Development of a TBB trigger from Crabs Giant Pulses

Sander ter Veen
Radboud Universiteit Nijmegen for the Transients KSP

Special thanks to Jason Hessels
Joeri van Leeuwen

Science goal

- Search for astrophysical fast transients
- Sub-second
- Bright
- (Quasi-) Non-periodic (One time events)
- Rare (large FOV, long observation time)
- What are they (pulse shape)
- Where are they (position)

Development of a TBB trigger from Crabs Giant Pulses

- Method:
- Find flash in incoherent beam
- large FOV
- Piggyback mode
- Dump TBB information
- determine position
- Test source for trigger development
- Giant Pulses from the Crab pulsar

Observation diagram

Properties Crab pulsar

- In Crab Nebula (high background)
- Period 33.085 ms
- Dispersion measure 56.8 pc cm ${ }^{-3}$
- 9 pulses per hour >10 kJy (Bhat et al. 2008, 200MHz)
- LOFAR 1 station S.E.F.D. 3.5 kJy @ Crab

LOFAR limitations

- Detect a pulse in one subband (CEP mode)
- Coincidence trigger on multiple SB
- Simple (piggyback mode)
- RFI proof (don't waste time on something wrong)
- At most few triggers/hour (TBB dump time)
(only find the most interesting pulses out there)

Dispersion: Smearing vs resolution

Signal

Dispersion smearing

Limited timeresolution

$$
\Delta t_{D M}=8.3 \mu s D M \Delta \nu_{M H z} \nu_{G H z}^{-3}
$$

Smearing vs time resolution $200 \mathrm{Mhz}, \mathrm{DM}=56.8$

Bandwidth	Dispersive smearing	Time resolution
2 kHz	118 us	500 us
4 kHz	235 us	250 us
8 kHz	470 us	125 us
16 kHz	940 us	68 us
32 kHz	1880 us	34 us

Limited timeresolution gives the same signal, whether it's smeared or not.

De-dispersion

- If frequency and bandwidth at optimal smearing, the signal goes as
- 1 timestep forward
- 1 frequency channel lower
- De-dispersion: diagonal sum

Dispersion: Optimal smearing

Trigger algorithm (simple)

- Take a SB around 164 Mhz and divide it into 64 channels
- Summing over the channels for 1 timestep gives the background
- Summing diagonally gives the signal
- If the diagonal sum is way out of the expected range, it counts as a signal
- One station should be sensitive enough
- Theory looks fine, but does it work?
- Observation to test/develop trigger:
- 1 station
- 1 hour
- 11 subbands 162.7-164.8 Mhz
- Split SBs into 64 channels

Histogram of SB6 with a sigma level of 7.73298e+07

- 1 hour of data, 11 subbands.9piz2.7-164.8 Mhz, 1 station

2 Giant Pulses found!

2 Giant Pulses found!

Resolution Freq: 3 kHz
Time: 0.33 ms

Trigger algorithm (advanced)

- Average over 20 timesteps
- Relatively lower threshold

- \# consecutive above threshold
- Coincidence among minimum \#SB

Trigger algorithm (advanced)

- Average over 20 timesteps
- Relatively lower threshold
- Count how many steps above threshold
- Coincidence check over subbands
- Three trigger variables:
- Threshold
- \# consecutive above threshold
- Coincidence among minimum \#SB

Trigger algorithm (advanced)

- Parameters: Length ≥ 10, Subbands ≥ 4
- Pulses found: 34
(15 showed in all SBs)

Pulses found in each subband

Time delay

Find other pulses

Relation between frequency and DM for optimal smearing
DM (pc cm-3)

Conclusion

- The most giant pulses from Crab can be detected using a single LOFAR station and just a few subbands
- The TBB boards can be dumped for this event to determine the origin more exact with multiple stations
- Development still needed on real time trigger
- Best method
- Coincidence detection
- Unbiased (Running average etc)

