

Classic AIPS

versus

AIPS++

Dharam Vir Lal

D. V. Lal Max Planck Institute for Radio Astronomy

Classic AIPS vs aips++

Plan

• • •

Classic AIPS

The NRAO AIPS is a software package for interactive (and, optionally, batch) calibration and editing of radio interferometric data and for the calibration, construction, display and analysis of astronomical images made from those data using Fourier synthesis methods.

Development 1978

Over 4300 files containing 1.46 million lines of text.

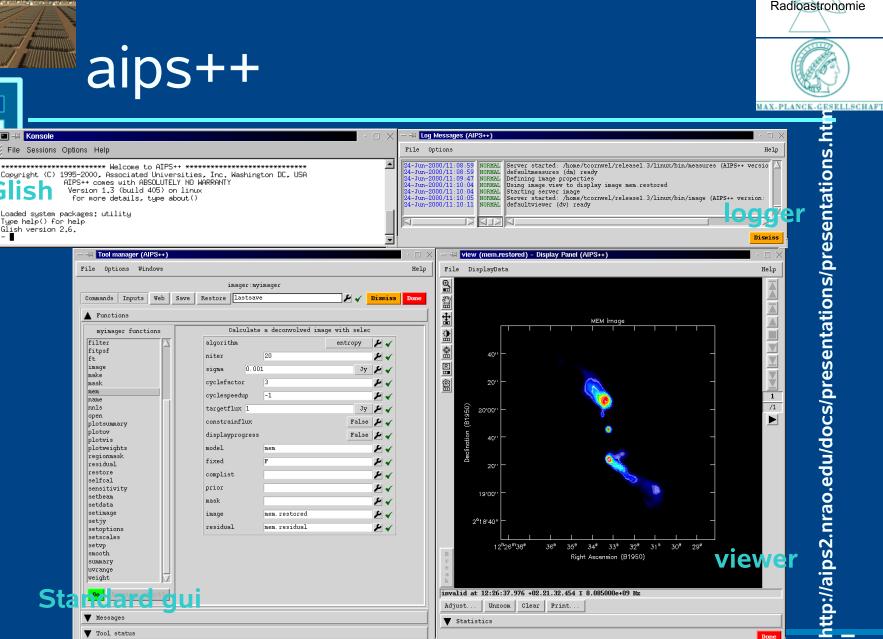
Over 2300 Fortran and C source files

350 distinct application "tasks".

Free Software foundation's General Public Licence.

aips++

aips++ provides facilities for calibration, editing, image formation, image enhancement, and analysis of images and other astronomical data. A major focus is on reduction of data from both single-dish and aperture synthesis radio telescopes.


- Tool-based approach
 - programmable by the user
- # Mouse driven Graphical User Interfaces
- Programmed to be flexible and versatile to use.
 Free Software Foundation's General Public License.

AIPS++

- C++
 - Bulk of code (> 1,700,000 lines)
 - C++ libraries have wide range of general utilities for data access, display, calibration and imaging.
 - Connected to IDL-like command language and GUI interface

grand toul aips++

Max-Planck-Institut

aips++

- table:
 - access to all AIPS++ data
- <u>tablebrowser</u>:
 - edit, plot, query, and select data. Configurable.
- <u>viewer:</u>
 - display images, tables, measurementsets
- pgplotter:
 - plotting of Glish variables using the Caltech PGPLOT library
- quanta and measures:
 - measured quantities with units, coordinates, and reference frames; and their conversion
- catalog:
 - file manager

Max-Planck-Institut für Radioastronomie

<u>ttp://aips2.nrao.edu/docs/presentations/presentation</u>

Software AIPS / aips++

- This are

	Dictionary								
_		JICUUIA	II Y	IMF					
				IMS					
	AIPS Task/Verb	Description	AIPS++ tool/functic	ISP					
	APCLN	CLEAN deconvolution	imager.clean	JM					
	BLCAL	Baseline-based (A, \$) calibration	calibrater.solve	LIS					
	BLING	Baseline-based fringe-fitter	not yet available	МС					
	BPASS	Bandpass calibration	calibrater.solve	MK					
	CCEDT	Edit CC tables	componentmodels	мо					
	СОМВ	Image combination	image.calc	MS					
			imagepol	МХ					
	CPASS	Polynomial bandpass calibration	calibrater.solve						
	CALIB	(A, ϕ) self-calibration	calibrater.solve	PB					
	DBCON	uv-data concatenation	not yet available						
	DTSIM	Simulator	simulator	PC.					
	DTSUM	uv-data summary	ms.summary	PR					
	FILLM	VLA filler	vlafiller	PR					
	FITLD	VLBA filler	not yet available	PR					
	FITTP	UVFITS writer	ms.tofits	RE					
	FRING	VLBI fringe-fitter	not yet available	SE					
	GETJY	Set flux density scale	calibater.fluxscale						
	IBLED	Interactive VLBI editor	not yet available	SN					
	IMAGR	Synthesis imaging	imager	SU					
	IMFIT	Image-plane component fitter	imagefitter	SP					

C

	IMLOD	FITS image filler	image.imagefromfits
	ІМН	File header summary	table.summary
	IMSTAT	Image statistics	image.statistics
ic	ISPEC	Plot image slice	not yet available
	JMFIT	Image-plane component fitter	imagefitter
	LISTR	List uv- and calibration data	tablebrows
>	MCAT	List image catalog	catalog
	MK3IN	MK3 VLBI filler	not yet available
	MOVE	Move uv-data files	tablecopy
	MSORT	Sort uv-data	tablecommand
_	МХ	Synthesis imaging	imager 📮
_	PBCOR	Primary beam correction	imager.setv
_			vpmanager
_	PCAL	Polarization calibration	calibrater.solve
_	PRTAB	List table data	tablebrows
	PRTAN	List AN table data	tablebrows
	PRTUV	List uv-data	tablebrows
_	RENAME	Rename file name	tablerename
>	SETJY	Set source properties	imager.setjy
_	SNPLT	Plot calibration solutions	calibrater.plotcal
-	SUBIM	Extract sub-image	image.subimage
	SPFLG	Interactive line data editing	not yet avaiiabie

Dictionary

AIPS Task/Verb	Description	AIPS++ tool/function			
SPLIT	Apply calibration	calibrater.correct			
		map.applycal			
TAPLT	General table plotting	pgplotter			
		table			
TBIN	Read table from ASCII format	tablefromascii _E			
TBOUT	Write table to ASCII format	table.toascii			
TRANS	Transpose an image	not required in HPS++			
TVBOX	Set regions in an image	regionmanager			
TVFID	Adjust TV display	viewer o			
TVFLG	Interactive TB data editing	msplot d			
TVLOD	Load image to TV display	viewer S			
UCAT	List uv-data catalog	catalog			
UVCON	Simulator	simulator			
UVFIT	uv-plane component fitter	not yet availabl			
UVFLG	Command-based flagging	flagger E			
UVLOD	UV-FITS filler	ms.fitstoms			
UVMOD	Simulator	simulator			
UVPRT	List uv-data	tablebrowser			
UVSRT	Sort uv-data	tablecommand			
UVSUB	Source model computation	imager.ft			
VBGLU	Concatenate VLBI data	not yet available			
VBPLT	Baseline based uv data plotting				
VMEM	MEM deconvolution	imager.mem			
VPLOT	Baseline-based uv-data plotting	msplot			

Similarities 1

ao.edu/

nttp://aip

Max-Planck-Institut für Radioastronomie

Loading Visibility Data into AIPS++

AIPS	FILLM	-	AIPS++	vla.vlafiller
AIPS	FITLD	-	AIPS++	ms.fitstoms

Viewing Visibility Data

AIPS	UC,MC	-	AIPS++	File Catalog	GUI
AIPS	IMHEAD	-	AIPS++	ms.summary	
AIPS	PRTAN	-	AIPS++	ms.summary	
				ms.summary	
AIPS	PRTUV	-	AIPS++	tablebrowser	
AIPS	LISTR		AIPS++	(none)	
AIPS	PLOT	-	AIPS++	ms.msplot	

Flagging Visibility Data

AIPS	UVFLG	-	AIPS++	flagger - tool
AIPS	QUACK	-75	AIPS++	flagger.quack
AIPS	TVFLG	-	AIPS++	ms.msplot

Bootstrapping Flux Scale Calibration

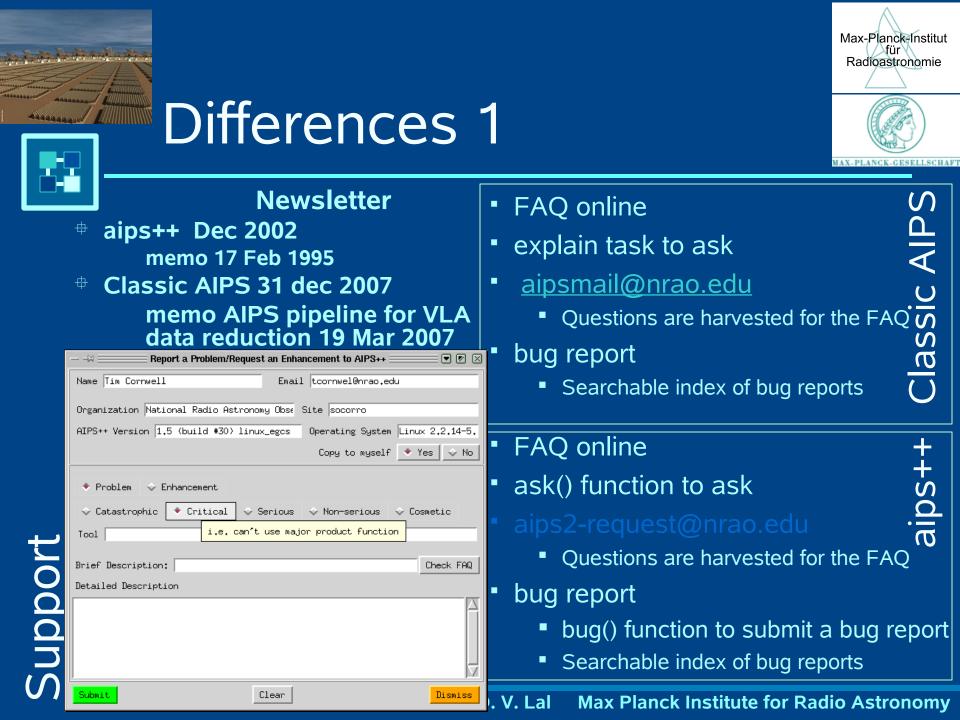
AIPS	SETJY	-	AIPS++	imager.setjy	-
AIPS	CALIB	-	AIPS++	calibrater - tool	-
AIPS	GETJY	-	AIPS++	calibrater.fluxscale	-
AIPS	SPLIT	-	AIPS++	calibrater.correct	-

Self-Calibration, Imaging a Strong Point Source

AIPS	-	AIPS++	componentlist - tool	-	Construct
AIPS IMAGR	-	AIPS++	imager - tool	-	Construct
AIPS CALIB	- 1	AIPS++	calibrater - tool	-	A Self-Ca

- Loading Data from a VLA Filler Tape
- Loading Data from an AIPS FITS File
- File Management: List, Copy, Delete
- Displays File Header Data
- Displays an Antennas List
- Displays a Sources List
- Displays Complete Visibility Records
- No LISTR functionality in AIPS++
- General Purpose Visibility Plotting
- Flagging Data Manually by Antenna, Source 🕡
- Running the Equivalence of the AIPS Task QUAC
- Flagging with MSPLOT
- Loading Calibrator Flux Densities
- Solve for Calibrator Antenna Gains
- Get Flux Densities of Secondary Calibrators
- Apply Flux Density Scale to Visibility Data
 - Construct a Model Image (Gaussian Comps.)
- Construct a Model Image (Clean Comps.
- A Self-Calibration Iteration

Similarities 2



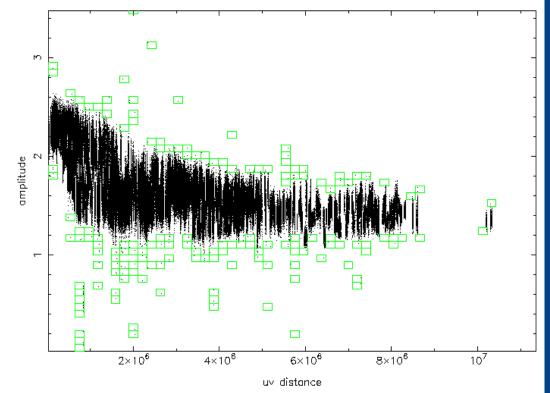
Adopted standard commercial model aips++

- Getting Results cookbook
- User Reference Manual authoritative guide for each synthesis tool and

authoritative guide for each synthesis tool and function.

Classic AIPS # cookbook

- aips++: Simulation of data from synthesis and single dish radio telescopes using the *simulator* tool.
- Complementary to *imager* and *calibrater*
- Two roles:
 - Provide synthetic data for testing AIPS++
 - Facility for telescope design *e.g.* SKA
- Can construct MeasurementSet from description of an observation
- Can add noise and corruptions of various types
- Classic AIPS: AIPS tasks UVSIM, UVMOD, UVCON
 - Limited features


Heuristics supported:

- UV-plane binning
- Median clip in time and frequency
- Spectral rejection (spectral line baseline fitting)
- Absolute clipping in a clip range
- View real / imaginary and clip.

0234.prebp namp 50 nuv 50 cut 0.0005 file 0234.50.0005.FLG3 dma× 8878 limit 5 nflags= 233 %

Editing

ATA

Provides different drawing modes:

- Raster Image
- Contour Map
- Vector Map
 - Catalog overlays
 - Displays images and Glish arra (simultaneously)
 - Displays foreign image formats
 - FITS
 - Miriad
 - Gipsy

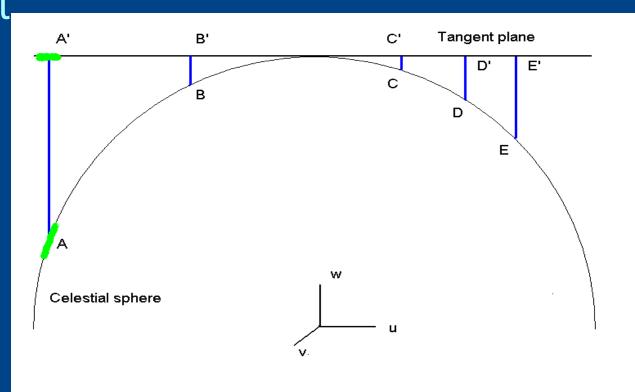
Displays complex images e.g. Vector maps

🖃 defaultviewer	- Data Manager (AIPS++)	
File		Help
Directory: /DAT	A/PHOENIX_3/mmarquar/image	DisplayData Type
File	Type	Raster Image
a3667optbig.im a3667optical.fi	ts FITS	Contour Map
y G3667radio.im a3667radio.imag	e Image	Vector Map
a3667xray.im a3667xray.image	Image Miriad Image 🗸	
Tool Name		
image∶im array∶arr	4	
Update	M	
		📕 Autoregister
		Done

Viewer features

(A) Correcting direction dependent gains Correcting direction-dependent gains in the deconvolution of radio interferometric images arXiv:0805.0834 (Bhatnagar et al.)

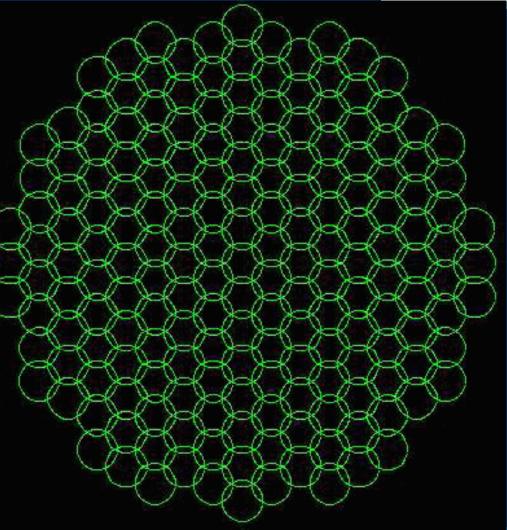
(B) Scale sensitive deconvolution


- Scale sensitive deconvolution of interferometric images
 I. Adaptive Scale Pixel (Asp) decomposition
 Bhatnagar & Cornwell (2004)
- (C) 3-D mapping for *w*-term correction Sault, Staveley-Smith, and Brouw (1994)

Must represent celestial sphere via a projection.

http://aips2.nrao.edu/docs/presentations/presentations.htm

D. V. Lal Max Planck Institute for Radio Astronomy


Differences (5c)

Problem:-

- UV Coverage of synthesis data is non-coplanar
- A 3-D Fourier inversion of full FoV
- **Current AIPS provide 2-D Fourier Inversion**

Solution:-

- FoV is divided into many "facets"
- Each facet is small enough and is mapped with its own phase-centre
- The facets are combined into a single image

esentations/presentatio

ao.edu/docs/

p://aips2

Differences (5c)

Used in AIPS IMAGR task, AIPS++ imager, ...

- Calculate residual images for all facets
- Partially deconvolve individual facets to update model for each facet
- **Reconcile different facets**

Iterative, multi-stage algorithm

- either by cross-subtracting side-lobes
- or by subtracting visibility for all facet models

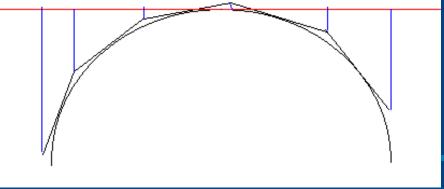
Recalculate residual images and repeat

Project onto one tangent plane

- image-plane interpolation of final cleaned facets
- (u,v) plane re-projection when calculating residual images

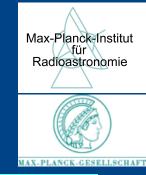
Differences (5c)

Facets are projected to a common plane. This can be done in image plane (in AIPS, FLATN).


 Re-interpolate facet image to new coordinate systems Cornwell and Perley (1992)

or in equivalently transforming the (u,v)'s of each facet to the one for the common tangent plane (in AIPS++)

 Re-project (*u*,*v*,*w*) coordinates to new coordinate systems during gridding and de-gridding


D

Sault, Staveley-Smith & Bro

The Common Astronomy Software Applications (CASA) package is a set of C++ tools bundled together under an iPython interface as a set of data reduction tasks. CASA is being developed by a collaboration led by NRAO.

The CASA tasks are oriented towards end-user data processing and analysis, while the toolkit is geared towards the support of pipeline processing, algorithm development, and the construction of tasks.

Programmed to be flexible, but for ALMA and EVLA.Free Software Foundation's General Public License.

Similarities:

- Support (casa-request@nrao.edu)
- Documentation
 - Cookbook
 - User Reference Manual
- Difference:
 - Language: glish / python
- All features of aips++
 - DD gains
 - Scale-sensitive deconvolution
 - 3-D mapping

AIPS / aips++ / CASA

None of the these are parallelised,

Only Wide-field (3-D, faceted) imaging is parallelized!
 A feature in aips++ / CASA

Decompose work per imaging facet

Parallelised PSF formation, model prediction and residual computation per facet.

Credits aips++ aips2.nrao.edu Classic AIPS CASA casa.nrao.edu PPT presentations: Grand tour aips++ Widefield imaging Pictures: Purdue University Writing Lab

The relationship between visibility measured and Sky Brightness is given by the equation below.

It is not straight forward to invert and is NOT a Fourier transform

V(u,v,w) is a 3-D function, while I(l,m) is only a 2-D function

If we take the usual 2-D transform of the left side...the third variable manifests itself when the 'w' becomes large.

$$V(u, v, w) = \int I(l, m) \cdot e^{j \cdot 2\pi \cdot (ul + vm + w\sqrt{1 - l^2 - m^2})} \frac{dl \cdot dm}{\sqrt{1 - l^2 - m^2}}$$

D. V. Lal Max Planck Institute for Radio Astronomy