Deep observations with CS1 for a survey of SNRs

N. MOHAN & M. PANDEY

CSI meeting ASTRON, Dwingeloo, 25th July 2007

CSI- LBA Current status

Frequency (MHz)	30	55 - 60	80
Synthesised Beam (arc min)	(~20)	half power (~10)	(~8)
Largest Detected source (degrees)	-	~4	-
Best rms sensitivies achieved (Jy)	-	2 - 3	-

CSI data could be used to study the spectral behavior of bright sources in the Northern Galactic plane.

SNRs are good candidates for this study

- Niruj has plotted Dave Greens SNR catalogue on 102339 image of Sarod (CS1 data at 60 MHz).
- Resolved shell structure of half a dozen SNRs are seen in the CSI image.
- It will be useful to carry out 30-80 MHz observations on these sources
- Niruj's 'Noise' package + manual is available to carry out image analysis, associating source lists and analyzing source lists against external catalogues.
- A python version of BDSM is available now.

SNRs visible in the CS1 skv

source) from Dave Green's catalog

Red circles- 4C catalog, Green circles- 3C catalog, Blue circles- DG SNRs

Note HB3 has a resolved shell morphology

Note HB21 shows a well resolved shell morphology with multiple components

• Blown up image of HB 21showing multiple components

Multiple components of HB 21 are consistent with this image at 232 MHz with the WSRT (Zhang et al. 2001 ChJAA, 1, 443)

Fig. 1 The intensity map of HB21 observed with the MSRT at 232 MHz.

We would like to carry out a similar study for the following bright spiral galaxies and halos:

Source	Flux density (57.5 MHz) (Jy)	
1- NGC 253	48 ± 9	
2- NGC 1068 (M77)	39 ± 8	
3- NGC 3034 (M82)	29 ± 6	
4- NGC 5236 (M83)	29 ± 5	
5- Abell 2256	25	