Black Board Self Calibration Progress/Status

V. N. Pandey, Joris van Zwieten DCLA meeting, ASTRON June 26, 2007

Outline

(1) BBS calibration - recap
(2) BBS - Detailed checks on Simulated data
(3) BBS - Checks on CS1 Data \& Comparison with MeqTree solutions
(4) Status - Conclusions/Next steps
(5) Example of effect difference in sign of $u v w$ during obsvn and solving

Output Image - MS1810

-16 hours, 30 March - 31 March, 2007, 16 dipoles tracking on CasA

- 24 sub bands, each 256 channels, 0.6 KHz resolution
- For all analysis Subband 20, around 64.99 MHz

Calibrated Image

The output image has

- CasA clearly seen
- CygA barely visible
- CygA position on the other
(wrong) side of CasA (along RA)
- Default BBS uvw convention -> opp to CS1 -> Fixed
- w projection needs to be used properly -> Fixed

Single Channel (110) 0.6Khz, Entire observation

BBS without extra n term

- We have removed an extra division by n term in BBS

Two sources each of 1.0 Jy

- Predicted by BBS, Imaged using AIPS++
- Fluxes and positions all come out correctly (within 0.5% and arc seconds)
- So BBS Prediction and our Usage of Imager is correct. Model Raw Image

Retry calibration -> BBS -> Image

BBS Debugging

Simulated Data

Observed Data

We decided to go for bottom up approach -> build up and check from scratch

BBS CHECKS - SIMULATED DATA

- Predict -> Checked by comparing with AIPS++, MeqTrees, Glish Script All Agree with each other.
- Solve
- Correct
- Subtract

BBS Solver

- Predict the model visibilities (say CasA-> 3,000 Jy, CygA=20,000Jy)
- Corrupt them with artificial gains (Amplitude and Phase)
for both directions - CasA (source1) and CygA (source 2)
- Gain in direction of CasA
$\mathrm{G}($ Amp $)=1.25^{*}$ Antenna Number
$\mathrm{G}($ phase $)=0.1^{*}$ (Antenna Number -1)
- Gain in direction of CygA
$G(A m p)=0.8^{*}$ Antenna Number
$G($ phase $)=0.33^{*}$ (Antenna Number -1)
(Phase of first antenna frozen to zero)
- Solve for the antenna based amplitudes and phases,
- 50 Iterations for each time slot,
- solve domain size=60s (~1 time slot),
- solutions from one time slot passed on to the next.
- No positivity constrain on Amplitude, so All amplitudes gains can be negative (consistent)-> as interferometers measure product of antenna amplitude gains and difference of antenna based phases

BBS Solver Amp/Phase -> CasA

Antenna No. 14, XX
Expected $A=17.5$, Phase=1.3 rad

BBS Solver - Amplitude/Phase -> CasA

$G(A m p)=1.25^{*}$ Antenna Number, $G(p h a s e)=0.1^{*}$ (Antenna Number -1)
Ant No. $13 \times X$ Source no 1 BBS

BBS Solver Amp/Phase -> CasA

BBS Solver Amp/Phase -> CygA

BBS Solver - Inferences

- The Amplitude and phase gains can be recovered without any ambiguity for each of the source directions
- There is no interplay between the Gains in direction of CasA and CygA.
- Number of iterations required by the solver to converge is about 250.
-These same gains were also obtained using MeQTrees
(similar number of iterations).
-BBS Solver works fine for simulated data.

BBS Correct/Subtract

- The correct step was tested using the complex gain solutions obtained
- The corrected visibilities were found to be same as predicted visibilities without the antenae gains.
- The correct Step also works fine.
- The Subtract step was checked by subtracting one, and both sources and compared with the expected residual and found to be as expected.
- Subtract Step also works fine.
- All Aspect of BBS verified on Simulated Data -> predict, solve, correct, subtract. (for both XX and YY independently)
- All steps checked also specifying complex gains as real and imaginary format (in addition to Amp and Phase)

BBS CHECKS - OBSERVED DATA

- BBS calibration attempted on observed data.
- Visual inspection of image -> does not convey much of calibration quality
- Comparison of solutions obtained by MeqTrees
- Use of Pipeline set up by Ronald

Solutions (Meq) good enough - images have
at least CasA, CygA, Tycho clearly visible. (3 iterations, no MMSE)

- Same flagging script.
- Channels 31-39 (0 based)

BBS solver comp with MeqTrees

BBS solver comp with MeqTrees

BBS solution - MeqTrees comparison

- Both BBS and MeqTree solutions agree very well for first 128 time slots for all antennas (XX, YY)
- This 128 time stamp is relative from where we start solving
- After -> the difference increases drastically by a factor > 100
- Changed the BBS solver version to same as of MeqTrees
-> Does not change anything significantly..
- Careful inspection -> tempting to conclude an index shift between BBS and MeqTree solutions.

BBS Solution - Difference Analysis

BBS Solver - Difference Analysis

- Most likely we have been able to identify the cause.
- BBS defines solve domain as time duration (we use 60s), actual integration time $\sim 59.768 \mathrm{~s}$
- In 130 time slots, fractional part (0.232s) builds up to 30s
- Two time stamps get assigned to same solve domain.
- Meq tree (subtiles) is in units of time samples so no issues.

A 'work around' solution -
We changed solve domain to 59.768 s

BBS solution - Recomparison with MeqTree

Antenna 5

-- difference

BBS solution - Recomparison with MeqTree

Antenna 5

BBS solver - more remarks

- Why couldn't we track this in simulated data
- Solution had already converged by time stamp 128 and our gains were constant with time. !!!
- Time dependent gains perhaps would have helped detecting it.

Nevertheless !!
We should be now able to fix this soon.. And then calibrate !!

Conclusions / Next steps

- We have verified all four stages - predict, solve, correct and subtract of BBS on simulated data. (both XX and YY polarization)
- Only one error - extra division by direction cosine n was found. (and a few default settings have been changed).
- Our comparison of BBS solution with MeqTree solutions match well till ~128 time slots of solving. After which an increase in difference by a factor of about (>100) is seen. -> We have now identified the cause.
- Once fixed, we should be able to calibrate data !! Interesting!
- Interpretation of solutions!! -> Make Image.
- Simulated Data - Add Noise, Beam and check the solutions obtained.
- Introduce polarization leakage and check.

Thanks to Ronald for setting up "reproducible" MeqTree Pipeline

Effect - Predict/Solve with diff uvw signs - casA

Say CasA-> 3,000 Jy, CygA=20,000Jy*)

$G(A m p)=1.25^{*}$ Antenna Number, $G(p h a s e)=0.1^{*}$ (Antenna Number -1)
Ant No. 2 KX Source no 1 BBS

Effect - Predict/Solve with diff uvw signs - cygA

$\mathrm{G}(\mathrm{Amp})=0.8^{*}$ Antenna Number, G (phase) $=0.33^{*}$ (Antenna Number -1)

Inferences

- We can't recover Amplitudes and Phases Gains
if we use diff uvw convention during solving
- Solutions appear to be noisy as if interaction between two direction gains.
- Nevertheless it is physically/mathematically incorrect also, as 16 antenna based complex gains cannot absorb 120 complex (98) different baselines based phases introduced by the off center source.

Steps

MS1810

- Observation MS1810, 16hours, 30 March - 31 March, 2007 UTC (14h:31m to 06h:44m)
- 16 micro stns, (1 dipole turned on in each of them).
- 24 subbands, 160 MHz clock.
- Integration time ~60s
- Tracking done on CasA (23:23:24, +58:48:54)
- Subband 20 (Freq , 256 channels)
- Data Set is ok (Fringes seen due to CasA and even beating between CasA and CygA)
- Initial Flagging and attempted straight forward calibration using BBS.

Imager Issues

CygA predicted by aips++ and imaged back (1024x512)

- Dip
- Absurd scales

CygA predicted by aips++ and imaged back (1024x1024)

Imager does not behave correctly for non-square images

BBS - extra n term?

- BBS predicts higher amplitude (for source away from phase center)
- Calibrated visibilities -> dirty image

$$
F(l, m, n)=\left[\frac{I(l, m) \delta\left(\sqrt{1-l^{2}-m^{2}}-n\right)}{\sqrt{1-l^{2}-m^{2}}}\right] * P(l, m, n)
$$

- Physically meaningful on surface of a sphere of unit radius $\left(I^{2}+m^{2}+n^{2}=1\right)$
- need to check once again this equation in code
- here $l(l, m)$ is brightness, for a point source perhaps we are not doing this division by $\sqrt{1-l^{2}-m^{2}}$ properly.
- $d(\Omega)=d l d m / n$, the integral gives the flux density
- We have commented this extra division by n term for the time being.

Predict (using uvw sign CS1), solve (opp uvw)

- Introduce known Gains (Amplitude and Phase)

for both directions - CasA (source1) and CygA (source 2)

- Predict the model visibilities (say CasA-> 3,000 Jy, CygA=20,000Jy*)
- Corrupt them with artificial gains
- Gain in direction of CasA
$G(A m p)=0.1^{*}$ (Antenna Number -1)
G(phase)=1.25*Antenna Number
- Gain in direction of CygA

$$
G(A m p)=0.33^{*}(\text { Antenna Number }-1)
$$

G(phase) $=0.8^{*}$ Antenna Number
(Phase of first antenna frozen to zero)

- Solve for the antenna based amplitudes and phases,
- Iterations -> 50 for each time slot,
- solve domain size=60s (1 time slot),
- solutions from ont time slot passed on to the next.
- No positivity constrains on Amplitude, so All amplitudes gains can be negative but that is consistent as interferometers measure product of antenna amplitude gains and difference of antenna based phases

