

Piercing Points

satellite

-

spherical earth assumed
$1 / \cos \left(\alpha^{\prime}\right)$ correction
for thickness ionosphere
fixed h at 400 km
cut at $\alpha>60^{\circ}$

Residuals $=\mathrm{MIM}(\mathrm{t}) \cdot 1 / \cos \left(\alpha^{\prime}(\mathrm{t})\right)-$ TEC $_{\text {measured }}-$ bias $_{\text {sat,station }}$ simultaneous fit of MIM + bias possible over longer times principle proved by MeqTree simulations

Residuals

res:time $\{\operatorname{sat}==14 \& \& s t a t==4 \& \& t e c>-900 \& \& r e s>-900 \& \& \cos (\operatorname{asin}(\sin (\operatorname{acos}(1 . /$ scale $)) *(1 . /(6372276.913 / 6778135))))>0.5$. difference between! $2^{\text {nd }}$ and $4^{\text {th }}$ order MIM fit

Solution very sensitive to input: eg. 3 hour fit/ 2×1.5 hour fit residuals about the same (0.1 TEC)
difficult to separate bias from MIM

Investigate Bias at track level

$\mathrm{TEC}_{\text {measured }} \cdot \cos \left(\alpha^{\prime}\right)=$ bias $_{\text {sat, station }} \cdot \cos \left(\alpha^{\prime}\right)+\mathrm{TEC}(\mathrm{t})$
FIT: p0 + p1•cos $\left(\alpha^{\prime}\right)$
From MeqTree fit: Bias = 14.1

