
Transients Key Project:
Pipeline Overview and Status

John Swinbank
University of Amsterdam

DCLA Project Meeting
26/27 June 2007

Overview

• Pipeline structure

• Data handling

• Identifying transients

• Finding & measuring sources

• Databases

• Classification

• Triggering

• Current status & demo

Pipeline Group Members:

Thijs Coenen,
Casey Law,

Joseph Masters,
James Miller-Jones,

Bart Scheers,
Hanno Spreeuw,
John Swinbank
Ben Stappers,
Ralph Wijers,
Michael Wise

What are we aiming for?

• The Radio Sky Monitor concept

• Monitoring the whole sky continuously for radio
transients

• More practically: 25% of the sky in 24 hours,
focusing on the zenith and galactic plane

• Logarithmic series of timescales: 1 to 105 seconds

• Complete processing of two datasets every second:
performance critical.

• Collaboration

• Maintain a publicly accessible lightcurve archive

• Generate and respond to external triggers

Pipeline Overview

• Input data already processed by
main central LOFAR pipeline

• Three major stages to consider:

• Detecting new transients:
differencing

• Monitoring known transients

• Archiving all measurements

• Two (three) database areas

• Prototyping and development
using Python; potential to
implement performance critical
components in C++ if required.

Data Handling

• We are flexible in our data input source:

• MeasurementSets

• FITS files

• Later HDF5

• Current data input through a hacked up
mixture of AIPS++, PyCASA & PyFITS

• Ready to switch to Data Access Library—see
Joe Masters’ talk next—as soon as it’s
mature.

• Internally, an ‘imagedata’ class stores data
as a NumPy array of pixel values +
associated metadata.

• High performance & flexible

• Easy to integrate with other tools (later)

It − 0.5× [It−δt + It+δt]

-800-600-400-200 0 200 400 600 800
u

-800

-600

-400

-200

0

200

400

600

800

v

uv-coverage

t1
t2
t3

0 1 2 3 4 5 6
!"

0

1

2

3

4

5

6

#
"

Original image

-6e-02
-4e-02
-2e-02
0e+00
2e-02
4e-02
6e-02
8e-02
1e-01
1e-01

0 1 2 3 4 5 6
!"

0

1

2

3

4

5

6

#
"

Image-differenced visibilities

-2e-08
-2e-08
-1e-08
-1e-08
-5e-09
4e-11
5e-09
1e-08
2e-08
2e-08

0 1 2 3 4 5 6
!"

0

1

2

3

4

5

6

#
"

uv-differenced visibilities

-4e-08

-2e-08

0e+00

2e-08

4e-08

6e-08

8e-08

1e-07

One-second differences

• Differencing

• Simulations

• uv versus image plane

• Two or three point

• Best signal to noise achieved by
three-point image differencing, i.e.

Identifying Transients

Source Detection and Measurement
Hanno Spreeuw

• Need for speed as well as accuracy

• Comparison of different source extraction packages

• SExtractor

• Fast!

• Limited fitting options; poor results at high signal to noise

• STScI Python

• Flexible: SExtractor in a few lines of code, easily extended

• Integration with NumPy infrastructure

• Acceptable performance

• Measure flux at arbitrary image points

• Pluggable architecture: easy to switch method

• Possible future synergy with Surveys KP/BDSM

• Fluxes measured in each image by flux extraction software; immediate save to
database (‘Working Table’).

• Multiple frequency planes of image cube at each timestep → associate sources by
position to build spectrum.

• Once we have a spectrum, calculate derived quantities such as spectral index.

Building Lightcurves

• A spectrum for each timestep is saved in the DB:
associating them to produce lightcurves is done
in a DB query.

• Could search simply by position, or by other
source properties.

• HTMIDs make complex positional searches
easy tractable.

Databases and Archiving
Bart Scheers

• Working Table

• Temporary holding pen for raw measurements from images

• Pointing Table

• Snapshot of the archive for the current pointing on the sky: contains positions for
monitoring, measured spectra etc

• Archive

• Long term storage for all measurements

• Extreme performance demands: petabyte size, data-mining

High Performance Databases: MonetDB

• MySQL is powerful and flexible; ideal for
working area. However, it struggle under the
archive load.

• MonetDB is a high-performance database
under development at CWI in Amsterdam

• Optimised for data mining applications

• Column based layout (vs. rows in
traditional RDBMS): queries are cheap

• Self tuning, optimised for modern CPUs

• 10x better performance than traditional
systems under some workloads

• TKP team (Scheers) liaising with CWI on
database development

x > 5.4

NOISE

yes

0.3 x + 0.4 y > 3.2

no

SIGNAL

yes

NOISE

no

Source Classification
Thijs Coenen

• Classification is needed both for effective
data mining and to inform our response to
new objects.

• Classifier runs asynchronously from the rest
of the pipeline: receives notice of database
updates, and processes them in its own
time.

• Thus, can make decisions based on time
series information without delaying the
pipeline.

• Thijs Coenen investigated a variety of
different classification algorithms and
methods. Best results from a decision tree
system.

Triggers and Alerts

• Intelligent response to data received.

• ‘Snap response’ trigger: we detected something noteworthy, now reconfigure the
array, freeze the TBBs, etc.

• More considered alert: generated after classifier identifies a new source of a
particular type that satisfies quality control constraints.

• Foster direct collaboration with other instruments for responding to transients.

• Also more generic alert systems like VOEventNet.

• Both types of alert easily generated by adding hooks to Python code.

• Also ability to respond to alerts: both our own and from other instruments (this
feature not yet implemented).

Current Status & Demo

• Pipeline currently in prototyping and
development stage.

• Most core functionality exists (see talk
by Casey Law); database integration
still being worked on.

• Classifier yet to be integrated.

• Next the three Ps: profiling,
performance and parallelization.

• Full end-to-end prototype complete by
the end of this summer.

• To finish: a demo of work in progress.

