Ionospheric modeling using the Peeling Scheme

Huib Intema Sterrewacht Leiden

Problem Definition

V = FOV

A = array size

S = scale size ionospheric disturbances

'Simple' solution case 3 & 4

 Divide field-of-view V into small isoplanatic patches ΔV << S

 Model the (time-varying) Ionosphere over the array

 Use ionospheric model to obtain a single phase correction per antenna per patch ΔV per timeinterval Δt

Simple model assumptions

- Thin layer ionosphere (no vertical structure) at fixed height
- 2D phase screen with limited number of parameters per Δt
- Phase per antenna is constant over ΔV and Δt
- Stokes I only

Huib Intema, Leiden Observatory

VLSS: case 3 model fitting

- Small array (A << S): gradient approximation
- Apparent shifts of bright sources across the FOV
- Snapshot-imaging every Δt to measure position offsets of sources and convert into gradients
- Low order model fit to gradients
- Model gradients applied to every patch ΔV

Huib Intema, Leiden Observatory

LOFAR: case 4 model fitting

- Larger array (A ≥ S): higher order phase effects over the array
- Apparent shifts and distortions of sources across the FOV
- Phase corrections through calibration towards different bright sources (peeling)
- Higher order model fit to calibration solutions
- Model phases applied to every patch ΔV

Simplified implementation for larger existing arrays (VLA-A, GMRT)

- Using Python and classical AIPS through ParselTongue interface (RadioNet)
- UV data is self-calibrated and imaged before peeling, to obtain and subtract an initial source model
- One by one, bright sources are temporarily added back and self-called, thus producing a set of phase corrections
- ◆ Per time interval ∆t, ionospheric puncture points from antennas towards peeled sources are calculated
- Phase corrections are mapped to puncture points and a model fit is performed (Zernike pol's using LM-method)
- Model is used to predict phase corrections at every patch ΔV covering the FOV
- The whole FOV is imaged by iteratively imaging and cleaning individual patches while using the appropriate phase corrections

Collaborators

NRAO: Bill Cotton, Jim Condon

NRL: Aaron Cohen

 NCRA/GMRT: Pramesh Rao, Dharam Vir Lal, Ishwara Chandra

 Leiden: Huub Röttgering, Amitesh Omar, Ilse van Bemmel, Niruj Mohan, Berry Holl, Reinout van Weeren

Huib Intema, Leiden Observatory

Ionospheric layer puncture points

From Noordam (2006), LOFAR Calibration Framework

June 27, 2007

Huib Intema, Leiden Observatory

Mapping phases to puncture points

Test case: simulated data

 Model UV data set, based on real VLSS observations

20 point sources only

No noise added, no instrumental errors

 UV data distorted by re-application of ionospheric model obtained from VLSS calibration scheme

Relatively quiet ionospheric weather

Test case model fitting

Some test case results

 Used 9 out of 20 sources to fit ionospheric model using 8 Zernike polynomials

Movie gives the impression of time-continuity

Residual phase rms (model – observations):
< 2 degrees for 9 sources used for fit
< 6 degrees for 11 sources not used for fit

Unfortunately no corrected images yet

Test case analysis

 Comparison between VLSS model's input phases and our model's output phases

(Debugging of the imager routine)

 Image analysis: Strehl ratios, flux retrieval, dynamic range

 Comparison between output images of VLSS calibration scheme and our scheme

Further steps

- Increase complexity of model data:
 - More severe Ionosphere
 - Noise in visibility data
 - More complex sky model

Apply calibration scheme to real data:

- VLSS data with severe ionospheric weather
- Other 74 MHz VLA data in A-configuration
- GMRT data at 150 MHz

Explore model parameter space