Deep observations with CS1 for a survey of SNRs

N. MOHAN \& M. PANDEY

CSI meeting
ASTRON, Dwingeloo, 25th July 2007

CSI- LBA Current status

Frequency (MHz)	30	$55-60$	80
Synthesised Beam (arc min)	(~ 20)	half power (~ 10)	(~ 8)
Largest Detected source (degrees)	-	~ 4	-
Best rms sensitivies achieved (Jy)	-	$2-3$	-

CSI data could be used to study the spectral behavior of bright sources in the Northern Galactic plane.

SNRs are good candidates for this study

- Niruj has plotted Dave Greens SNR catalogue on 102339 image of Sarod (CS1 data at 60 MHz).
- Resolved shell structure of half a dozen SNRs are seen in the CSI image.
- It will be useful to carry out $30-80 \mathrm{MHz}$ observations on these sources
- Niruj's 'Noise' package + manual is available to carry out image analysis, associating source lists and analyzing source lists against external catalogues.
- A python version of BDSM is available now.

Red circles represent SNRs (size of the circle represents the size of the source) from Dave Green's catalog

Red circles- 4C catalog, Green circles- 3C catalog, Blue circles- DG SNRs

Note HB3 has a resolved shell morphology

(

(1930

.

Note HB21 shows a well resolved shell morphology with multiple components

_

2

An

路
 號
 ．

Blown up image of HB 21showing multiple components

$$
\text { Blown up image of mb } 21 \text { showing multiple components }
$$

Abstract

 $\begin{array}{lll}2150 & 2200 & 22\end{array}$ $2150 \quad 2200$

（200，
（200，

Blown up image of HB 21 showing multiple components
Blown up image of HB 21 showing multiple components
Blown up image of HB 21 showing multiple components
（2）
（2）
（2）
（2）
（2）
（C）
Blown up image of HB 21 showing multiple components
Blown up image of HB 21 showing multiple components
（2）

$$
\ldots
$$
 $t+\frac{1}{2}+2$

 ？

 \section*{\section*{

 \section*{

 \section*{

 1450}}}

 \section*{

 \section*{

 1450}}}

 \section*{

 \section*{

 1450}}}

 \section*{

 \section*{

 1450}}}

- Multiple components of HB 21 are consistent with this image at 232 MHz with the WSRT (Zhang et al. 2001 ChJAA, 1, 443)

Fig. 1 The intensity map of HB21 oberved with the MSRT^{\prime} at 232 MHz .

We would like to carry out a similar study for the following bright spiral galaxies and halos:

Source
Flux density (57.5 MHz)
(Jy)

1- NGC 253	48 ± 9
2- NGC 1068 (M77)	39 ± 8
3- NGC 3034 (M82)	29 ± 6
4- NGC 5236 (M83)	29 ± 5

5- Abell 225625

