitoring and control function. This function
ensures that all parts of the LOFAR system work together coherently and failures in the hardware, software
of signal transport are detected. MAC supports transparent access to all parts of the LOFAR system to the
operators.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-6--LOFAR Project

©
ASTRON 2007

1.3 Document reference
1. LOFAR Software architecture (LOFAR-ASTRON-SDD-049)

Author: K. v.d. Schaaf; dd. 2006-07-07; Rev. 1.0
2. LOFAR, System Requirement Specification (LOFAR-ASTRON-SRS-001)

Authors: M. van Haarlem, H. Kollen; dd. 2007-03-28; Rev. 4.1
3. Reflections of the MAC-SAS interface meetings (LOFAR-ASTRON-SER-005)

Authors: A. van der Hoeven, E. Lawerman, H. de Wolf; dd. 2002-02-15; Rev. 1.0
4. SAS, Architectural Design Document (LOFAR-ASTRON-SDD-041)

Authors: R. Overeem, dd. 2007-03-30; Rev. 1.2
5. GCF, Detail Design Document (LOFAR-ASTRON-SDD-007)

Author: T. Muller; dd. 2003-09-19; Rev. 5.2

1.4 Definitions
Term Description
Alert An event that could not be solved by the MAC controllers and that is passed to the

operator for human intervention.
Controller Process that controls a part of the instrument in order to perform an observation.
Control Database The real-time database on a control unit.
Control Unit A computer containing an instance of a control database.
Metadata Information that is relevant for processing the received signal data.
Monitor data Status information of the instrument that is not relevant for processing the received

signal data.
Observation A description that specifies a set of measurements and subsequent processing steps

to be made by the telescope.
Operator A user that verifies the execution of the observations. He is allowed to modify the

instrument in order to get better observation results.
Monitor process A process that monitors hardware and/or software and stores the relevant information

in a database.
Property A Property represents a status-field of the instrument or a status-field of a process. It

can be used for monitor and control purposes.
Property Set A C++ instance of a property.
Terminal Unit A computer that contains a user interface program that can connect to a control unit. It

allows the user to monitor and control the programs that are connected to the same
control database.

1.5 Acronyms and Abbreviations
ACC Application Configuration and (lifecycle) Control
API Application Programming Interface
CEP CEntral Processing
CCU Coordination Control Unit
CPU Central Processing Unit
CU Control Unit
DSP Digital Signal Processor
FPGA Field Programmable Gate Array
HMI Human-Machine Interface
MAC Monitoring And Control
MCU Main Control Unit
PA Property Agent
PIC Physical Instrument Components
PML Property Management Layer

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-7--LOFAR Project

©
ASTRON 2007

PVSS Prozessvisualisierungs- und Steuerungs-System
RFI Radio Frequency Interference
RTC RealTime Control
SAS Specification, Administration And Scheduling
SCADA Supervisory Control And Data Acquisition
SCU Station Control Unit
SHM System Health Management
SNMP Simple Network Management Protocol
STS STation Subsystem
TU Terminal Unit
VLAN Virtual Local Area Network
WAN Wide Area Network

1.6 Document overview
The document is organized in the following way:
• Chapter 2 gives an overview of several views on the MAC architecture.
• Chapter 3 describes how this package is used in the MAC package.
• The Generic Control Framework that forms the basis of MAC is described in chapter 4.
• Chapter 5 zooms in on the concept of 'monitor' and 'control'.
• Chapter 6 describes the (interface) relations MAC has with all other subsystems.

• In Appendix A an abstract of the PVSS manual is given to give the reader an idea of the possibilities of

this SCADA package.
• Appendix B summarizes the compliancy of MAC with the requirements.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-8--LOFAR Project

©
ASTRON 2007

2 Introduction MAC architecture

The function of the Monitor and Control package can be symbolized in one picture:

Figure 2: Functional view on the MAC package.

MAC contains hierarchical chains of controllers that are used to control the LOFAR instrument and software.
These controllers, drivers and applications can be deployed on different computers. Each controller has his
own set of properties. The properties are addressed in a global name-space so that every controller can also
access the properties of other controllers and applications

Properties can be used to export the internal state of a control application to the outside world or to change
the internal settings of a control application. But the properties are of course pre-eminently suitable for
registering the status of the LOFAR instrument.

On top of the controller chains are User Interface services as trends, alerts, archiving, access-control, HMI
and others. These facilities are used by the User Interface Applications to implement their tasks.

It is important to notice that these services have properties as input. It is possible to connect a service to a
certain property. As soon as the property changed, the connected service is updated (re-calculated).

trend alarm archive others:
 - access ctrl
 - reports

Controller

p p p c c c

Controller

p p p c c c

Driver Application

LOFAR hardware

Driver Application

Controller

p p p c c c

MAC

p = property
c = command

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-9--LOFAR Project

©
ASTRON 2007

When we look at the MAC package in a more detailed way we can distinguish the following modules in and
around the MAC package:

Figure 2: Module view of the MAC package environment.

Platform layer: LOFAR instrument hardware such as antennas, receptors, CPU’s, DSP’s, FPGA’s, network
transport equipment and Linux clusters.

RTC layer: direct (real-time) control of the LOFAR instrument. This layer can be seen as an “embedded
software” layer, in which very instrument specific control software is implemented. Software in this layer has
a very tight coupling with the instrument. Platform functionality is controlled in the RTC layer.

Application Layer: LOFAR application software. This software is used for the analysis and processing of
measurement data. Example application software: beam forming, RFI analysis and mitigation algorithms,
self-calibration algorithms, data production software. There are no WAN applications yet.

Subsystem control layer: in this layer, (non-real-time) subsystem control functionality is implemented
(control of platform and application functions). Also supervisory control is implemented (monitoring and
control functionality which is directly related to operator interaction).

System control layer: this layer supports system control activities: control of the system platform hardware
and control of system wide applications (called observations). Also supervisory control functionality is
available here. This layer supports transparent access to all application and platform functions of the whole
LOFAR system.

The system control and subsystem control layers are part of the MAC system. In this document, the
architectural design of these layers is described. The following paragraphs start with an introduction of the
various views on the MAC architecture.

Central Processor Wide Area Network Station subsystem

CEP Control

CEP applications

CEP platform

SHM

WAN Control

WAN applications

WAN platform

System Control

Station Control

Station applications

Station RTC

Station platform Platform layer

RTC layer

Application layer

Subsystem control layer

System control layer

SAS

MAC

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-10--LOFAR Project

©
ASTRON 2007

2.1 MAC hardware architecture

The figure below shows the MAC hardware architecture.

Figure 3: Top-view of the MAC hardware architecture.

To control the LOFAR instrument MAC uses many Control Units that are connected by various networks.
These Control Units and networks are described in the following paragraphs.

2.1.1 Control Units

A Control Unit is a PC containing an instance of a control database. The contents of the database and the
functions of the CU depend on the local control tasks that must be managed. Every type of CU has got its
own name that reflects its local tasks.

Stations Control Units: All the station-software is located on a Station Control Unit (SCU)2. The main task
of the SCU is controlling the dedicated LOFAR hardware. MAC uses the drivers of the RTC software for this
task. Controllers running on a station are for example StationControl, BeamControl, CalibrationControl, etc.

Coordinating Control Units: A CCU coordinates the activities of a group of SCU’s. It has to be determined
how the grouping of the SCU’s will be done: per ring (core, inner-, outer-ring) or per arm. The main reason
for using CCU’s is spreading the load on the control-databases. There will be about 100 LOFAR stations and
connecting 100 station-databases to 1 central database will probably overload the central control database.

WAN Control Unit: On the WAN Control Unit all information about the WAN is collected. This is data like
average load on lines, status off the lines, status of the switches, etc. This information is collected at regular
bases using the SNMP interfaces of the network components.

2 In other documentation the SCU is often still called LCU (Local Control Unit). Since ‘Local’ is an ambiguous
term the name Station Control Unit is used in the more recent MAC documents.

Station LAN Station LAN Station LAN

device(s) device(s) device(s)

SCU SCU SCU

CCUx WANCU

MCU

WAN

Central Control Network

CEPCU
TU

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-11--LOFAR Project

©
ASTRON 2007

CEP Control Unit: On this machine the control of the data-processing applications is done. The applications
can be divided into the online applications that must keep-up with the life data-stream and the offline
applications that are less time-bound. It is likely that both types of applications can be managed with one
control unit.

Main Control Unit(s): In the database on the Main Control Unit all control databases come together. This is
typically the place where the operators and other LOFAR users connect to with their Terminal Unit. Once
their Terminal Unit is connected to this database they are able to monitor and control the whole LOFAR
instrument.

Terminal Unit: A Terminal Unit is a machine that contains a User Interface program (called Navigator) that
allows the user to monitor and control the programs that are connected to the same control database. A TU
can be plugged in on any network of LOFAR but the scope of the monitor and control rights will be limited to
that section of LOFAR the TU is connected to.

Hardware requirements
All Control Units can be built with industrial PC’s running Linux and a SCADA package. The requirements of
the various CU’s will be different and depend on the (peak) load of the software. For the TU’s a machine with
Windows is required.

2.1.2 Networks

Station LAN: On the LOFAR stations the instrument devices are connected to the SCU through an Ethernet-
switch. To separate the several data-streams VLANs can be created on this switch.

Wide Area Network: The LOFAR stations are connected to the central site via a WAN that is based on a
private network infrastructure. This WAN is primary used to transport the immense amount of measurement-
data from the stations to CEP but has enough bandwidth left to use it as a control network too.

Central Control Network: Control network located at the central site. It will probably be implemented as a
VLAN to assure safety and bandwidth.

2.2 MAC software architecture

All the MAC software will be build using the same software architecture:

Figure 4: Top-view of the MAC software architecture.

OS and Network services: Operating system layer (Linux, NT and others) and specific network services
(e.g. multicast support, IPv4 services).

LOFAR Control Application

Control Database

Generic Control Framework

OS and network services

Chapter 5.

Chapters 3 and 3.1.

Chapter 4.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-12--LOFAR Project

©
ASTRON 2007

Control Database: All MAC controllers make use of a distributed control database. This database is used
for storing the monitored values, passing control values and alerting the operator(s). A more generic name
for such a control database is a SCADA package. (Supervisory Control And Data Acquisition). For MAC the
SCADA package PVSS from the company ETM will be used.

Generic Control Framework: Application independent framework for building real-time applications like
controllers. This layer contains no LOFAR specific concepts. The Generic Control Framework is not only
used by MAC software but parts of it are also used by the RTC software. The GCF is described in more
detail in chapter 4.

LOFAR Control Application: Specific Monitoring and Control software for the LOFAR system. The Control
Applications (or simply Controllers) are running on many machines since they control all (signal data related)
programs. The Controllers are described in chapter 5.

2.3 MAC control architecture

MAC uses a hierarchical control chain to be able to control the LOFAR instrument as a whole but also every
detail of the instrument. This hierarchy can be divided into several logical layers :

Figure 5: Top-view of the MAC control architecture.

Global System Operations: Operations that have a full system view. In this layer the MAC scheduler is
located. The MAC scheduler receives schedules from the Scheduling Adminitration and Specification
subsystem. The MAC scheduler executes this schedule: it start and stops observations. Platform
Management activities are also scheduled here (e.g. maintenance tasks).

Observation Control: Control and monitoring of observations. In this layer, observations are defined,
controlled and evaluated. Multiple parallel observations can be controlled here.

Partition Control: Implementation and control of partitions. In this layer partitions, like subarrays, are
defined and implemented. Multiple parallel partitions can be activated here.

Physical Instrument Control: Control of the physical instrument. Platform management tasks are
implemented here (e.g. power control, start/stop/reset control, software distribution, …).

Device Control: Control of the devices. Device drivers, connection drivers and Device servers are located
here.

Global System Operations

Observation Control

Partition Control

Physical Instrument Control

Device Control

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-13--LOFAR Project

©
ASTRON 2007

3 The SCADA package PVSS

One of the major elements of the MAC package is the SCADA package that provides a real time distributed
database environment. For MAC PVSS is chosen to fulfill this task. Although PVSS is wrapped in a SCADA
abstraction layer to make the SCADA interface more generic it is important to know what facilities PVSS
offers to MAC. Readers that are not familiar with SCADA packages are advised to read Appendix A first.

This chapter describes how PVSS is used within MAC.

3.1 Deployment of PVSS in MAC

Applying the available managers of PVSS to the various Control Units gives the following picture:

Figure 6: Deployment of PVSS modules in MAC.

Since all control units are more or less the same the deployment of PVSS can be the same on every control
unit. Each control unit should get:
 - An Event Manager which is the kernel of the PVSS system.
 - A DataBase manager for saving data-changes and making reports.
 - A Control manager that makes it possible to run PVSS scripts as independent tasks.
 - A Value Archive to store history of data changes.
 - A Distribution manager to connect the PVSS databases of different control units to each other.

The Terminal Unit where the User Interface Application is running only needs the User Interface module.
This keeps the installation on these TU's simple and has the benefit that no license is required on these
machines.

TU

UI

xCU
Ctrl

EV

DB

Dist

VA

xCU
Ctrl

EV

DB

Dist

VA

1..n

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-14--LOFAR Project

©
ASTRON 2007

3.2 Database setup and maintenance

Usually all database maintenance can be performed by the standard PVSS tools such as the PARA module
and the ASCII manager. These tools are sufficient to perform maintenance on the PVSS databases when
there are no relations with other languages or systems. However, in our case we have to deal with C++
layers that are built on top of PVSS and a SAS database that also wants to know the status of the LOFAR
hardware. Therefore another approach is chosen to maintain the PVSS contents.

Every controller needs to know the names of the properties he uses and of the (shared) properties of other
controllers. The names should of course match exactly with the names of the datapoints in the database.
The only way to guarantee this is that the C++ names and the PVSS names origin from the same source.

With some very simple tables like station-names, number of RSPboards per station, cluster-names, number
of nodes per cluster, etc it is possible to write a script that generates header-files for the C++ code and
datapointtype- and datapoint- files for the PVSS ASCII manager that contain all the information that is
needed to create PVSS databases that are consistent with the C++ headerfiles.

During the development phase of LOFAR this solution will do fine, there is no difficulty in recreating the
PVSS databases since they do not contain important data. For final LOFAR however we need some extra
tooling to guarantee that only the differences between the current database and the new database are
applied to the database.

The ASCII manager of PVSS will do the trick in this case. With the ASCII manager an export can be made of
the current datapointtypes and datapoints. These files can be compared with the new generated files and a
insert- and delete-file can be made. Processing these files with the ASCII manager will add the new parts to
the database and delete the obsolete parts.

3.3 Synchronization with SAS
The scheduler of SAS also needs to know what hardware elements are currently in the physical instrument.
It is not necessary that this is the actual state of the physical instrument since the scheduling is done in
advance and there will always be a certain average percentage of the system unavailable. It is therefore
sufficient to update the SAS database only when the PVSS database is updated.

In SAS there is a separate PIC (Physical Instrument Components) table that can store the hardware
configurations. These configurations, called PIC trees, can be created from an export-file from the ASCII
manager from PVSS (or the datapoint-files created by the maintenance script). Several PIC trees can exist in
SAS but only one PIC tree can be the 'current' tree.

3.4 Maintenance sessions of the database
Most programs determine during their setup how the hardware of LOFAR is configured. Deleting and adding
hardware (and the corresponding datapoints) while these programs are running will have unpredictable
results. It is therefore recommended that maintenance on the databases is done in regular (planned) periods,
e.g. the monthly maintenance sessions. During such periods no observations are running so it is save to stop
and start databases and controllers.

3.5 Runtime maintenance of the LOFAR instrument
Every hardware component that has a datapoint in the PVSS database will have a state field that can have
the following states:

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-15--LOFAR Project

©
ASTRON 2007

State Description
Off Component is switched off or is removed.
Operational Component is available for observations.
Maintenance Component can not be used for observations because maintenance will be applied.
Test Component can not be used for production observations but can be scheduled for

observation of the type 'test'. This mode will be used when testing new stations are doing
regression tests.

Suspicious The health of the component is degrading, it will not be used in future observations.
Manual intervention is needed to test or replace the device.

Broken The component is malfunctioning and needs to be replaced.

The normal state of each component will of course be 'Operational', but the System Health Management
subsystem will be able to set the state to 'suspicious' whenever it thinks the component has an abnormal
behavior. This will not interfere with the running observations but the component will not be used anymore in
future observations.
An operator or maintenance engineer can use the other states to flag the usage of the component.

Major maintenance, e.g. maintenance of station power-supplies or Ethernet-switches, that will result in 'loss'
of large(r) partitions of the instrument can be scheduled in SAS as a maintenance 'observation'. These
observation-types have the highest priority and will prevent that the real observations can use the related
part of the instrument.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-16--LOFAR Project

©
ASTRON 2007

4 Generic Control Framework

The Generic Control Framework is an application independent framework for building control applications.
This framework is a middleware layer between the LOFAR control application and the MAC hardware
architecture.

4.1 Layer architecture

The GCF consists of the following layers:

Figure 7: Logical layers of the MAC GCF.

The Generic Control Framework offers support for C++ code and for the scripting language that comes with
PVSS. The layers for C++ are true layers so the C++ programs only have access to the Task Management
module and the Property Management Layer. The layers for the user interface are relaxed so each layer can
be used in the scripting, this allows fast and easy access to the database.

The GCF C++ libraries allow the applications to access datapoints and access network ports. The classes
are designed in such a way that it is possible to design so-called reactive, event-driven applications. For
example, a task responds immediately to messages that are arrived on its connected ports and reacts
immediately to changes in (its) datapoints.

A short description of the modules is given below.

PVSS: This is the chosen package to fulfill the SCADA functionality. The current state of the instrument-
elements are stored in this database, e.g. voltage levels, temperatures, clock-settings, power-states, etc. The
database is also used to represent the status of internal control structures like beam-direction, observation
settings, actual spectral RFI mitigation and many more. Per property it is possible to configure the needed
alert-handling, archive handling, sample (trend) handling and access-control handling.

Notice that the only connection between the User Interface application and the C++ programs are the
datapoints in the PVSS database. So when a C++ program wants to communicate with the User Interface
Program, or vice versa, they have to use data-points to exchange information.

Generic
Control

Framework

Property Management Layer

Property Agent

SCADA Abstraction Layer

PVSS

 UI Framework

Abstraction and Service
Layer

Task Management

OS and network services

Drivers Controllers LOFAR User Interface

C++ code layers PVSS scripting layers

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-17--LOFAR Project

©
ASTRON 2007

4.1.1 C++ support

For C++ the following modules are defined:

Task Management: This module offers all kind of basic services as timers, TCP/IP communication, state
machines and tasks. It is only based on the services that the core OS offers, so it is independent from PVSS.
The LOFAR device drivers make use of this layer.

SCADA Abstraction Layer: This layer is a wrapper around the PVSS package. The main reasons for
building this layer are:
 - Implement extra (missing) services/features for handling control applications.
 - Create a (more) generic interface for accessing the SCADA product.
 - Loosen the dependencies with the SCADA product.

Property Agent: The PA is responsible for the synchronisation of the datapoint instances used by the C++
programs and the real datapoints in the PVSS database. To limit the number of database changes the PA
will only update those datapoints that are used by others.3

Property Management Layer: The PML is the only interface to the PVSS database for the C++ programs. It
offers functions for using PropertySets and Properties (see paragraph 4.2).

4.1.2 User Interface support

For the LOFAR User Interface the following modules are defined:

Abstraction and Service Layer: This layer simplifies the use of PVSS datapoints and makes sure the (C++)
Property Agent gets the right information to do its job by telling him which data-points the user is monitoring.

Framework: The framework implements the main functions and layout for the LOFAR User Interface, like a
hierarchical representation of the datapoints, standard alert windows, user and access management, etc.

4.2 Property concept

The core concept of GCF is the property concept. To be able to understand the design of GCF we first zoom
in on the property definitions.

Property: A property represents a status-field of the instrument or a status-field of an internal control
process. Properties can be read-only or read/write. If a read/write property cannot read its value back (for
example it is associated to a write only physical device), it cashes the last written value and returns this upon
read request.

Properties can represent values using a limited set of basic data types:
Property ::= <Name>, <Type>
Type ::= <Simple-Type> | <Complex-Type> | <Structure-Type>
Simple-Type ::= “unsigned-integer“ | “integer“ | “character“ | “boolean“ | “bit-pattern“ | “float“ | “text“ |

 “date/time“

3 Another reason for limiting the number of data-points in the PVSS is that the licenses are based on the
amount of datapoints you want to manage in your database.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-18--LOFAR Project

©
ASTRON 2007

Complex-Type ::= “text“ | “array“ | “dynamic-array“
Structure-Type ::= { <Property> }

PropertySet: An C++ instance of a property. In most cases this will be a property of the type Structure-Type.
Propertysets are used by the MAC applications but are managed by the PML and the PA. Each property of a
propertyset is mapped to a datapoint of the PVSS database.

Property type: PVSS type definition of a property.

Property tree: It is possible to configure a tree of properties. In each node of this tree, one or more
properties are available. Normally at the leafes of this tree, properties are configured which are a subset of
the controlled devices.

Property functions: a property functions converts a set of properties to a new (more abstract) set of
properties. E.g. p1,p2,p3 = f (p4,p5,p6). A property function can be a transition function or a control function.

Characteristic: static data associated with a property, including meta-data. Each property has 0..n
characteristics. The values of the characteristics are stored in the configuration database that is also part of
PVSS.
The following characteristics are possible:
 - name, description, version
 - system value range
 - user value range
 - alert handling: alert ranges can be defined.
 - default value handling: if a value is invalid, a default value can be set in various ways.
 - archiving
 - authorization: authorization level settings to check user authorizations and control user activity.

4.3 Datapoints and applications
As described in the previous chapters, the control applications (or simply Controllers) use datapoints to
exchange information. These datapoints are accessible via PropertySets that are managed by the Property
Management Layer and the Property Agent. The following picture shows these elements:

Figure 8: Datapoint usage in applications.

User Interface

Controller B

PML

Controller A

PML

ASL

DP1

DP2

DP3

myPropertySet1 ExtPropertySet1

myPropertySet2

PVSS database

DP3

DP1

Property Agent

PA SAL PASAL

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-19--LOFAR Project

©
ASTRON 2007

In the figure above, the typical usage of datapoints (property-sets) is illustrated. We see two control
applications and one user interface program. An application can own a propertyset (myPropertySet) or take a
subscription on a propertyset of another application (extPropertySet). The property sets of an application are
created in the PML layer. The property values have to pass the PA layer and the SAL layer before the values
reach the database. The PA layer of the applications is connected to the Property Agent process that runs
on every control unit. The ASL layer of the User Interface can communicate with the Property Agent process
also.

Three typical situations exists:

Situation1: MyPropertySet1 refers to datapoint 1 in the database and at least one other application is using
the datapoint. If a propertyset is used by another application the Property Agent assures that all
modifications made to the propertyset will be transported to the datapoint (and vice versa). When the
datapoint or the propertyset is changed very frequently this can slow down the related programs since they
receive a trigger for every value change.

Situation2: MyPropertySet2 refers to datapoint 2 in the database and nobody else is using this datapoint.
The Property Agent will not create a datapoint for this propertyset in the database so all the changes made
by Application B in the MyPropertySet2 object will only exist in Application B. The advantage of this
construction is a lower load on the database.

Situation3: Datapoint3 from a User Interface Application is linked to datapoint3 in the database and nobody
else is using this datapoint. When this datapoint is used for internal tasks the UIA can decide to access the
datapoint directly by calling the functions of the PVSS API. In that case the Property Agent is not informed
about the existence of the datapoint and it will not take any action. Maximum speed is assured. This situation
is drawn in the figure above.
When datapoint3 is a datapoint that the UIA will share with other applications it will access the datapoint via
the ASL. In that case the ASL informs the Property Agent about the datapoint so that other applications are
informed whenever the value is changed.

The Property Agent is a GCF task that manages the above situations. When an application creates an
instance of a myPropertySet, the PA is automatically informed about the existence of the datapoint. When an
application creates an instance of an extPropertySet, the PA will create the datapoint and make a link
between the database and the corresponding myPropertySet so that value-changes are stored in the
database.4

Note: The datapoints and propertysets described in situations above are called temporary propertysets: the
database is only updated when other applications are interested in the datapoint values. On the other hand
you sometimes want that the value changes of a propertyset are always stored in the database, regardless
of some other application is watching it. E.g. when you want to register the trend of a temperature. It that
case the applicaton can create a permanent propertyset. These sets are always linked to the datapoints of
the database.

4 The construction with the PropertyAgent is one of the last elements of the original control concept we use
nowadays. The concept of the PropertyAgent is not stable enough in its current implementation. Analysis of
the code is necessary to see if minor changes can fix the problems or that a redesign is needed,

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-20--LOFAR Project

©
ASTRON 2007

4.4 Datapoint hierarchy

The module User Interface Framework offers hierarchical representation of the datapoints. The datapoints
themselves are not hierarchical so a special naming convention is necessary to realize this. By using
underscores in the name of the datapoints this can be achieved. Each underscore starts a new level in the
hierarchical representation. The example illustrates the instrument model of a station.

Example datapoint types:
DPType station
 status [byte]
 maintenance [byte]

DPType rack
 status [byte]
 maintenance [byte]

DPType fpga
 status [byte]
 firmwareversion [string]

DPType antenna
 band [byte]
 status [byte]
 maintenance [byte]

Example datapoint instances:
S1 [station]
S1_Rack1 [rack]
S1_Rack1_FPGA1 [fpga]
S1_Rack1_FPGA1_ant1 [antenna]
S1_Rack1_FPGA1_ant2 [antenna]
S1_Rack1_FPGA2 [fpga]
S1_Rack1_FPGA2_ant1 [antenna]
S1_Rack1_FPGA2_ant2 [antenna]
S1 [station]
S1_Rack2 [rack]
S1_Rack2_FPGA1 [fpga]
S1_Rack2_FPGA1_ant1 [antenna]
S1_Rack2_FPGA1_ant2 [antenna]
S1_Rack2_FPGA2 [fpga]
S1_Rack2_FPGA2_ant1 [antenna]
S1_Rack2_FPGA2_ant2 [antenna]

These datapoints will be shown as a tree like:
- S!
 - Rack1
 + FPGA1
 - FPGA2
 + ant1
 + ant2
 + Rack2

Each ‘level’ of the tree can be folded out by clicking on the plus-sign or folded in by clicking on the min-sign.

In order to access the elements of the data points (which are the basic types) a dot is used to separate
elements from the datapoints, e.g.:
 - S1_Rack2_FPGA2_ant2.band
 - S1_Rack2.status

Notice that multiple dots can be used in case the Datapoint type contains sub-structures.

In order to access remote data points which are located on a remote database, the system name of the
remote database must be entered before the instance name of the data point.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-21--LOFAR Project

©
ASTRON 2007

The following naming convention is used for remote names:
- Data points on SCUs: SCUxx:A_B_C.
- Data points on CCUs: CCUxx:A_B_C.
- etc.

With the above naming convention, it is possible to create a containment relations. Containment relations are
perfect to describe physical structures, such as instrument models and resource models.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-22--LOFAR Project

©
ASTRON 2007

5 Monitor and Control concept

The following picture shows an example of a simplified Monitor and Control chain.

Figure 9: Schema of the Monitor and Control chains.

Main control
Optional control
Main monitoring
Optional monitoring
PVSS interconnect
Function description
Contents example

PVSS Controller

MACScheduler

SAS

MCU

Global Instrument
Model

Device Device Device

Driver Driver

Monitoring Controller

PVSS Controller

Device Device Device

SCU

temperature
weather
doorswitch
…

RSPboards

Local Instrument
Model

PVSS Controller

CCU

Partition Instrument
Model

User Interface
TU

Antennas
3,21,89 offline

1,8% antennas
unavailable

1,1% antennas
unavailable

Monitor health &
control observation

Summarize health &
control partition

Monitor station,
control observations,
check schedule
conflicts

Control hardware

Monitor hardware
and environment

Line Legend

Start observations
and update states
in SAS

1..m

1..n

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-23--LOFAR Project

©
ASTRON 2007

The Monitor and Control concept is based on the following basic rules:
1. Instrument monitoring and Instrument control are two separate chains.
2. Main control is only using TCP/IP, but control via PVSS is still possible.
3. Monitoring information and controller-states are stored in the PVSS database.
4. Controllers use a control-template that supports chains of controllers.

These rules are explained in the following paragraphs:

5.1 Monitor and Control chains
The main idea behind the separation of the monitoring and control chains is that the control chain should be
as simple and robust as possible. Monitoring of the instrument, which is a secondary task, should never
interfere with the primary task ‘control’.

The control-cycle of MAC consists of 8 states (see 5.5). Mainly during a state-switch many instrument values
might change. When instrument monitoring and instrument control would be combined into one application
the application may be so busy handling all these value changes that it cannot respond in time to new state-
changes.

Of course the controllers do use PVSS for their status information and their statistical information.

5.2 Main control over TCP/IP
To make the control chain as robust as possible the main control of the controllers is passed over TCP/IP
connections. Normally the top-controller of a control-chain passes a command to its child controllers via
TCP/IP connections. These controllers, on their turn, pass the command to their child controllers, etc. In this
way the top-controller can manage all controllers of an observation.

sd ControlChainExample

Controller A Controller C Driv er CController B

claim timer

CLAIM(...)
CLAIM(...)

command xyz

respons
CLAIM_ACK(...)

CLAIM_ACK(...)

Figure 10: Propagation of a command in a controller chain.

The top-controller uses a timer to start a command, when the timer expires it sends the command to its child
controller(s). This controller passes it to its child controller(s) until it reaches a 'leaf' controller. The 'leaf'
controller sends the right command(s) to its driver. When the driver is set the result propagates back to the
top controller.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-24--LOFAR Project

©
ASTRON 2007

There are however two exceptions to this rule: the start and stop of the observation itself (not including
preparing and release states etc) is initiated by timers in each controller separately. This has two major
advantages:
 - There is a better guarantee that the observation is started at the same time in every part of the instrument.
 - Whenever the communication with a part of the instrument is lost, the observation will not run forever.
Starting and stopping the observation via the TCP/IP connection or via PVSS still remains possible.

The controllers can also be controlled via a ‘command’ datapoint in the PVSS database. Writing the desired
state in this datapoint will have the same effect as giving the corresponding command over TCP/IP. In this
way a user who is connected to a PVSS database via his User Interface Application is able to control the
instrument also.

5.3 Monitoring via PVSS
Naturally the monitoring of the instrument is done in PVSS. The SCADA package is not only capable of
distributing the data but it can also raise alarms, calculate statistics, etc.
There are two ways to get the information in the database: Write a monitoring Application that at regular
interval questions the drivers and stores the information in the database. This is the preferred way for time-
critical drivers. Non-critical drivers, e.g. for monitoring the weather conditions, can store the information
directly in the database.

5.4 Controller template
When zooming in on a controller, three separate tasks can be distinguished:

Figure 11: Tasks of a controller.

Parent Control: This task receives the commands from the parent controller and is responsible for
maintaining the connection with the parent controller. The observation start- and stop-timer are located here.
When a controller is restarted, this task will be informed by its parent controller that it is a restart instead of a
start and it will try to resynchronise the controller specific task to the assumed state.

Controller specific task: This is the real controller task. It is different for every controller.

Child Control: The child control task is responsible for the communication with all child controllers. As soon
as the connection with one of them is lost it tries to restart the child controller. The child control task reports
the states of the child controllers to the controller specific task, this latter task has to decide what to do in
case things go wrong.

Parent Control

Child Control

Controller specific task PVSS

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-25--LOFAR Project

©
ASTRON 2007

Notice that ‘leaf’ controllers will not have the Child Control task since they are controlling a driver not another
controller. Likewise the top-controller of the chain, the MACScheduler, will not have a Parent Control task.

5.5 Control commands
For controlling an observation at least 6 control commands are necessary. In the most likely order these are:

1. claim: The controllers check the observation- and virtual instrument information they received. They

check if the required hardware is available, check if the desired mode of the hardware is not conflicting
with other observations, etc.

2. prepare: The controllers connect to the hardware and services if not already done and prepare the
resources they need for the observation. In this phase the calibration of the antennas is done for
instance. After the preparation phase the instrument is in ‘hot standby’ mode: everything is ready to
produce or process the datastreams.

3. resume: The instrument is producing and processing the antenna data.
4. suspend: The instrument goes back to ‘hot standby’ mode.
5. release: The resources and services are ‘freed’ so that they become available for other observations.
6. quit: The controller ends its execution cycle.

These commands and the corresponding states the controller will have, are drawn in the following picture:

sm Control states

start

Initial idle claiming
(define)

preparing
(init)

activ e
(run)

suspended
(pause)

releasing

quit

quiting

State transition diagram as
implemented in ParentControl and
supported by the ControllerProtocol.

release msg

connected to parent
claim msg prepare msg resume msg

suspend msg

release msg

suspend msg

release msg release msg

quit msg

release msgrelease msg
resume msg

Figure 12: Control messages and controller states.

The duration of the states can be very different for each observation. For instance when the sample-clock on
the stations is switched between two observations all antennas might need to be calibrated again. This takes
512 seconds (roughly 9 minutes). When there isn’t a sample-clock switch between the observations the
calibration takes no time at all.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-26--LOFAR Project

©
ASTRON 2007

The SAS scheduler is responsible for calculating these timing aspects and storing the expected state
durations in the metadata of the observation.

There are also commands that do not result in state changes. E.g. it is possible to change the start- and
stop-time of the ‘active’ state. These commands can be received in every state of a controller and are not
drawn in the picture above.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-27--LOFAR Project

©
ASTRON 2007

6 Subsystem relations

MAC has interfaces with many other subsystems. In this chapter the relations between those subsystems
are described.

6.1 SAS
Between MAC and SAS the following interfaces exists:
1. Poll SAS database to start observations.
2. Ask SAS to make a parameterfile.
3. Update observation state in SAS
4. Export physical instrument layout to SAS.
5. Copy alerts and actions to SAS.

6.1.1 Poll the SAS database.
The top-process of MAC is the MACScheduler (see Figure 9). The MACScheduler has a connection with the
SAS database and executes every 5 seconds a stored procedure in the SAS database. This procedure
delivers a list of the first 10 observations that are ready for execution. This means that the observation has
valid start- and stop-times that lay in the future and that the state of the observation is 'scheduled'.

The MACScheduler keeps an administration of the running observations so it won't start an observation for a
second time.

6.1.2 Create parameterfile
When its time to start an observation the MACScheduler calls a stored procedure that delivers the
configuration file for the whole observation, it starts a new ObservationController and passes this
configuration file to the ObservationController. This configuration file contains enough information for all
programs that are involved in the observation to do their job.

6.1.3 Update observation state
Each observation in SAS has a state-field that reflects the current state of the observation. During the
configure process SAS uses this field to manage the access rights to the observation. Once it is set to
'scheduled' SAS won't touch it any more and it becomes the task of the MACScheduler to keep this field up
to date. The MACScheduler can set the state field to 'queued', 'active', 'finished', 'aborted'.

6.1.4 Export physical instrument layout
As described in paragraph 3.3 the PIC-trees in the SAS database are derived from the PVSS contents.
When the ASCII manager is used to make a dump of the database, SAS is able to read in this file and
construct a new PIC tree.

6.1.5 Copy alerts and actions
When serious problems arise during control or monitoring these problems are stored as 'alerts' in the MAC
database. The operator must respond to these alerts otherwise they will be on his screen forever. The
action(s) he takes on these alert are also registered in PVSS.
Because these alerts and action can also be important for the processing of the signal-data they are send
from MAC to SAS as KVT triples.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-28--LOFAR Project

©
ASTRON 2007

6.2 SHM
The System Health Management package has the following cycle: analyze (historic) metadata, find
abnormalities, register abnormalities in PVSS and in the future perform automatic tests between
observations to improve the analysis.
The historic metadata is available in SAS. The actual metadata like Array Correlation Matrices is available in
the drivers and services of the station software. The only interfaces that remain are the registration of the
abnormalities in PVSS and the execution of the tests. A dedicated MAC controller will be able to perform
these tasks.

6.3 Station software
The following tasks must be managed on station level:
1. Control of the RSPBoards.
2. Control of the calibration of the antenna arrays.
3. Control of the beam-directions.
4. Control of the station clock
5. Control of the Transient Buffer Board
The station software delivers for each of these tasks a driver or server that is capable of doing their
dedicated tasks. MAC only has to instruct these drivers and servers. For every driver and every server MAC
will develop a specific controller that has knowledge about that part of the process.

By placing these controllers in the right hierarchy an observation can be controlled:

Figure 13: Controller hierarchy on the stations.

Notice that some controllers are shared: there is only one instance of them, like StationControl and
DigBoardControl, while of others there is a controller per observation. That has to do with the kind of
information they should handle, sometimes this is global information sometimes this is more observation
based (e.g. beam-direction).

Device Device Device

RSPDriver

DigBoardCtrl

CalControl CalControl

Device Device Device

temperature
weather
doorswitch
…

RSPboards

BeamControl BeamControl

CalServer BeamServer

TBBDriver

Device Device Device

TBboards

TBBControl

StationControl

HWMonitor

Monitor station,
control observations,
check schedule conflicts

Deliver coordinates
to BeamServer

Control the (calibration
of the) subarrays

Control the
stationclock Monitor station

statistics

Control Transients

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-29--LOFAR Project

©
ASTRON 2007

Assigning a separate controller to each driver and server has the benefit the every controller only needs to
'talk' one dedicated protocol. Replacement of a controller also becomes much easier.

6.4 WAN
The WAN will be built with standard network components. These components all support the SNMP protocol
to query the status of the equipment. A WAN Controller can use this protocol to keep the status of the WAN
up to date in PVSS.

6.5 CEP
All software that is developed to run on the CEntral Processing platform is designed to run under control of
ACC. ACC is a multiplexing/demultiplexing layer the has its own state-machine. When MAC controls an CEP
application it has to interface with ACC in stead of the specific application:

Figure 14: Controller hierarchy on CEP.

The states of the MAC controllers can easily be mapped on the states of the ApplController of ACC (see
picture on the next page).

Device Device Proces

Application B

ApplControl ApplControl

Device Device Proces

Application A

CEPControl

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-30--LOFAR Project

©
ASTRON 2007

sm MAC v s. ACC states

start

created

connected

claiming

define

preparing

init

boot

activ e

run

suspended

pause

quiting

quit

prepared

claimed

connecting

activ ating

suspending

released

exit

Name: MAC vs. ACC states
Author: R. Overeem
Version: 1.0
Created: 05-03-2007 14:32:01
Updated: 05-03-2007 15:04:42

ApplController
states

OnlineController
states

CONTROL_CLAIM

CONTROL_RESUME

CONTROL_SUSPEND

CONTROL_QUIT

CONTROL_PREPARE

CONTROL_RELEASE

There is only one MAC state that is not supported by the ACC states and that is 'release'. So going to the
release state will not involve any action with the ACC controller.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-31--LOFAR Project

©
ASTRON 2007

Appendix A: PVSS manual abstract

Database structure

The datapoint structures in PVSS are reality-oriented. Process variables that belong together from a logical
point of view are combined to form hierarchically structured datapoints. This means that in PVSS a valve is
also addressed internally as a valve, an engine remains an engine. A datapoint is not just an individual piece
of information but rather a related package of individual information. The individual process variables are
grouped in an object-oriented approach and describe a particular component in its entirety.

36

Structured Data Point TypeStructured Data Point Type

Data points

x

y

x

y

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structure

Commands
Structure

GateValve
Structure

Value range
Peripheral address
Conversion R I
Smoothing
Substitution value

Alarming
Peripheral address
Archiving Peripheral address

Authorization

D
PT

St
ru

ct
ur

e
D

at
a

po
in

t e
le

m
en

ts
C

on
fig

s

Figure 15: Structured datapoint types of PVSS.

Datapoint type Structure of information that belongs together. E.g. a GateValve, a Receptor or a Correlator.
Datapoint Instance (of a certain Datapoint type).
Datapoint elements Basic types, forming the leafs of a datapoint.
Configs Attributes of the datapoint elements. Via these configs, automatic transformations can be

performed.

The PVSS database contains a set of datapoints as illustrated in the following picture.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-32--LOFAR Project

©
ASTRON 2007

42

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Open
Bool

Closed
Bool

Position
Float

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
Structure

Type and InstancesType and Instances

The data point type is the „template“ for all
devices of same type (Informatics: „class“)
All data points of those devices are derived from
the type (Informatics: “instantiated”)

Data points

x

y

x

y

Open
Bool

Closed
Bool

Position
Float

Torque
Bool

GeneralFailure
Bool

Open
Bool

Stop
Bool

Close
Bool

Alarms
Structure

StateSignals
Structure

Response
Structur

Command
Structure

GateValve
StructureData point type

Instantiation

Figure 16: The PVSS database contains instances of datapointtypes.

Datapoint configs

Configs are items that may be assigned to datapoint elements in PVSS. These items are defined with the aid
of config attributes that carry the actual datapoint values.

With the aid of configs, you can convert the original values of a datapoint variable, replace them with
predefined values or add an alert handler. You can smooth out and archive changes in values of variables.
Addresses with which datapoint elements are connected with the periphery are also assigned to variables
using a config.

The following configs are available in PVSS:
Peripheral address Links a PVSS datapoint variable to the peripheral device. The expression for the peripheral

address depends on the driver used.
Alert class Configurable properties of the alert ranges of datapoint variables are summarized in an alert

class. There are five predefined alert classes available.
Alert handling You can define alert ranges that are subject to configurable alert handling.
Archiving Settings for archiving process statuses, datapoint values, etc.
Authorization Authorization level settings for supervising user permissions and controlling actions.
Command conversion Algorithms for converting engineering values into raw values
Default value Default value handling: if a value is invalid then a default value can be set in various ways.
DP function Mathematical functions that are run automatically for recalculating results when values are

changed. Includes statistical functions for calculating means, minima, maxima etc.
Message conversion Algorithms for converting alert values from raw into engineering values
PVSS value range Global value range of a DP variable. A value must always lie in the PVSS value range.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-33--LOFAR Project

©
ASTRON 2007

Filtering Parameters can be set for various filtering algorithms (time-based, value-related, edge-
dependent, ...). Reduces the communications time and the amount of data.

User value range A personal value range can be defined for each user.
Manager structure

16

ManagersManagers

Concepts

EV
Event manager

CTRL
Control manager

UI
User interface

Editor

API
API-Manage
“Prognosis”

D
Modbus

DB
Database manager

UI
User interface

Runtime

D
OPC Client

UI
User interface

Runtime

D
Profibus

Field busEthernetOPC-Server

VA
Archive
VA

Archive
VA

Archive

Other
Vendors D

OPC Server

ADO/
UNIX-ODBC

CTRL
Control manager

RDB
Standard

Relational DB

Other PVSS
Systems

DIST
Distribution

Manager

REDU
Redundancy

Manager

Hot Standby
System

OLE-DB
OLE-Database

Access Provider

Reporting,
RDB, OLAP

COM
MS-COM-
Interface

Excel
Reporting

Figure 17: PVSS consists of many different manager-modules.

PVSS is designed as a distributable system. The individual tasks are carried out by special program
modules, the "managers". Communication is carried out in accordance with the client/server principle.

EV Event Manager Central part, receives telegrams, evaluates and distributes them.
D Driver Manager Interface of PVSS to the periphery (PLC, remote control system).
DB Database Manager Saving process changes in a high-speed database. Archival of data and creation

of evaluations and reports.
CTRL Control Manager Is PVSS's own programming language that can concurrently process several

functional blocks event-driven and with multitasking capability. It is used amongst
other things for the creation of more complex control functions or for testing and
simulation tasks.

API Application Program Interface The interface for the integration of external programs. Existing software can be
integrated via class libraries. Implementation of own managers for industry-
specific solutions.

UI User Interface Manager Takes care of the visualization of process statuses and forwarding of user input.
DIST Distribution Manager Takes care of communication between multiple distributed PVSS systems.

Distributed systems

Distributed systems in PVSS allow to connect two or more autonomous PVSS systems via a network. Each
subsystem of a distributed system can be configured either as single-station system or multiple-station
system in each case redundant or not redundant. A sub system means in this connection a server on which

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-34--LOFAR Project

©
ASTRON 2007

an Event manager is running on (this means not necessarily a complete project). In a redundant system both
redundant running servers are considered as one system.

31

Distributed SystemsDistributed Systems

EV
Event-

Manager

CTRL
Control-
Manager

D
Driver

DB
Database-
Manager

REDU
Redundancy

Manager EV
Event-

Manager

CTRL
Control-
Manager

D
Driver

DB
Database-
Manager

REDU
Redundancy

Manager

Server 1 Server 2

UI
Userinterface

Runtime

Operator 1

UI
Userinterface

Runtime

Operator 2

DIST
Distribution

Manager

DIST
Distribution

Manager

EV
Event-

Manager

CTRL
Control-
manager

D
Driver

DB
Database-
Manager

Single Machine Station

DIST
Distribution

Manager

UI
Userinterface

Runtime

UI
Userinterface

Runtime

Operator 2

EV
Event-

Manager

CTRL
Control-
Manager

D
Driver

DB
Database-
Manager

Server

DIST
Distribution

Manager

UI
Userinterface

Runtime

Operator 1

Local Area Network TCP

System 1

System 2

System 3

Multi-Server

PA

Figure 18: Example of distributed PVSS systems.

The figure shows in detail three systems. System 3 is a single station system, system 2 a multiple-station
system and system 1 is configured redundant. All three systems are connected via the local network. The
network connection to the three computers used in this distributed system can be redundant. The three
systems may have an own process connection.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-35--LOFAR Project

©
ASTRON 2007

Database parameterization and maintenance

58

Engineering – Database Editor (PARA)Engineering – Database Editor (PARA)

PARA

x

y

x

y

Parameterization of data points

Type creation

Figure 19: Screenshot of the database editor of PVSS.

The module Native PARA of the PVSS User Interface Manager is a graphical interface for editing datapoint
types and datapoints. This interface constitutes a tool. With the tool you can access the internal database
and make modifications simultaneously. The datapoint type with its structure serves as a template for the
similar datapoints derived from it. Datapoints in process-control system conform to requirements of concrete
counterparts of a system. This means that an engine or a valve contains a structure, which conforms to
requirements of a particular engine. The structure for a particular engine type or valve type is the datapoint
type.
Creating datapoint types in the PARA module means creating a tree structure. Nodes and leaves can be
easily added to and removed from the structure by clicking the mouse. The datapoint type is the "mother" of
all the datapoints derived from it.

For setting config attributes, standard panels are displayed. All possible alternatives of an allocation are
prepared via radio- and checkboxes. The parameterization of single configs on the datapoint elements takes
place via these panels

Mass-parameterization
Mass parameterization in PVSS redefines the fundamental principles of setting up a project and subsequent
parameterization of the huge range of datapoints is redefined by. It demonstrates perfectly the full advantage
of the flexible datapoint concept of PVSS with its object-oriented approach.

The requirement to implement large systems on the master computer quickly and with the minimum number
of parameterization steps is also a major factor in automation engineering, reflected in the mass
parameterization facility.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-36--LOFAR Project

©
ASTRON 2007

From the user viewpoint, mass parameterization offers in many situations a significant simplification in the
creation of datapoints in the system. Working with the mass parameterization feature should not present any
major difficulties to the experienced or novice PVSS user alike. Clear dialog windows, tips and warnings help
the parameterizer when working with PVSS and mass parameterization.

The master datapoints form the central element of the mass parameterization facility, holding the complete
parameterization settings (Configs containing the set parameters). These settings made for the master
datapoint are automatically transferred to each new datapoint of the given datapoint type. Changes to the
master datapoint are also transferred to the datapoints at runtime.

By defining templates, one can specify which parameterization settings subsequently need to be made for
every instance, and which are always adopted irrespective of the master datapoint (datapoint type).

The use of PowerConfigs - user-definable "virtual" Configs allowing the combination or specialization of a
number of Configs - is a further step towards modern "mass engineering". All the settings for two or more
Configs can be made using e.g. a parameterization screen. Parameter calculations enable, for example,
automatic generation of the correct peripheral address or descriptive texts on the leaf elements. A number of
predefined PowerConfigs have been supplied with the software.

The Native PARA module also provides a facility for creating, deleting or copying multiple data points (the full
parameterization is derived from the master datapoint).

ASCII-Manager

61

Import-Export
Dialogs

Engineering – Mass parameterizationEngineering – Mass parameterization

PARA

x

y

x

y

Microsoft Excel Add-In

Figure 20: Screenshot of mass parameterization.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-37--LOFAR Project

©
ASTRON 2007

The ASCII Manager allows you to input and output and thus edit datapoints and datapoint types and to
parameterize datapoints. The data are passed to the ASCII Manager in an ASCII file (hence the name).

There are a huge amount of filter-options which can be used to control the import and export of data.
Examples are:
- Export only database modifications which are younger than a certain date/time.
- Export only datapoints with a certain name (wild-card can be used).
- Export only datapoint types
- Export only parameterization.

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-38--LOFAR Project

©
ASTRON 2007

Appendix B: Requirements compliance

This chapter summarizes to what requirements [2] the MAC subsystem is compliant. In the tables below the
following codes are used to indicate the compliance:

Code Meaning

Y MAC is already compliant.
y MAC will be compliant.
? Requirement is not clear
N MAC is not compliant.
… Solved in another subsystem.

LO-3.08.1 Monitoring and Control function

Nr. Requirement Compliant
01 LOFAR shall provide a single distributed monitoring and control function. Y
02 The monitoring and control function shall ensure that all parts of the system work

together coherently.
Y

03 The monitoring and control function shall exclude control dependencies that are not
necessary from a functional point of view; in particular remote stations should be
capable of autonomous operation for periods of at least an hour.

Y

04 The monitoring and control function shall ensure that failures in hardware, software or
signal transport are detected.

y

05 The monitoring and control function shall take autonomous action to compensate for
failures where possible.

y

06 The monitoring and control function shall give users transparent and hierarchical
access to the instruments functions and parameters.

Y

07 The monitoring and control function shall provide layers of security and access
control.

Y

08 The monitoring and control function shall be designed to operate the instrument fully
remotely, with options to grant full access to part of the instrument (incl. central
processor) to sufficiently qualified users.

Y

09 The monitoring and control function shall provide a subfunction that will calculate and
report performance monitoring data to users.

y

10 All LOFAR subsystems shall provide monitoring data to the monitoring and control
function (for performance monitoring and closed-loop control functions)

Y

11 The monitoring and control function shall provide for a long-term logging subfunction
with workflow support for the Operational Team and with sufficient information to
relate system events to artefacts in the data.

SAS

12 It shall be possible to monitor and control the execution of multiple observations in
parallel.

Y

13 In case of failure of the principal monitoring and control network, those functions
required to analyze the network failure and recover from the failure, shall continue to
work using an alternative communication path.

y

14 It shall be possible to change the value of parameters during the acquisition provided
these parameters do not have impact on the required acquisition or processing
resources (e.g. changing beamdirections shall be possible, changing the number of
beams shall not be possible).

y

15 The monitoring and control function shall provide statistical information (on what
timescales and in how many directions) on the RFI environment, weather conditions
and ionospheric behavior to other system functions (in particular to the specification

y

Author: Ruud Overeem
 Edzer Lawerman

Date of issue: 2007-03-30
Kind of issue: public

Scope: MAC
Doc.id: LOFAR-ASTRON-ADD-005

 Status: draft
Revision nr: 3.1

-39--LOFAR Project

©
ASTRON 2007

and scheduling function).
16 It shall be possible to abort an observation if monitor parameters exceed user

specified limits (including RFI mitigation performance indication parameters).
Y

17 It shall be possible to control RFI mitigation processes in which multiple stations have
to cooperate or in which stations and the central site have to cooperate.

?

18 The monitoring and control function shall provide the communication, storage and
processing resources required for the station level RFI mitigation processes.

?

19 The monitoring and control function shall provide sufficient information on the
digitization thresholds and offsets for all systems (TBD) to enable reconstruction of the
noise characteristics.

Y

20 On the fly calibration information shall be available to the monitoring and control
function.

Y

LO-3.08.2 Control requirements
Nr. Requirement Compliant
01 LOFAR shall have a control system that actively controls all system settings in the

instrument.
Y

02 The control system shall be capable of autonomously calculating system settings in
response to changes in instrument status, environment or measurement results.

Y

03 It shall be possible to activate the calculated system settings either automatically
(autonomous control) or after explicit confirmation by the operator (manual control).

Y

04 It shall be possible to specify when settings should be activated automatically and
when they need to be confirmed by the operator.

SAS

05 It shall be possible to synchronize all timing reference equipment of stations
cooperating for an observation.

Y

06 It shall be possible to control the flow of measurement data in the data transport
network.

WAN?

07 The control system shall manage the allocation of system resources (acquisition,
processing, storage e.g. to avoid conflicts between simultaneous observations).

SAS

08 It shall be possible to receive and accept updated schedules before the end-time of
the currently active schedule has expired.

Y

09 The control system shall provide a hierarchical view on the physical system. Y
10 The control system shall provide a hierarchical view on designated logical control

concepts, likeobservational modes, beams, subbands.
Y

LO-3.08.3 Monitoring requirements
Nr. Requirement Compliant
01 It shall be possible to consolidate monitoring information to produce high-level

monitoring information from low-level monitoring information.
Y

02 Subsystems shall report completion of actions to MAC Y
03 It shall be possible for all user roles to produce summarized historical monitoring

information.
y

04 The measurement data flow shall be augmented with the result of control decisions
that have influenced the data flow at the position in the data stream where the control
decision comes into effect

not in the
data flow

05 It shall be possible to consolidate monitoring information both on the physical
instrument status and on designated logical concepts like observation, correlator.

Y

