BBS Progress update & Status

V. N. Pandey, Joris Van Zwieten CS1 meeting.. May 9, 2007

Outline

- BBS calibration
- 2 Issues related to Imager
- 3 BBS Predict

1

4 Status - Conclusions/Next steps

MS1810

- Observation 30 March 31 March, 2007
 UTC (14h:31m to 06h:44m, Integration time 60s, 59.9 MHz, 0.6Khz)
- Tracking done on CasA (23:23:24, +58:48:54)
- Data Set is ok (Fringes seen due to CasA and even beating between CasA and CygA)
- Flagging done
- Calibration attempted using BBS

Output Image

Calibrated Image

The output image has

- CasA clearly seen
- CygA barely visible
- CygA position on the other (wrong) side of CasA (along RA)

Single Channel (110) 0.6Khz , Entire observation

Possible causes

Model Image (predicted using BBS)

- Calibration not working
- *uvw* convention in BBS flipped (as compared to in the MS)
- Confirmed by predicting model data using BBS and imaging it back.
- The source away from phase center has a dip rather than peak
- If we use w projection this dip becomes positive but positions do not change.
- Imager ?? Usage?
- Reordering of data set for BBS

Debugging

- Imager Issues ?
- Compare AIPS++ and BBS (Model Data and Model Image)
- Next stage to worry about solutions

Imager Issues

CygA predicted by aips++

 00^{h}

21^h

CygA predicted by aips++ and imaged back (1024x512)

• Dip

40°

30°

20°

Absurd scales

Imager does not behave correctly for non-separe images

Imager

- Two sources each of 1.0Jy
- predicted by aips++ and Imaged using AIPS++ (w projection, uvw from MS)
- Fluxes and positions all come out correctly (within 0.5% and arc seconds)
- So our Usage of Imager is correct.

Model Raw Image

Model Cleaned Image

BBS (uvw as in MS)

- Two sources each of 1.0Jy
- predicted by BBS and Imaged using AIPS++ (w projection, uvw from MS)
- Positions all come out correctly (arc seconds, beam 0.5 degree)
- BBS (an extra factor of half), so we expect the output flux as 0.5 each.
- Phase center source Flux 0.5 Jy, but off center source Flux 0.6Jy.
- Flux definitely ambiguous in prediction by BBS Model Raw Image
 Model Raw Image

Model Cleaned Image

Model Amplitude Comparison(AIPS++ & BBS)

X msplot: pl	lot 🎐						_ 🛛 X	X	
			Coordin	nete values				Forld	
	Reld I. Time 1017/07/09. 16: 53. 59.								
	erted data auplitude	0.571671						World	
Beady								Exady	
	BE	8 <mark>5 (</mark>	0.6) 0.6) cted)	ectral Window: 1 P	olarization: 1 Fiek	ds: BEAM_I	ns r	
tude (Jy) 0.85								amplitude (JV)	
Corrected data amplitude (Jy) 55 0.6							-	0 0 0	
							-	Corrected	
ν, ο ι, - ι, -	015		21	<u>, I ,</u> 1 00	03		-		
		Tirr	ie (offset from 200	17/03/30/00:00:00	.000)				
	1					zvieten 9-	Way-2007 07:34		
Save Print	(maet)			۶v			Dimiss	Save	

Relat Taxe WINDINGS & & S 10 Relat Taxes data equitate 1 STR3 Pro- Relat Taxes data equitate 1 STR3 Pro- Relat Taxes data equitate 1 STR3 Pro- NALPS++(0.5)) (Predicted) (Predicted)	
ns rame: /local/bbs/12007_01810_ira/12007_01810_S818-20.MS_p1_flagged Spectral Window: 1 Polarization: 1 Fiel (Predicted) (Predicted)	
ns name: /locd/bts/12007_01810_bts/12007_0000000000000000000000000000000000	
AIPS++ (0.5) (Predicted)	
2.0	klds: BEA
	-
t c c c c c c c c c c c c c c c c c c c	

For only 1 source (away from phase center)

Amplitude comparison

• BBS predicts higher amplitude (for source away from phase center)

• For source at phase center both agree

Model Phase Comparison(AIPS++ & BBS)

Phases agree 1 part in 10⁶ (Long baseline CS1-CS8)

BBS - extra *n* term?

Calibrated visibilities -> dirty image

$$V^{\circ}(u,v,w) = \int \int I(l,m) \bar{e}^{2\pi i \left[ul + vm + w\left(\sqrt{1 - l^2 - m^2} - 1\right)\right]} \frac{dldm}{\sqrt{1 - l^2 - m^2}}$$

$$F(l,m,n) = \left[\frac{I(l,m)\delta(\sqrt{1-l^2-m^2}-n)}{\sqrt{1-l^2-m^2}}\right] * P(l,m,n)$$

- Physically meaningful on surface of a sphere of unit radius (*l*²+*m*²+*n*²=1)
- need to check once again this equation in code
- here I(I,m) is brightness, for a point source perhaps we are not doing this division by $\sqrt{1-l^2-m^2}$ properly.
- $d(\Omega)=dl dm/n$, the integral gives the flux density
- •We have commented this extra term for the time being.

BBS (without the extra ? *n* term) Fluxes are now correct (both 0.5 Jy as input) Model Image 45° 30° 60° 60° 0.5 30° 0.45 06^h 0.4 0.35 J2000 Right Ascension ශ් J2000 0.3 0.25 (Jy/beam) 0.2 Declination 30° 0.15 15° 0.1 0.05 0° 0 -15° 21^h 00^h

J2000 Right Ascension

Amplitude and phases of visibilities both agree with that of AIPS++ predict

Retry calibration with BBS

Conclusions / Next Steps

- We have been able to verify predict stage of BBS. After changes, It agrees both in amplitude and phase with AIPS++ predictions.
- Usage of Imager is not an issue.
- Scripts to predict visibilities in glish and Matlab (done).
- Reordering of MS for BBS is not the reason, *uvw* also not the reason.
- Introduce artificial gains, put it in DATA column and let BBS solve back? -- Yes --> go to apply gains else as below !
- Add Noise and check the solutions obtained.
- Add Beam and check the solutions.
- Introduce polarization leakage and check.
- If needed Matlab can be used in parallel to check the solutions.
- If we can do the above, we are bound to succeed.

Thanks to Gianni for discussions and help (future algott)