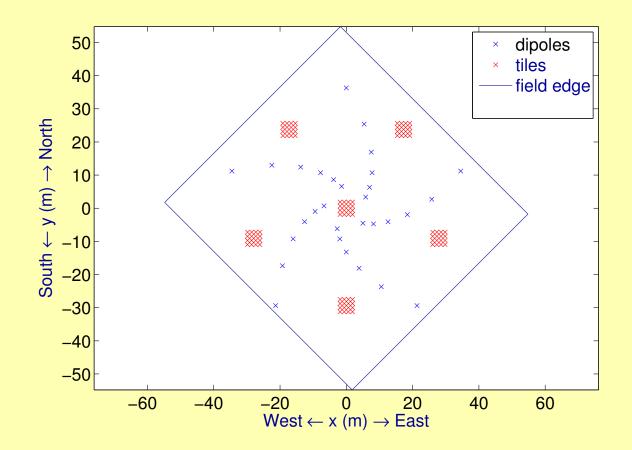


Michiel Brentjens (ASTRON)


Outline

- Objectives
- Configuration
- Experiments: single dipoles
- Experiments: tiles

Objectives

- Validate tile beam models (in full polarization) as function of
 - Pointing position
 - Frequency
 - Time
- Determine extent of crosstalk between tiles
- Assess stability of tile parameters
- Find as many tile defects as possible
- Assess magnitude of differences between tiles
- Determine effect of tile rotation
- Test beam tracking

Configuration

Configuration

Properties of setup:

- No clock distribution problems
- CEP can correlate up to 32 (48) subbands with 256 channels each for 4 dipoles
- STATCOR can correlate all baselines for up to 48 antennae/tiles for one subband of one channel
- One can validate existing beam models, not measure actual beamshape
- CEP and STATCOR experiments can run simultaneously
- no beamforming or delaycompensation when using STATCOR

Experiments: single dipoles

- Scan all subbands in order to find cleanest subbands (done last night, 195 kHz resolution, STATCOR)
- Scan smaller selection of bands at high spectral resolution (763 Hz, CEP)
- Validate single dipole beam models (CEP+STATCOR)
- 3× a single 48 hour synthesis in small selection of subbands (STATCOR)

Experiments: single dipoles

Beam validation:

- Beam models:
 - EM simulation + low order analytic expansion fit to those models (expansion by Johan Hamaker)
 - Attempt at analytical model analogous to LBA model (Sarod Yatawatta)
- Predict CasA + CygA visibilities on intermediate baselines $(20 150\lambda)$ using beam models
- Correct visibilities for receiver Jones matrix with constant amps on diagonal, constant complex off-diagonal terms, and time variable diagonal phases
- Compare model prediction to observed cross correlations. (3 × 4×8h, 8 subbands, 60s integration, STATCOR)

Experiments: tiles

Beamshape

- Cross-talk between dipoles important: use EM models of complete tiles
- **STATCOR** Procedure during each of 3×4 nights of 8 h per night:
 - form cross correlations between all dipoles and tiles
 - cycle through 4 pointing positions
 - dwell for 2 minutes on each position, one minute per subband
- **CEP** procedure during each of 3×6 nights of 8 h each:
 - form cross-correlations between 1 tile and 3 dipoles in 32 (48) subbands
 - cycle through 8 pointing positions at 30 s integration
- $3 \times$ a single 48 h run in a small selection of subbands (STATCOR)
- Tracking experiment: use four tiles to track Cas A for 48 h (CEP).
- Repeat with tiles in closely packed config

Experiments: tiles

Rotation of tiles STATCOR:

- Rotate tiles in steps of 30°
- observe in highest freq range
- Cycle through 8 pointing positions at 30° elevation (60 s per position, 30 s per sub band, one night of 8 h)
- Form all cross-correlations between antennas and tiles
- Observe for 48 hours in two sub bands

Required observing time

- 49×8 hours at night
- 11×48 hours
- total of 69 days needed. Oops...