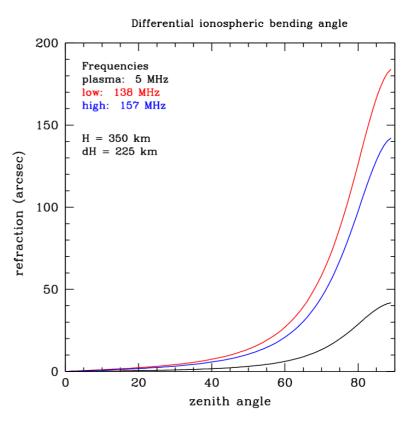

# Observing and processing European LOFAR data


- Some issues brought up by Jaap Bregman (draft memo 9jul08)
- Mixed with my own (EoR-biased) thoughts

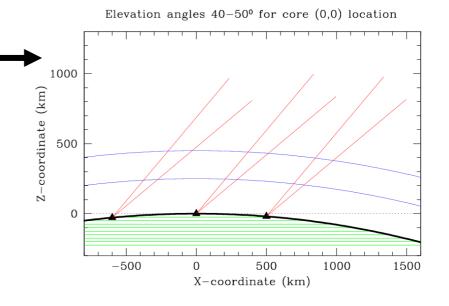
### Ionospheric refraction at LBA/HBA frequencies

Differential effects based on TMS2000 'analytic' model

Results are shown for a 'high' ( $v_p = 10$  MHz) and a 'low TEC' ionosphere ( $v_p = 5$  MHz)

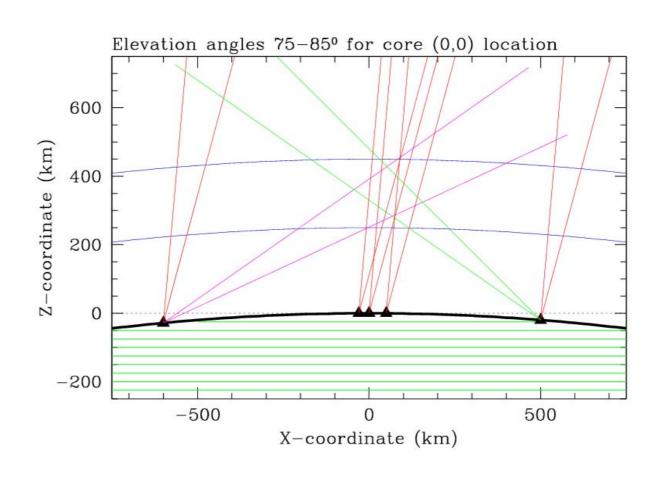





# Non-overlapping ionospheric screens

#### Basic problems of European LOFAR:

- 1) isoplanatic patch small (~ 3-15'?)
- 2) ~10x fewer calibrator sources
- 3) non-overlapping screens
- 4) datavolumes (0.2s, 1 kHz?)


A possible solution (for HBA)

- 1) solve for NL screen in NL-LOFAR
- 2) correlate ~ 10-20 superstation tiedarray beams with each Eustation (sensitivity ~ 10x better)
- 3) dynamically track the screen motion using ~ 10-20 probes
- 4) 1m x 600 km/h ~ 10 km ~ 2° at 300 km height



'default' mode for EoR KSP on much smaller scales ('rapid' allsky calibration mode)

# Thick ionosphere? Tomography situation complex



#### European calibration issues

(HBA 150 MHz)

|              |                    |            | _ 3.7° |
|--------------|--------------------|------------|--------|
| #antennas    | noise (Jy)         | FOV        |        |
|              | (10s,15 MHz, 2pol) | (HPBW,deg) |        |
| Eu96 - NL48  | 0.07               | 2.3x3.7    |        |
| (65m - 40m)  |                    |            |        |
|              |                    |            |        |
| Eu96 - SS288 | 0.03               | 2.3x0.5    |        |
| (65m - 300m) | ı                  |            |        |

#### Required on line:

- known positions to attempt correlation, or coherent addition of complex 0.2s visibilities, using SS6 ionospheric screen)
- global TEC model to predict refraction

### Compact source? Daytime observing and IPS!

European baselines: 800 km

 $\Rightarrow$  400 k $\lambda$  at 150 MHz  $\Rightarrow$  0.5" fringe

 $\Rightarrow$  160 k $\lambda$  at 60 MHz  $\Rightarrow$  1.25" fringe

During daytime compact sources with sightlines within ~ 45° from Sun will be affected by scintillation due to the Inter Planetary Medium (IPM). This causes amplitude fluctuations on timescales of seconds! Only sources that contain structure <1" will scintillate

A program to identify IPS scintillating sources, with core or superstation data, would be an interesting TRANSIENT and SolarSystem KSP program during MS<sup>3</sup>. They could find out which compact sources are suitable for European scrutiny!

# Smearing effects at long baselines

| LOFAR baseline | Angular distance from the phase centre at which 1% reduction |                             | Angular distance from the phase centre at which 10% reduction |             |
|----------------|--------------------------------------------------------------|-----------------------------|---------------------------------------------------------------|-------------|
|                | in relative peak response occurs                             |                             | in relative peak response occurs                              |             |
|                | $\Delta_V = 1  kHz$                                          | $\Delta v = 10 \text{ kHz}$ | $\Delta v = 1 \text{ kHz}$                                    | Δν = 10 kHz |
| 500 km         | 3.4°                                                         | 0.34°                       | 11°                                                           | 1.1°        |
| 1000 km        | 1.7°                                                         | 0.17°                       | 5.6°                                                          | 0.56*       |

Table 2: Summary of the effect of the bandwidth smearing on the relative peak response for various baseline lengths and bandwidth  $\Delta_V$  at LOFAR observing frequencies (assuming a Gaussian band pass filter).

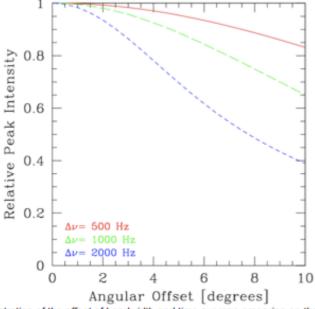



Figure 5: Demonstration of the effect of bandwidth and time average smearing on the relative peak intensity. The relative peak intensity is shown as a function of angular offset from the phase centre. For these 50 MHz observations using 0.25s integration time, curves are shown for three different channel bandwidths. Uniform weighting is used.