

Calibration Requirements of Cosmic Ray Measurements

Andreas Horneffer for the Cosmic Ray KSP

Energy (eV/particle)

(V)HECR Science Goals

- Air shower physics
 - Understanding the emission process
 - Determination of the particle energy and type
 - Direction reconstruction
 - Search for isotropic radiation
- Cosmic ray physics
 - Determination of the CR spectrum
 - Determination of the CR composition
 - (Arrival directions)

(V)HECR Requirements

- Triggering (online) requirements:
 - Well ... (Know which antennas work.)
- Determine the pulse height (offline)
 - Calculate field strength from ADC values
 - Field strength error for one station: $\Delta E/E < \sim 2\%$
 - $\rightarrow \Delta E/E < \sim 20\%$ for a single antenna
- Measurement of the shower disc shape (offline)
 - Measure the pulse arrival time in different antennas
 - Relative timing error: $\Delta t < \sim 0.1$ ns
 - at least inside a station, preferably also inside the core
 - not needed to remote stations

UHEP Science Goals

- Measure radio pulse and identify it as an UHEP radio pulse (for the first time)!
 - Bandwidth limited pulse
 - From the Moon (i.e. outside the ionosphere)
 - From one spot on the Moon
- Measure features of the pulse:
 - Position on the Moon
 - Pulse strength at the Moon
 - Polarisation

- Triggering requirements (online):
 - The formed beam should stay on the moon
 - Pulse widening due to uncorrected dispersion in the order of the pulse width: (ΔSTEC < 1TECU ?)
- Analysis requirements:
 - The position on the Moon determined with full LOFAR resolution
 - Pulse widening due to uncorrected dispersion less than the pulse width: (ΔSTEC << 1TECU ?)