#### First results from LBA monitoring

Stefan J. Wijnholds

e-mail: wijnholds@astron.nl

LOFAR Status Meeting Dwingeloo, 22 July 2009

#### LBA monitoring at CS302

## AST(RON

#### Two 48 hour observations:

- LBA outer: started on 29 May 2009, 7:34:50 UTC
- LBA inner: started on 31 May 2009, 8:06:36 UTC

#### Both measurements:

- 10 90 MHz filter (RCU modes 1 and 3 resp.)
- subband statistics integrated over 10s
- ACCs with 1s integration per subband

# LBA inner: average dynamic spectrum ASTR

average over all x-dipoles (left) and y-dipoles (right) looks ok, but much low level RFI





## LBA inner: RFI occupancy



#### RFI may occur in the entire band

#### Every subband affected at least 10% of the time!





## LBA inner: reproducibility (1)



reproducibility over time (after 24 h)

$$|x_1 - x_2| / (x_1/2 + x_2/2)$$

reproduces at 1% level most differences at RFI



## LBA inner: reproducibility (2)



reproducibility over elements (here: 0x and 1x)

$$(x_1 - x_2) / (x_1/2 + x_2/2)$$

1. differ near resonance

beam pattern variations beam pattern variations
due to coupling?

2. 1.5 (or 3?) MHz ripple 60

intermods?

standing wave?

coupling effect?



## LBA outer: dynamic spectrum



average over all x-dipoles (left) and y-dipoles (right) spectrum looks cleaner than LBA inner spectrum





## LBA outer: RFI occupancy



RFI may occur in the entire band (raised by lightning?)

#### All subbands ok for 99% of the time





## LBA outer: reproducibility (1)



reproducibility over time (after 24 h)

$$|x_1 - x_2| / (x_1/2 + x_2/2)$$

reproduces at 1.5% level most differences at RFI



## LBA outer: reproducibility (2)



reproducibility over elements (here: 0x and 1x)

$$(x_1 - x_2) / (x_1/2 + x_2/2)$$

mostly gain difference

1.5 MHz ripple reduced

-> nice compared to

LBA inner

-> evidence for coupling!



## LBA outer: station calibration (1)



Phase solution for 55y using 48y as phase reference Flaggers work, but systematic features





## LBA outer: station calibration (2)



Projection of Cas A and Cyg A (left) and Sag A (right)

#### Does not help -> sky model ok -> coupling effect?



## More evidence for coupling



phase reference: 48y (left) and average phase (right) many elements show distinct features





#### Impact of phase differences



left: A/T of CS10 before and after calibration right: typical phase solutions for CS10





## Next steps LBA station calibration



#### Algorithm development

- finalize version 1.0 in Matlab, which implies
  - tuning of detection thresholds
  - fine tuning of algorithm (define v1.0)
  - decision on use of calibration (update vs. monitor)
- compile Matlab code to C++ shared library
- monitor calibration in first calibrated observations

#### commissioning and roll-out support

support system tests, analysis of coupling, etc.

#### **Conclusions**



#### LBA calibration is in good shape

- consistent results
- already used for system diagnosis

#### Evidence for mutual coupling

- disturbances stronger for inner than for outer array
- evidence for fixed perturbations of dipole patterns

#### Many issues need further investigation, e.g.

- 1.5 MHz ripple
- origin of delays suggested by phase behavior