

MeasurementSet 2.0 description for LOFAR version 0.6

Organisatie / Organization Datum / Date Auteur(s) / Author(s): A.P. Schoenmakers, G.A.Renting ASTRON 10-03-2010 Controle / Checked: ASTRON Goedkeuring / Approval: ASTRON Autorisatie / Authorisation: ASTRON Handtekening / Signature

© ASTRON 2006-2010 All rights are reserved. Reproduction in whole or in part is LOFAR/ Doc.nr.: Rev.:

NETHERLANDS FOUNDATION FOR RESEARCH IN ASTRONOMY

Date:

Class.: Public

prohibited without written consent of the copyright owner.

LOFAR/ USG/ Data Formats

Distribution list:

 \bigotimes

Group:

Others:

Document history:

Revision	Date	Chapter / Page	Modification / Change
0.1	March 2006	-	Creation
0.2	20 July 2006		Added columns to MAIN; filled in station name descriptions in ANTENNA; transfer to current document template, filling in more details, removal of irrelevant table entries.
0.3	30 November 2006		Added MS schema figure, Added appendix on how to translate parset file to MS fields
0.4	24 January 2007		Small additions due to recent developments
0.5	25 February 2008		Updated to latest field values/formats/keywords used
0.6 draft	February-April 2010		Draft updates for better dipole and antenna field support and full LOFAR operations

LOFAR/ USG/ Data Formats

Table of contents:

1	Intr	oduction	5
2	Ge	neral description of the Measurement Set	5
2	2.1	Structure of the MS	5
2	2.2	MAIN table	
2	2.3	ANTENNA Table	
	2.4	DATA DESCRIPTION Table	
	2.5	FEED table	
	2.6	FIELD table	
	2.7	FLAG CMD table	
	2.8	HISTORY table	
	2.9	OBSERVATION table	
	2.10	POINTING table	
	2.11	POLARIZATION table	
	2.12	PROCESSOR table	
	2.13	SOURCE table	
	2.14	SPECTRAL WINDOW table	
	2.15	STATE table	
	2.16	DIPOLE table	
	2.17	STATION table	
_			
3	Det	tailed description of all MS tables	7
3	3.1	MAIN table	7
3	3.2	ANTENNA table	
3	3.3	DATA_DESCRIPTION Table	
3	3.4	FEED table	
3	3.5	FIELD table	13
3	3.6	OBSERVATION table	14
3	3.7	POINTING table	
3	3.8	POLARIZATION table	
	3.9	PROCESSOR table	
	3.10	SOURCE table (Optional)	
	3.11	SPECTRAL WINDOW table	
	3.12	STATE table	
	3.13	DIPOLE table	
	3.14	STATION table	
	3.15	HISTORY table	
	3.16	Schema of the LOFAR MS	
		endix A: Translating the parset file.	
	• •		
	A.1	Pointing information	
	۹.2	Antenna information	
	۹.3	Frequency information	
	٩.4	Time issues	
	۹.5	Polarization	
A	۹.6	DataSet naming	24

LOFAR/ USG/ Data Formats

1 Introduction

In this document I present detailed schemes of the tables in a Measurement Set, and elaborate on their exact definitions. This will grow into the blueprint of a new LOFAR MS.

This is based (and partially copied) from the original AIPS++ MS 2.0 definition document (AIPS++ Note 229) and should be compatible with it. The Measurement Set v2 is described in great detail in a AIPS++ memo which can be found here:

http://aips2.nrao.edu/stable/docs/notes/229/229.html or

http://www.astron.nl/aips++/docs/notes/229/229.html

A version of this document is available at:

http://www.lofar.org/wiki/doku.php?id=public:documents:lofar_documents

The fields given in parentheses are not compulsory, and may thus be skipped. Some fields which are not relevant at all, have been skipped (see the MS2 definition document for their meaning).

Fields in yellow have been added in the current draft, and will have LOFAR_ in front of their identifier for the final version (as soon as I figure out how to do that properly in Word Tables).

Please observe that LOFAR does not have traditional antennas, but instead uses fields of dipoles. These get beam formed to behave as a more traditional antenna and are called antenna fields in this document. A station has several antenna fields, some of which can be active at the same time during an observation. I have also updated the document to show fields with TBD statements in light blue.

2 General description of the Measurement Set

This section briefly describes all tables and subtables in a Measurement set, and what type of information these contain. I will discuss individual fields in sofar as these require additional explanations to understand their exact meaning. Table items that may still require some discussion or decision have been put in italics. These are mostly administrative fields, not the main data fields.

2.1 Structure of the MS

In the table I present a short summary of the subtables in a LOFAR Measurement Set, and a brief explanation of their contents. In the following sections I will present each table in some more detail.

Table name	Short description of content
MAIN	Data of all samples for individual interferometers
ANTENNA	Antenna information
DATA_DESCRIPTION	Pointers to POLARIZATION and
	SPECTRAL_WINDOW entries
FEED	Feed (Frontend) related information
FIELD	Information on observed positions
FLAG_CMD	Flag information
HISTORY	History log of MS
OBSERVATION	General observation information
POINTING	Antenna pointing information
POLARIZATION	Polarization description information
PROCESSOR	Correlator information
SOURCE	Information on observed sources
SPECTRAL_WINDOW	Frequency/IF information
STATE	State information (mostly for SD)
DIPOLE	Dipole information
STATION	Station information

LOFAR/ USG/ Data Formats

Rev.: Date: Class.: Public

Doc.nr.:

2.2 MAIN table

The MAIN table of the MS contains the bulk of all data. For each interferometer and for each sample time The ordering is usually time-baseline, i.e. the MAIN table is divided in subsequent time-blocks and within each time block there is an ordering based on the interferometer antenna pair. Each interferometer pair will appear only once per sample time. Auto- and crosscorrelations are usually mixed. The MAIN table links directly to many other tables through index numbers in several of its columns.

2.3 ANTENNA Table

The Antenna table contains information on each antenna field used in the observation.

2.4 DATA DESCRIPTION Table

This is a simple table that currently only contains identifiers for the SPECTRAL_WINDOW and POLARIZATION table.

2.5 FEED table

This table gives information on the front-ends (Feeds) of the antennas used. It allows for time dependent beam and polarization properties through a TIME and INTERVAL column.

2.6 FIELD table

This table contains positional information on the object(s) that is pointed to by the telescope.

2.7 FLAG_CMD table

The FLAG_CMD table allows for additional flagging information in the MS, to be applied to the data in the MAIN table. For LOFAR this table is not being used, see the LOFAR_FULL_RES_FLAG column in the MAIN table instead.

2.8 HISTORY table

This table allows HISTORY information to enter the MS so that one can trace what has happened to the MS since it was created. The on-line systems can add a creation statement here. It should mainly be filled and used by processes that alter the data in the MS after initial creation of the MS. Each step in the processing pipelines will store its parset file settings and other relevant data in this table.

2.9 OBSERVATION table

This table contains information on the project(s) and the scheduling. It is pointed to from the MAIN table by the OBSERVATION_ID column. It contains information related to the SAS/MAC/MoM Observation and Project and the other fields common to the different dataformats for LOFAR.

2.10 POINTING table

The POINTING table provides information on the actual pointing of an antenna, which may be time dependent. The structure and the fields are particularly useful for dish-based telescopes and interferometers.

2.11 POLARIZATION table

The POLARIZATION table provides information on the used polarization properties of the receivers. It refers to the polarization dependent fields in the FEED table through the CORR_PRODUCT field.

LOFAR/ USG/ Data Formats

2.12 PROCESSOR table

This table gives some administrative information on the back-end processing. It can be used to store some information on the backend setup (e.g., the mode that was used).

2.13 SOURCE table

This table gives some information of the physical properties of the source(s) observed, as well as their use in the observing strategy (calibrator or not). For spectral line observations it contains information on the line rest frequency and the velocity of the object to be observed. This table is the only non-compulsory table we added to the LOFAR Measurement Set as it helps to clarify the goal of the observation.

2.14 SPECTRAL_WINDOW table

This table presents the frequency settings of the observation.

2.15 STATE table

This is mostly in use for single dish and may not be useful for LOFAR.

2.16 DIPOLE table

This is a custom table for use by LOFAR only. It contains information about the separate dipoles of each antenna field.

2.17 STATION table

This is a custom table for use by LOFAR only. It contains a list of all the stations that were present in the observation, mainly so the ANTENNA table can reference with the purpose of identifying which antenna fields are part of which station.

3 Detailed description of all MS tables

3.1 MAIN table

MAIN Table: Data, coordinates and flags							
Name	Format	Units	Measure	Default	Comments		
Keywords					1		
MS_VERSION	Float			2.0	MS version number		
LOFAR_VERSION	Float			0.6	Version of this document		
Key							
TIME	Double	S	EPOCH		Integration midpoint		
ANTENNA1	Int				Pointers to ANTENNA table		
ANTENNA2	Int						
FEED1	Int				Pointers to FEED_ID column in FEED table		
FFED2	Int						
DATA_DESC_ID	Int				Pointer to DATA_DESCRIPTOR table		
PROCESSOR_ID	Int				Pointer to PROCESSOR table		
FIELD_ID	Int				Pointer to FIELD table		
Non-key attributes							

LOFAR/ USG/ Data Formats

Rev.: Date: Class.: Public

Doc.nr.:

UVW	Double (3)	m	UVW J2000		UVW coordinates at TIME CENTROID in J2000		
INTERVAL	Double	s			Sampling interval (this sample)		
EXPOSURE	Double	s			Effective integration time		
TIME CENTROID	Double	S	EPOCH		Average time of sample		
SCAN_NUMBER	Int			1	Scan number		
ARRAY_ID	Int			0	Subarray number		
OBSERVATION_ID	Int			0	Pointer to OBSERVATION table		
STATE_ID	Int			0	Pointer to State table		
Data				-			
DATA	Complex (Nc, Nf)	Jy			Raw complex visibilities		
CORRECTED_DATA	Complex (Nc, Nf)			0	Corrected complex visibilities		
MODEL_DATA	Complex (Nc, Nf)			0	Complex visibilities of data model		
(VIDEO_POINT)	Complex (Nc)				Video point		
SIGMA	Float (Nc)			[1,1,1,1]			
WEIGHT	Float (Nc)				Weight for whole DATA matrix		
WEIGHT_SPECTRUM	Float (Nc, Nf)				Weight for each channel separately		
Flag information	•	•		•	· · ·		
FLAG	Bool(Nc, Nf)				Cumulative data flags		
FLAG_CATEGORY	Bool (Nc, Nf, Ncat)			Empty	Flag categories		
FLAG_ROW	Bool			F	Row flag		
FULL_RES_FLAG	uChar (Nf/8, Ntimeavg)				Full resolution flag before compression		

Note that *Nc*= number of independent correlation signals (i.e, polarizations), *Nf*= number of frequency channels, and *Ncat*= number of flag categories (not used for LOFAR, so *Ncat*=1), Ntimeavg = is the number of timeslots averaged to a single timeslot.

MS VERSION The MeasurementSet format revision number, expressed as *major revision.minor revision*. This version is 2.0.

LOFAR VERSION The LOFAR MeasurementSet format revision number as defined by this document. **TIME** This is the mid-point (not centroid) of data interval in UTC.

ANTENNA*n* This is the antenna number (≥ 0), and a direct index into the ANTENNA sub-table *rownr*. **FEED***n* This is the feed number (≥ 0). This points to the FEED_ID column in the FEED table. **DATA_DESC_ID** Data description identifier (≥ 0), and a direct index into the DATA DESCRIPTION sub-

table *rownr*. **PROCESSOR_ID** Processor identifier (≥ 0), and a direct index into the PROCESSOR sub-table *rownr*.

FIELD_ID Field identifier (≥ 0), and a direct index into the FIELD sub-table *rownr*. **INTERVAL** Data sampling interval. This is the nominal data interval and does not include the effects of bad data or partial integration.

EXPOSURE This is the effective data interval, including bad data and partial averaging. For now equal to INTERVAL.

SCAN_NUMBER Arbitrary scan number to identify data taken in the same logical scan. Not required to be unique. For LOFAR this is used to identify records that use the same pointing in mosaicing observations if those will even be used.

ARRAY_ID This is the subarray identifier (≥ 0), which identifies data in separate subarrays. [TBD: Always 0 for LOFAR, or used to identify Core, Remote and International sites?]

OBSERVATION_ID This is the observation identifier (≥ 0), a direct index into the OBSERVATION subtable *rownr*. This is not the same as the ObservationId as used by MoM, SAS, LTA, which can be found in the OBSERVATION table.

LOFAR/ USG/ Data Formats

STATE_ID This is the state identifier (≥ 0), and a direct index into the STATE sub-table *rownr*. [TBD: Always 0 for LOFAR?]

UVW *uvw* coordinates for the baseline from ANTENNA1 to ANTENNA2, i.e. the baseline is equal to the difference POSITION2 - POSITION1. The UVW given are for the TIME_CENTROID, and correspond in general to the reference type for the PHASE_DIR of the relevant field. I.e. J2000 if the phase reference direction is given in J2000 coordinates. However, any known reference is valid. Note that the choice of baseline direction and UVW definition (*W* towards source direction; *V* in plane through source and system's pole; *U* in direction of increasing longitude coordinate) also determines the sign of the phase of the recorded data.

DATA These are the measured visibilities in units of correlation coefficients. This contains the output of the correlator.

CORRECTED_DATA The visibilities corrected for instrumental effects (calibration), or even after subtraction of a local/global sky model. When not used, this contains an array of zero values. **MODEL_DATA** The predicted visibilities of a local/global sky model. When not used, this contains an array of zero values.

VIDEO_POINT The video point for the spectrum, to allow for the full reverse FFT transform of the spectrum to the correlation function. **??** The values are also in channel 0 of the DATA column. **??** SIGMA The estimated rms noise for a single channel, for each correlator. If we don't have this number, it will be set to 1.

SIGMA_SPECTRUM The estimated rms noise for each channel.

WEIGHT The weight for the whole data matrix for each correlator, as assigned by the correlator or processor. Will be set to the average weight in the WEIGHT_SPECTRUM column (without taking FLAGs into account).

WEIGHT_SPECTRUM The weight for each channel in the data matrix, as assigned by the correlator or processor. The weight spectrum should be used in preference to the WEIGHT, when available. For LOFAR the weight spectrum is determined in the correlator by the ratio of received packets per integration time and then updated adjusted for flagging when compressing in time or frequency.

FLAG An array of Boolean values with the same shape as DATA (see the DATA item above) representing the cumulative flags applying to this data matrix, as specified in FLAG CATEGORY. Data are flagged bad if the FLAG array element is True.

FLAG_CATEGORY An array of flag matrices with the same shape as DATA, but indexed by category. The category identifiers are specified by a keyword CATEGORY, containing an array of string identifiers, attached to the FLAG CATEGORY column and thus shared by all rows in the MeasurementSet. The cumulative effect of these flags is reflected in column FLAG. Data are flagged bad if the FLAG array element is True. This column is not used for LOFAR see FULL_RES_FLAG instead.

FLAG_ROW True if the entire row is flagged. Not used, so always set to False.

FULL_RES_FLAG These are an array of at the full resolution of the original uncompressed data containing what flags were generated before compression. This is needed to correct for bandwidth and time smearing due to compression. It contains bits. uChar is used for it, because Int is sensitive to endianness. It contains a 2-dim array with shape [(Nf+7)/8, Ntimeavg] where Ntimeavg is the number of time slots averaged to a single time slot. As for LOFAR all polarizations are flagged if one is flagged, no axis with Nc length is needed.

Note that in the last time slot of an averaged MS, FULL_RES_FLAG will contain True flags for in case of missing time slots in the original MS.

The column has two keywords defined with it:

NCHAN_AVG defines the number of channels averaged to one.

NTIME_AVG defines the number of time slots averaged to one. It is equal to the second axis of the shape.

Finally note that a FLAG value True does not mean that all corresponding FULL_RES_FLAG values are True. But when averaging further, FULL_RES_FLAG values will be set to True for FLAG values equal to True.

LOFAR/ USG/ Data Formats

3.2 ANTENNA table

ANTENNA Table: Antenna Field Characteristics							
Name	Format	Units	Measure	Default	Comments		
Data				1			
NAME	String			LOFAR	Unique antenna field names		
STATION_ID	Int				Pointer to STATION table		
TYPE	String			GROUND- BASED	Antenna Type		
MOUNT	String			FIXED	Antenna Mounting		
POSITION	Double (3)	m	POSITION		Antenna center of light position in ITRF or WGS84		
OFFSET	Double (3)	m	POSITION	0	Axes offset of mount to FEED_REFERENCE point		
DISH_DIAMETER	Double	m		150	No meaning for LOFAR		
PHASE_REFERENCE	Double (3)	m	POSITION		Beam forming phase reference		
UP_DIRECTION	Double (3)	rad	DIRECTION		Dipole up direction		
POLARIZATION_REFERENCE	Double (3, NUM_RECEPTORS)	rad	DIRECTION		Dipole polarization reference directions		
PATTERN_ROTATION	Double (3)	rad	DIRECTION		Dipole pattern rotation		
Flag information							
FLAG_ROW	Bool			False	Row flag		

Notes: This sub-table contains the global antenna field properties for each antenna field in the MS. It is indexed directly from MAIN via ANTENNAn.

NAME Antenna name. This will be "LOFAR".

TYPE Antenna type. Reserved keywords include: ("GROUND-BASED" - conventional antennas; "SPACE-BASED" - orbiting antennas; "TRACKING-STN" - tracking stations). We will use "GROUND-BASED".

MOUNT The mount type of the antenna. Reserved keywords include: ("EQUATORIAL" - equatorial mount; "ALTAZ"- azimuth-elevation mount; "X-Y" - x-y mount; "SPACE-HALCA" - specific orientation model.). For LOFAR we will use "FIXED".

POSITION In a right-handed frame, X towards the intersection of the equator and the Greenwich meridian, Z towards the pole. The exact frame should be specified in the MEASURE_REFERENCE keyword (ITRF or WGS84) attached to this column. On traditional telescopes the reference point is the point on the azimuth or horizontal ascension axis closest to the elevation or declination axis. For LOFAR this is the effective centre of the collecting area of the station, usually a weighted average of the positions of the individual antennas. This is important to know because one calculates the (u,v,w) coordinates as differences of the center of light positions between stations, not the phase reference positions. **OFFSET** Axes offset of mount to feed reference point.

DISH_DIAMETER This is the nominal diameter of dish, as opposed to the effective diameter. For LOFAR this will be the approximate size of an antenna field. This is not a constant for LOFAR. For now this is set at 150 meter. [TBD: is this too big, maybe much smaller like 3 meters, to not have software perform accidental shadowing calculations for stations close together?]

LOFAR/ USG/ Data Formats

FLAG_ROW This is the boolean flag to indicate the validity of this entry. Set to True for an invalid row. This does not imply any flagging of the data in MAIN, but is necessary as the ANTENNA index in MAIN points directly into the ANTENNA sub-table. Thus FLAG ROW can be used to delete an antenna entry without re-ordering the ANTENNA indices throughout the MS.

PHASE_REFERENCE This is the phase reference position, the location at which the station tries to adjust the "phases" for all of the dipoles of a station to be equal for the station beam pointing direction. **UP DIRECTION** This is the up direction of the antennas, and is supposed to be the normal direction to the station field plane. Note that in general this is not the zenith direction, and can be many degrees away from zenith for some antenna fields. You need to know this direction in order to do the antenna beam pattern directions.

POLARIZATION REFERENCE This an array the direction, constrained to be within the antenna field plane, to which the polarization directions of the station are referenced. See the station antenna layout reference by Michiel Brentjens.

PATTERN ROTATION This is the direction at which the antenna pattern is pointing, in the plane of the antenna field. You can see this as the angle through which the antenna pattern has been rotated from the POLARIZATION REFERENCE direction. This affects where the HBA tile grating lobes will appear on the sky among other things. In general the rotation angle for this direction will be ± 90 degrees. In principle this is redundant if all dipole positions are known, but it's included for as a useful reference.

Time variant LOFAR antenna field and station properties (e.g., switching individual dipoles in a field off during an observation) cannot be handled directly in the antenna table. This is only relevant when such a change leads to different antenna characteristics (e.g., center of light position). For the current version of the LOFAR Measurement Set the choice has been made not to handle such cases.

There are two options when one would want to handle this:

- A new entry is made in the Antenna table when a change occurs in the reference position of an station. In the MAIN table there must be a reference to the new entry. However, this makes the administration rather cumbersome, as the Antenna table itself has no time-related column containing the time span when a particular entry is valid. Alternatively, we could add such a column ourselves, but that would make the MS somewhat non-standard.
- Time variance of ANTENNA properties may also be handled in the FEED table (see below). In this case, a new entry is made in the FEED table when a station characteristic changes. A reference position change can be mimicked as a change in the FEED position.

In both cases only very limited particular changes could be handled, neither of which seem practical. In case this does become relevant a major redesign of the MS is probably in order, beyond the scope of the current extensions.

3.3	DATA_DESCRIPTION Table
-----	------------------------

DATA_DESCRIPTION Table: Frequency/polarization characteristics							
Name	Format	Units	Measure	Default	Comments		
Data							
SPECTRAL_WINDOW_ID	Int						
POLARIZATION_ID	Int						
Flag information							
FLAG_ROW	Bool				Row flag		

Notes: This table define the shape of the associated DATA array in MAIN, and is indexed directly by DATA_DESC_ID.

SPECTRAL_WINDOW_ID Spectral window identifier. It is a direct index into the SPECTRAL_WINDOW sub-table.

POLARIZATION_ID Polarization identifier (≥ 0). It is a direct index into the POLARIZATION sub-table. **FLAG ROW** True if the row does not contain valid data; This does not imply flagging in MAIN.

LOFAR/ USG/ Data Formats

3.4 FEED table

	FEED Table: Feed characteristics							
Name	Format	Units	Measure	Default	Comments			
Кеу								
ANTENNA_ID	Int							
FEED_ID	Int			0				
SPECTRAL_WINDOW_ID	Int			-1				
TIME	Double	S	EPOCH		Interval midpoint			
Data description								
NUM_RECEPTORS	Int			2	Number of receptors on this feed			
Data								
BEAM_ID	Int			-1	Beam model			
BEAM_OFFSET	Double (2, NUM_RECEPTORS)	rad	DIRECTION	0	Beam position offset (on sky but in antenna reference frame).			
POLARIZATION_TYPE	String (NUM_RECEPTORS)			X, Y	Type of polarization to which a given RECEPTOR responds.			
POL_RESPONSE	Complex (NUM RECEPTORS, NUM RECEPTORS)				Feed polarization response			
POSITION	Double(3)	m	POSITION	0	Position of feed relative to feed reference position for this antenna			
RECEPTOR ANGLE	Double (NUM RECEPTORS)	rad			The reference angle for polarisation.			

Notes: A feed is a collecting element on an antenna, such as a single horn, that shares joint physical properties and makes sense to calibrate as a single entity. It is an abstraction of a generic antenna feed and is considered to have one or more RECEPTORs that respond to different polarization states. A FEED may have a time variable beam and polarization response. Feeds are numbered from 0 on each separate antenna for each SPECTRAL WINDOW ID. Consequently, FEED_ID should be non-zero only in the case of feed arrays, i.e. multiple, simultaneous beams on the sky at the same frequency and polarization. For LOFAR this basically describes the behaviour of the signal after having the signals from the individual dipoles beam formed within an antenna field. It does not describe the individual dipoles. For LOFAR this in essence describes a virtual device.

ANTENNA_ID Antenna field number, as indexed from ANTENNAn in MAIN.

FEED_ID Feed identifier, as indexed from FEEDn in MAIN.

SPECTRAL_WINDOW_ID Spectral window identifier: A value of -1 indicates the row is valid for all spectral windows.

TIME This is the mid-point of time interval for which the feed parameters in this row are valid. The same Measure reference used for the TIME column in MAIN must be used.

INTERVAL Time interval for which the feed parameters in this row are valid.

NUM_RECEPTORS Number of receptors on this feed. See POLARIZATION_TYPE for further information.

BEAM_ID Beam identifier. Points to an optional BEAM sub-table defining the primary beam and polarization response for this FEED. A value of -1 indicates that no associated beam response is defined. **BEAM_OFFSET** Beam position offset, as defined on the sky but in the antenna reference frame.

POLARIZATION_TYPE Polarization type to which each receptor responds (e.g. "R","L","X" or "Y"). This is the receptor polarization type as recorded in the final correlated data (e.g. "RR"); i.e. as measured after all polarization combiners.

LOFAR/ USG/ Data Formats

Doc.nr.: Rev.: Date:

Class.: Public

ø

POL_RESPONSE Polarization response at the centre of the beam for this feed. Expressed in a linearly polarized basis (*ex,ey*) using the IEEE convention. For LOFAR this is (1,0),(0,1)**POSITION** This is the offset of feed relative to the feed reference position for this antenna (see ANTENNA sub-table). **[TBD: For LOFAR this is always (0,0,0)]**

RECEPTOR ANGLE Polarization reference angle. Converts into parallactic angle in the sky domain.

3.5 FIELD table

FIELD Table: Field positions for each source								
Name	Format		Units	Measure	Default	Comments		
Data								
NAME	String					Name of field		
CODE	String					Special characteristics		
TIME	Double		S	EPOCH		Time origin for the directions and rates		
NUM POLY	Int				0	Polynomial series order		
DELAY_DIR	Double (2 NUM_POLY+1)	2,	rad	DIRECTION		Direction of delay centre		
PHASE_DIR	Double (2 NUM_POLY+1)	2,	rad	DIRECTION		Direction of Phase centre		
REFERENCE_DIR	Double (2 NUM_POLY+1)	2,	rad	DIRECTION		Direction of Reference centre		
SOURCE_ID	Int				-1	Index in SOURCE table		
Flag information	Flag information							
FLAG_ROW	Bool				False	Row flag		

Notes: The FIELD table defines a field position on the sky. For interferometers, this is the correlated field position.

NAME Field name: user specified in proposal or MoM.

CODE Field code indicating special characteristics of the fields, user specified.

TIME Time reference for the directions and rates. Required to use the same TIME Measure reference as in MAIN. We use the start time of the observation.

NUM_POLY Series order for the * DIR columns. This can be used to describe time-variant behaviour of these direction columns. Time origin is given by the TIME field. Default value is 0 (no polynomial expansion).

DELAY_DIR Direction of delay centre; can be expressed as a polynomial in time, but we will only give constant values. Final result converted to the defined Direction Measure type.

PHASE_DIR Direction of phase (fringe stopping) centre; can be expressed as a polynomial in time, but we will only give constant values. Final result converted to the defined Direction Measure type.

REFERENCE_DIR Reference centre: This can be expressed as a polynomial in time, but we will only give constant values. Final result converted to the defined Direction Measure type. For interferometric data, this is the original correlated field centre, and may equal DELAY_DIR or PHASE_DIR.

SOURCE_ID Points to an entry in the (optional) SOURCE subtable, a value of -1 indicates there is no corresponding source defined.

FLAG_ROW True if data in this row are invalid, else False. Does not imply flagging in MAIN.

When doing position mosaicing, the number of entries in this table will equal the number of mosaic positions.

LOFAR/ USG/ Data Formats

3.6 **OBSERVATION** table

OBSERVATION Table: Observation information						
Name	Format	Units	Measure	Default	Comments	
Data						
TELESCOPE NAME	String			LOFAR		
TIME_RANGE	Double(2)	S	EPOCH		Specified start/end times	
OBSERVER	String			TBD	Name of observer	
LOG	String (*)				Observing log	
SCHEDULE_TYPE	String			LOFAR		
SCHEDULE	String (*)			[corrSchedule]	Project Schedule	
PROJECT	String			NONE	Project identification	
PROJECT_TITLE	String				Project description	
PROJECT_PI	String				Primary Investigator	
PROJECT_CO_I	String				Co Investigators	
PROJECT_CONTACT	String				Contact Author	
OBSERVATION_ID	String				SAS Observation ID	
BEAM	Int				Beam within the	
					Observation	
ANTENNA_SET	String				SAS AntennaSet	
FILTER_SELECTION	String				SAS FilterSelection	
CLOCK_FREQUENCY	Double	Hz	FREQUENCY		SAS Clock setting	
SYSTEM_VERSION	String				As per ICD	
PIPELINE_NAME	String				Pipeline identification	
PIPELINE_VERSION	String				Pipeline version	
	String				As per ICD	
FILETYPE	String		FROOL	uv	As per ICD	
FILEDATE	Double	S	EPOCH		As per ICD	
RELEASE_DATE	Double	S	EPOCH		Target release date	
Flag information		1				
FLAG_ROW	Bool			False	Row flag	

Notes: This table contains information specifying the observing instrument or epoch. It is indexed directly from MAIN via OBSERVATION_ID.

TELESCOPE_NAME Telescope name ("LOFAR").

TIME_RANGE The start and end times of the overall observing period spanned by the actual recorded data in MAIN. Required to use the same TIME Measure reference as in MAIN.

OBSERVER The name(s) of the observer(s).

LOG The observing log, as supplied by the telescope or instrument.

SCHEDULE_TYPE The schedule type, with current reserved types ("VLBA-CRD", "VEX", "WSRT", "ATNF"). "LOFAR" for LOFAR.

SCHEDULE Unmodified schedule file, of the type specified, and as used by the instrument.

PROJECT Project code (e.g. "LEA1234")

PROJECT_TITLE Description if the project (e.g. "Polarization properties of 3C1234")

PROJECT_PI Project primary investigator

PROJECT_CO_I comma separated list of co-investigators

PROJECT_CONTACT e-mail address of the contact author

OBSERVATION_ID Observation ID as used by SAS, MAC and MOM

BEAM Nummber of the beam used for this measurement within the SAS observation

ANTENNA_SET SAS AntennaSet setting (e.g. "LBA_SPARSE_INNER", "HBA_ONE")

FILTER_SELECTION SAS FilterSelection setting (e.g. "10-90 MHz")

CLOCK_FREQUENCY SAS ClockFrequency setting (e.g. "160 Mhz")

LOFAR/ USG/ Data Formats Doc.nr.: Rev.: Date:

Class.: Public

SYSTEM_VERSION Data processing system name and version number PIPELINE_NAME Pipeline processing name [TBD: What to do with multiple pipeline runs?] PIPELINE_VERSION Pipeline version FILENAME File name FILETYPE File type "uv" for MeasurementSets

FILEDATE File creation date

RELEASE_DATE Project release date. This is the date on which the data may become public if the project finishes as scheduled.

FLAG_ROW Row flag. True if data in this row is invalid, but does not imply any flagging in MAIN.

3.7 POINTING table

	POIN	TING Ta	ble: Antenna P	ointing info	ormation				
Name	Format	Units	Measure	Default	Comments				
Key	Кеу								
ANTENNA_ID	Int								
TIME	Double	S	EPOCH		Interval midpoint				
INTERVAL	Double	S			Interval duration				
Data									
NAME	String				Pointing position descriptor				
NUM_POLY	Int			0	Polynomial series order				
TIME_ORIGIN	Double	S	EPOCH		Origin for polynomial.				
DIRECTION	Double (2, NUM POLY+1)	Rad	DIRECTION		Antenna pointing direction (J2000)				
TARGET	Double (2, NUM POLY+1)	Rad	DIRECTION		Target direction (J2000)				
TRACKING	Bool			True	True if on-position				

Notes: This table contains information concerning the primary pointing direction of each antenna as a function of time. Note that the pointing offsets for individual feeds on a given antenna are specified in the FEED sub-table with respect to this pointing direction.

ANTENNA_ID Antenna identifier, as specified by ANTENNAn in MAIN.

TIME This is the mid-point of the time interval for which the information in this row is valid. Required to use the same TIME Measure reference as in MAIN.

INTERVAL Time interval during which the information in this row is valid.

NAME Pointing direction name; user specified. Leave empty.

NUM_POLY Series order for the polynomial expressions in DIRECTION and POINTING OFFSET. Default value is 0 (no polynomial expansion)

TIME_ORIGIN Time origin for the polynomial expansions. Equal this to the start time of the observation. **DIRECTION** Antenna pointing direction, optionally expressed as polynomial coefficients. The final result is interpreted as a Direction Measure using the specified Measure reference. Use RA, Dec in J2000. **TARGET** Target pointing direction, optionally expressed as polynomial coefficients. The final result is interpreted as a Direction Measure using the specified Measure reference. The final result is interpreted as a Direction Measure using the specified Measure reference. This is the true expected position of the source, including all coordinate corrections such as precession, nutation etc. For now, equal this to DIRECTION.

TRACKING True if tracking the nominal pointing position.

LOFAR/ USG/ Data Formats

3.8 POLARIZATION table

POLARIZATION Table: Polarization setup information						
Name	Format	Units	Measure	Default	Comments	
Data description					•	
NUM_CORR	Int			4	Nr. Of correlation cross-products	
Data						
CORR_TYPE	Int (NUM_CORR)				Polarization of correlation	
CORR_PRODUCT	Int (2, NUM_CORR				Receptor cross products	
Flag information						
FLAG_ROW	Bool			False	Row flag	

Notes: This table defines the polarization labelling of the DATA array in MAIN, and is directly indexed from the DATA DESCRIPTION table via POLARIZATION ID.

NUM_CORR The number of correlation polarization products. For example, for (RR) this value would be 1, for (RR, LL) it would be 2, and for (XX, YY, XY, YX) it would be 4, etc.

CORR_TYPE An integer for each correlation product indicating the Stokes type as defined in the CASA Stokes class enumeration. For (XX, YY, XY, YX) this is (9,10,11,12).

CORR_PRODUCT Pair of integers for each correlation product, specifying the receptors from which the signal originated. The receptor polarization is defined in the POLARIZATION TYPE column in the FEED table. An example would be (0,0), (0,1), (1,0), (1,1) to specify all correlations between two receptors. **FLAG ROW** Row flag. True is the data in this row are not valid, but does not imply the flagging of any DATA in MAIN.

3.9 **PROCESSOR** table

PROCESSOR Table: Processor (backend) information							
Name	Format	Units	Measure	Default	Comments		
Data							
TYPE	String			CORRELATOR			
SUB_TYPE	String			CEP			
TYPE_ID	Int			0			
MODE_ID	Int			0			
Flag information				-	·		
FLAG_ROW	Bool			False	Row flag		

Notes: This table holds summary information for the back-end processing device used to generate the basic data in the MAIN table. Such devices include correlators, radiometers, spectrometers, pulsar-timers, amongst others.

TYPE Processor type; reserved keywords include ("CORRELATOR" - interferometric correlator; "SPECTROMETER" - single-dish correlator; "RADIOMETER" - generic detector/integrator; "PULSAR-TIMER" – pulsar timing device). For LOFAR this will be 'CORRELATOR'

SUB_TYPE Processor sub-type, e.g. "GBT" or "JIVE". For LOFAR 'CEP' will be used.

TYPE_ID Index used in a specialized sub-table named as subtype type, which contains time-independent processor information applicable to the current data record (e.g. a JIVE CORRELATOR sub-table). Time-dependent information for each device family is contained in other tables, dependent on the device type. **MODE ID** Index used in a specialized sub-table named as subtype type mode, containing information on the processor mode applicable to the current data record. (e.g. a GBT SPECTROMETER MODE sub-table).

FLAG_ROW Row flag. True if data in the row is not valid, but does not imply flagging in MAIN.

LOFAR/ USG/ Data Formats

3.10 SOURCE table (Optional)

SOURCE Table: Source information						
Name	Format	Units	Measure	Default	Comments	
Key						
SOURCE_ID	Int					
TIME	Double	S	EPOCH		Midpoint of interval	
INTERVAL	Double	S			Duration of interval	
SPECTRAL_WINDOW_ID	Int					
Data description						
NUM_LINES	Int				Number of Spectral lines	
Data						
NAME	String				Name of source during observation	
CALIBRATION_GROUP	Int				Group number for calibration purposes	
CODE	String				Special characteristics of source, e.g.	
					Bandpass calibrator	
DIRECTION	Double(2)	rad	DIRECTION		Direction of Source	
PROPER_MOTION	Double(2)	rad/s		0		

Notes: This table contains time-variable source information, optionally associated with a given FIELD ID.

SOURCE_ID Source identifier (≥ 0), as specified in the FIELD sub-table.

TIME This is the mid-point of the time interval for which the data in this row is valid. Required to use the same TIME Measure reference as in MAIN.

INTERVAL Time interval for which the data in this row is valid.

SPECTRAL_WINDOW_ID Spectral window identifier: A -1 indicates that the row is valid for all spectral windows.

NUM_LINES Number of spectral line transitions associated with this source and

SPECTRAL_WINDOW_ID combination.

NAME Source name: User specified.

CALIBRATION_GROUP Calibration group number to which this source belongs; user specified.

CODE Source code, used to describe any special characteristics of the source, such as the nature of a calibrator. Reserved keyword, including ("BANDPASS CAL").

DIRECTION Source direction at this TIME.

PROPER MOTION Source proper motion at this TIME.

3.11 SPECTRAL_WINDOW table

SPECTRAL WINDOW Table: Frequency setup information						
Name	Format	Units	Measure	Default	Comments	
Data description			I			
NUM_CHAN	Int			256	Number of Spectral channels	
Data						
NAME	String			SB-x	Subband name/identifier	
REF_FREQUENCY	Double	Hz	FREQUENCY		Reference Frequency	
CHAN_FREQ	Double	Hz	FREQUENCY		Centre frequencies for each	
_	(NUM_CHAN)				channel in the data matrix.	
CHAN_WIDTH	Double	Hz			Channel width for each channel in	

LOFAR/ USG/ Data Formats Doc.nr.: Rev.: Date:

.....

	(NUM_CHAN)				the data matrix.
MEAS_FREQ_REF	Int		5		FREQUENCY Measure ref.
EFFECTIVE_BW	Double	Hz			The effective noise bandwidth of
	(NUM_CHAN)				each spectral channel
RESOLUTION	Double	Hz			The effective spectral resolution of
	(NUM_CHAN)				each channel
TOTAL_BANDWIDTH	Double	Hz			Total bandwidth for this Spectral
					window
NET_SIDEBAND	Int		0		Upper or lower
IF_CONV_CHAIN	Int				The IF conversion chain
FREQ_GROUP	Int				?
FREQ_GROUP_NAME	String				Same as FILTER_SELECTION in
	-				OBSERVATION table
Flag information					
FLAG_ROW	Bool		Fa	alse	Row flag

Notes: This table describes properties for each defined spectral window. A spectral window is both a frequency label for the associated DATA array in MAIN, but also represents a generic frequency conversion chain that shares joint physical properties and makes sense to calibrate as a single entity.

NUM_CHAN Number of spectral channels (must be equal throughout the MS). For LOFAR this number always is 256.

NAME Spectral window name: For LOFAR we use SBx where x is a number starting from 0 that indicates the subband number used. A LOFAR MS may have multiple subbands, but a subband can only be in a single MS.

REF_FREQUENCY The reference frequency. This is the frequency representative of this spectral window, usually the sky frequency corresponding to the DC edge of the baseband. Used by the calibration system if a fixed scaling frequency is required or in algorithms to identify the observing band. Note: For the WSRT this field gives the *midband* sky frequency of the IF band (NOT the frequency corresponding to the DC edge of the IF band, as stated in the MS2 definition). It is also the frequency of channel number (NUM_CHAN/2) + 1 in the array given in field CHAN_FREQ.

CHAN_FREQ Centre frequencies for each channel in the data matrix. Note that the channel frequencies may be in ascending or descending frequency order.

CHAN_WIDTH Nominal channel width of each spectral channel. Although these can be derived from CHAN FREQ by differencing, it is more efficient to keep a separate reference to this information. **MEAS_FREQ_REF** Frequency Measure reference for CHAN_FREQ. This allows a row-based reference for this column in order to optimize the choice of Measure reference when Doppler tracking is used. Modified only by the MS access code. The number is the enum value as given in the AIPS++ class MFrequency (5 is TOPO).

EFFECTIVE_BW The effective bandwidth of each spectral channel. Usually equals CHAN_WIDTH. **RESOLUTION** The effective spectral resolution of each channel (may be different from CHAN_WIDTH if some form of tapering has been applied).

TOTAL_BANDWIDTH The total bandwidth for this spectral window.

NET_SIDEBAND The net sideband (upper or lower) for this spectral window.

IF_CONV_CHAIN Site specific identification of the electronic signal path for the case of multiple (simultaneous) Ifs (e.g. VLA: AC=0, BD=1, ATCA: Freq1=0, Freq2=1). **[TBD:** Relevance for LOFAR] **FREQ_GROUP** A frequency group identifier to which the spectral window belongs. This is used to associate spectral windows for joint calibration purposes. For LOFAR, calibration is done per subband, but all subbands must be in a main band. We can therefore identify the main band here. **[TBD:** What should this be for LOFAR]

FREQ_GROUP_NAME The frequency group name. For LOFAR this contains the same value as the FILTER_SELECTION in the OBSERVATION table.

FLAG ROW True if the row does not contain valid data.

LOFAR/ USG/ Data Formats

3.12 STATE table

STATE Table: State information								
Name	Format	Units	Measure	Default	Comments			
Data								
SIG	Bool			True	Signal			
REF	Bool			False	Reference			
CAL	Double	K		0	Noise calibration			
LOAD	Double	K		0	Load temperature			
SUB_SCAN	Int			0	Sub-scan number			
OBS_MODE	String			Empty	Observing mode			
Flag information	· · ·		-		·			
FLAG_ROW	Bool			False	Row flag			

Notes: This table defines the state parameters for a particular data record as they refer to external loads, calibration sources or references, and also characterizes the observing mode of the data record, as an aid to defining the scheduling heuristics. It is indexed directly via STATE ID in MAIN.

SIG True if the source signal is being observed.

REF True for a reference phase.

CAL Noise calibration temperature (zero if not added).

LOAD Load temperature (zero if no load).

SUB_SCAN Sub-scan number (\geq 0), relative to the SCAN_NUMBER in MAIN. Used to identify observing sequences.

OBS_MODE Observing mode: defined by a set of reserved keywords characterizing the current observing mode (e.g."OFF-SPECTRUM"). It is used to define the schedule strategy. **FLAG_ROW** True if the row does not contain valid data. Does not imply flagging in MAIN.

This table is compulsory, but has no direct relevance to LOFAR. Its entries will not be used in any postprocessing tool as far as I am aware. We may use it eventually for simple calibration information (e.g. LOAD temperature), but currently it's not has no use within LOFAR.

3.13 DIPOLE table

DIPOLE Table: Dipole information						
Name	Format	Units	Measure	Default	Comments	
Data						
ANTENNA_ID	Int				Pointer to ANTENNTA table	
POSITION	Double(3)	m	POSITION		Position of each dipole	
POLARIZATION	String				X or Y	
Flag information						
FLAG_ROW	Bool			False	Row flag	

Notes: This is a custom table for use by LOFAR only. It contains information about the separate dipoles of each antenna field. It uses the ANTENNA_ID to specify to which antenna field the dipole belongs.

NAME Index into the ANTENNA table to show to which antenna field this dipole belongs. **POSITION** Position of the dipole relative to the POSITION of the ANTENNA. **POLARIZATION** Polarization of the described dipole, either X or Y for LOFAR. **FLAG_ROW** True if the row does not contain valid data. Does not imply flagging in MAIN.

LOFAR/ USG/ Data Formats

3.14 STATION table

STATION Table: Station information						
Name	Format	Format Units Measure Default Comments		Comments		
Data						
NAME	String				Name of the station	
CLOCK_ID	Int				Index of shared clock	
Flag information						
FLAG_ROW	Bool			False	Row flag	

Notes: This is a custom table for use by LOFAR only. It contains a list of all the stations that were present in the observation, mainly so the ANTENNA table can reference with the purpose of identifying which antenna fields are part of which station. It is indexed directly from ANTENNA though STATION_ID. It currently only contains the station name, but will probably be extended in the future.

NAME Name of the station. (e.g. "CS103", "DE602")

CLOCK_ID Number identifying a clock signal. It should be the same number for stations sharing a clock signal.

FLAG_ROW True if the row does not contain valid data. Does not imply flagging in MAIN.

3.15 HISTORY table

	HISTORY Table: History information						
Name	Format	Units	Measure	Default	Comments		
Кеу	Key						
Time	Double	S	EPOCH		Time-stamp for message		
OBSERVATION_ID	Int				Points to OVSERVATION table		
Data							
MESSAGE	String				Log message		
PRIORITY	String				Message priority		
ORIGIN	String				Code origin		
OBJECT_ID	String				Originating ObjectID		
APPLICATION	String				Application name		
CLI_COMMAND	String(*)				CLI command sequence		
APP_PARAMS	String(*)				Application parameters		

Notes: This sub-table contants associated history information for the MS.

TIME Time-stamp for the history record. Required to have the same TIME Measure reference as used in MAIN.

OBSERVATION_ID Observation identifier. This is an index into the OBSERVATION table. **MESSAGE** Log message.

PRIORITY Message priority with allowed types: DEBUGGING, WARN, NORMAL, SEVERE

ORIGIN Source code origin from which the message originated.

OBJECT_ID Origination ObjectID if available, else blank.

APPLICATION Application name.

CLI_COMMAND CLI command sequence invoking the application.

APP_PARAMS Application parameter values. For LOFAR this is an array of strings with the parset values.

[TBD: Should define which field contains a version number of the application]

LOFAR/ USG/ Data Formats Doc.nr.: Rev.: Date:

Class.: Public

3.16 Schema of the LOFAR MS

The figure below shows a graphical representation of the LOFAR Measurement Set. All subtables and columns in the MS are presented.

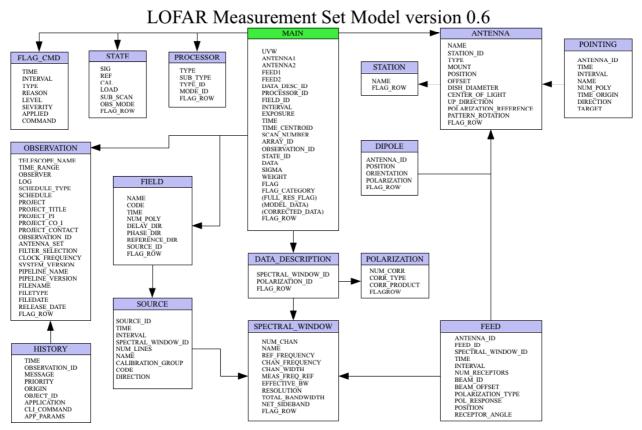


Figure 1: Schema of the LOFAR Measurement Set

A Appendix A: Translating the parset file.

The storage process that writes the MS obtains most of its meta-data through parset files. In this Appendix I will present how the translations are being done, and which Measurement Set fields are filled with which parset parameter values.

The Parset files are ASCII files containing lines of the type 'keyword = value(s)'. These are the basic command files for all LOFAR processes. Eventually the parset files are produced for each observation directly from SAS, but currently this is still a manual process.

A typical parset file contains many lines. The majority is used to setup the connections between the various hardware pieces (e.g., through MAC or IP addresses). Some of the parameters are related to the observation to be conducted. An example is given below (from the parset file L2006_00417.MS.parset):

```
Observation.BeamDirections = [0, 0.92]
Observation.DirectionType = J2000
Observation.NBeams = 1
Observation.NChannels = 256
Observation.NPolarisations = 2
```


 \otimes

LOFAR/ USG/ Data Formats

```
Observation.NStations = 16
Observation.NSubbandSamples = 155648
Observation.NSubbands = 1
Observation.PositionType = ITRF
Observation.RefFreqs = [6000000]
Observation.SampleRate = 156250
Observation.StartTime = 1164387436
Observation.StationPositions = [0.119879729, 0.92350930899999994, -
472.88506899999999, 0.119887278, 0.92351232000000005, -472.88491699999997,
0.119878255, 0.9235089229999998, -472.88505099999998, 0.119884052,
0.9235107860000003, -472.885062, 0.119851103, 0.9234817560000004, -
472.88248299999998, 0.11985772, 0.92348559600000002, -472.882901,
0.119864071, 0.92348159500000004, -472.882206, 0.119857454,
0.92347775600000004, -472.88176600000003, 0.11986825800000001,
0.92353613199999995, -472.8870600000002, 0.11987487600000001,
0.92353997200000004, -472.8868100000003, 0.11989796, 0.92353199900000005, -
472.88746800000001, 0.119891342, 0.92352816000000004, -472.88675499999999,
0.11995842800000001, 0.92350928600000004, -472.88546500000001,
0.1199650460000001, 0.92351312500000005, -472.88584800000001,
0.11997139699999999, 0.92350912500000004, -472.88518699999997,
0.11996477899999999, 0.92350528499999995, -472.88442500000002]
Observation.StopTime = 1164402434
Storage.IntegrationTime = 60
Storage.MSName = /data/L2006 00417.MS
StorageStationNames = ['CS10_dipole0', 'CS10_dipole4',
'CS10_dipole8', 'CS10_dipole12', 'CS01_dipole0', 'CS01_dipole4',
'CS01_dipole8', 'CS01_dipole12','CS08_dipole0', 'CS08_dipole4',
'CS08 dipole8', 'CS08 dipole12', 'CS16 dipole0', 'CS16 dipole4',
'CS16 dipole8', 'CS16 dipole12']
```

How and where are these fields entered in the MS? Let's pick out the associated lines of the parset file.

A.1 Pointing information

```
Observation.BeamDirections = [0, 0.92]
Observation.DirectionType = J2000
Observation.NBeams = 1
```

These fields give the RA, Dec coordinates of the beam in rad. They are entered in the following MS tables and fields.

- Table Pointing; Columns Direction, Target; Observation.BeamDirections. The Observation.BeamDirections field goes into the columnheader as keyword.
- Table Field; Columns Delay_Dir, Phase_Dir, Reference_Dir. The Observation.DirectionType field goes into the columnheader as keyword.
- Table Source; Column Direction; Observation.BeamDirections. The Observation.DirectionType field goes into the columnheader

As there is no source/target name supplied in the parset file, these are defaulted to "Beam-0". This is entered in the *Field::Name* field.

A.2 Antenna information

Details of the Antennae used are observation dependent . The relevant parset lines are:

LOFAR/ USG/ Data Formats

```
Observation.PositionType = ITRF
Observation.NStations = 16
Observation.StationPositions = [0.119879729, ... etc...]
Storage.StorageStationNames = ['CS10_dipole0', etc...]
```

This information is fed into the ANTENNA table, in the following columns:

Name: Storage.StorageStationNames

Position: Observation.StationPositions (preferably in X,Y,Z (m) ITRF; this comes from Observation.PositionType and must be fed into the *Position* column header keywords).

A.3 Frequency information

The frequency setup is handed over through the parset fields:

```
Observation.SampleRate = 156250
Observation.NChannels = 256
Observation.NSubbands = 1
Observation.RefFreqs = [60000000]
```

This is translated into the SPECTRAL_WINDOW table as follows:

The number of rows in the SPECTRAL_WINDOW table is given by the Observation.NSubbands; this is only for LOFAR-CS1 at this point. Later, the data will be distributed over the 12 storage nodes with each node handling a part of the total number of subbands.

The Observation.RefFreqs field gives the reference frequency, or the midpoint frequency of the observation for each subband.

The total bandwidth of the subband is given by Observation.SampleRate. This can either be 156250, or ???. This is in Hz.

From these numbers all information in the SPECTRAL_WINDOW table is determined:

Num_chan: Observation.NChannels.

Total_bandwidth: Observation.SampleRate (in Hz).

Ref_frequency: Observation.RefFreqs (this is in Hz).

Chan_width: Array of Observation.NChannels values which contains Observation.SampleRate divided by Observation.NChannels (in Hz).

Effective_bw and Resolution are equal to Chan_width.

Chan_freq: Array of Observation.NChannels values. Startvalue is Ref_frequency minus Total_bandwidth / 2 + (Total_bandwidth / Num_chan) / 2. It is assumed that the Ref_frequency is the value at the bottom side of channel Observation.NChannels/2 (first channel is channel 0). Name contains the string SB-x, where x is the subband number.

A.4 Time issues

Samples are correlated at a fundamental rate (determined by the samplerate at the stations). Before storing the data in the MS, a number of samples are integrated and averaged to a given integration time. The integration time (or rather, the number of samples to be integrated before writing them into the MS as a single sample) is user-defined in the parset file. Startime and endtime of the observation are also user defined and handed over in the parset file, and used at several locations in the MS. The parset lines related to time keeping are:

```
Observation.NSubbandSamples = 155648
Observation.SampleRate = 156250
Observation.StartTime = 1164387436
Observation.StopTime = 1164402434
```


LOFAR/ USG/ Data Formats Doc.nr.: Rev.: Date: Class.: Public

Ø

Storage.IntegrationTime = 60

The Observation.StartTime and Observation.StopTime are given in Unix seconds, i.e. seconds since Jan 1, 1970 in UT.

The fundamental correlator integration time is given by dividing Observation.NSubbandSamples and Observation.SampleRate, which for this example yields 0.9961472 seconds. The number given by Observation.NSubbandSamples can be determined as follows:

256 * (int) (Observation.SampleRate/(16*256))

This is related to the polyphase filtering used and the need to work with integer numbers. The number of samples integrated into a single row in the MAIN table of the MS is given by Storage.IntegrationTime. The total sample integration time in this example is thus: 59.768832 seconds. This is also the separation time between consecutive samples.

Based on these numbers the following fields are filled:

Main table: Exposure and Interval (set equal): total sample integration time

Time and *Time_centroid* (which are set equal): This is Starttime + *Scan_number* * *Interval*; this is also used to calculate the *UVW* coordinates of the baseline.

Observation table: Timerange: this is Observation.StartTime, Observation.StopTime **Pointing table:** Time and Interval: Observation midtime and duration from Observation.StartTime, Observation.StopTime.

Source table: Time and Interval: as in Pointing table.

Feed table: Time and Interval: as in Pointing table.

Field table: Time: Observation.StartTime.

A.5 Polarization

Polarization information is stored at two locations in the MS: The Polarization subtable and the Feed subtable. Indirectly, the number of polarizations used and correlated also determines the dimension of the fields that stores the data and the data-related information. The parset file only has one field for polarization:

Observation.NPolarisations = 2

For CS1, the polarization is always linear, thus the polarizations used are (X,Y). This is put in the *Feed* subtable:

Polarization_type: Fixed Polarization_respons: Fixed Receptor_angle: Fixed. Num_receptors: Fixed; equals Observation.NPolarisations

The BGL correlator calculates all cross-products and the data in the MS thus contains all of these: XX, XY, YX, YY.

This information is stored in the *Polarization* subtable:

Corr_type: contains the AIPS++-internal code for the four cross products.

Corr_product: contains the matrix that determines the four cross-products from the vector (X,Y). *Num_corr*: Gives the number of cross-products (i.e., 4).

A.6 DataSet naming

The name with which the MS is written to disk is taken directly from the parset file:

```
Storage.MSName = /data/L2006 00417/SBx.MS
```

Note, that in case more than one storage node is used in writing the data (e.g, when multiple subbands are written), this parameter is an array holding the MS names to be used for each storage node.

	LOFAR/	Doc.nr.:		
LOFAR	USG/	Rev.:		
LUFAK		Date:		
	Data Formats	Class.:	Public	

LOFAR/ USG/ Data Formats

Doc.nr.: Rev.: Date: Class.: Public

25 of 25