LOFAR Long Baseline Busy ²/₅-Week

George Heald on behalf of the LLBWG 31 March 2010

Special thanks to Stefan Wijnholds!

Outline

- What's needed for the long baselines [abridged]
- Ongoing work:
 - X,Y order for LBA_OUTER / LBA_INNER
 - Searching for differential Faraday rotation...
 - Cable length possibly cause of 8 MHz ripple?
 - Clock offsets vs. delays

LLBWG:

J. Conway, J. Anderson, <u>V. Tudose</u>, O. Wucknitz, M. Garrett, J. McKean, N. Jackson, G. Heald, A. Polatidis, N. Pradel

What's needed

- Prioritization ongoing for several more-or-less long baseline specific items:
 - Fringe fitting in BBS [clock and ionospheric delays over multiple subbands]
 - Faraday rotation [more on this later]
 - Source models for 3C sources [Jackson; using Atlas of DRAGNs]
 - Multiple station beams [one calibration, one science]
 - Calibration transfer between beams [see previous point]
 - Calibrating over multiple beams [later]
 - Imaging with long baselines....
 - Calibrating on several sources per beam
 - Averaging down uv data after phasing up to source locations
 - Check post-calibration noise levels
 - Speed of BBS
 - Speed of imaging

Cable problem?

 Inspection of Dutch-German baselines led to suspicion that X and Y cables were swapped in Tautenburg (or some similar problem)

(note that {XY,YX}/{XX,YY} decreases systematically to higher frequencies, implying that at zero wavelength all correlation would be in the crosshands)

• such a cable swap problem seemed to be ruled out by careful inspection at the station

Wucknitz

• X,Y inputs swapped (*on purpose*) between LBA-high and LBA-low on RCU boards

RCU-LBA connection scheme SUBRACK 0 P 2/4

RCU7	RCU6	RCU5	RCU4	RCU15	RCU14	RCU23	RCU22	RCU31	RCU30	RCU29	
H3_Y	H3_X	H2_Y	H2_X	H7_Y	H7_X	H11_Y	H11_X	H15_Y	H15_X	H14_Y	
3_Y	3_X	2_Y	2_X	7_Y	7_X	11_Y	11_X	15_Y	15_X	14_Y	
L51_X	L51_Y	L50_X	L50_Y	L55_X	L55_Y	L59_X	L59_Y	L63_X	L63_Y	L62_X	
RCU3	RCU2	RCU11	RCU10	RCU13	RCU12	RCU21		RCU27	RCU26	RCU28	
H1_Y	H1_X	H5_Y	H5_X	H6_Y	H6_X	H10_Y	H10_X	H13_Y	H13_X	H14_X	
1_Y	1_X	5_Y	5_X	6_Y	6_X	10 <u> </u> Y	10_X	13_Y	13_X	14_X	
L49_X	L49_Y	L53_X	L53_Y	L54_X	L54_Y	L58_X	L58_Y	L61_X	L61_Y	L62_Y	
RCU1	RCU0	RCU9	RCU8	RCU17				RCU25	RCU24		
H0_Y	H0_X	H4_Y	H4_X	H8_Y	H8_X	H9_Y	H9_X	H12_Y	H12_X		1
0_Y	0_X	4_Y	4_X	8_Y	8_X	9_Y	9_X	12_Y	12_X		
L48_X	L48_Y	L52_X	L52_Y	L56_X	L56_Y	L57_X	L57_Y	L60_X	L60_Y		

 Test experiment: several superterp stations, some in LBA_INNER and some in LBA_OUTER, correlated together in same experiment.

Two LBA_INNER stations...

 Test experiment: several superterp stations, some in LBA_INNER and some in LBA_OUTER, correlated together in same experiment.

CS004LBA-CS005LBA L2010_1000297, SB19.MS: 33.789 MHz

Two LBA_OUTER stations...

 Test experiment: several superterp stations, some in LBA_INNER and some in LBA_OUTER, correlated together in same experiment.

One LBA_INNER and one LBA_OUTER station!

Therefore ...

Therefore ...

... we apologize for blaming Tautenburg

... but wait, there's more!

• The X,Y flip is not the only effect. There is still differential Faraday rotation:

Wucknitz

Differential Faraday rotation

- Joris has implemented a Faraday rotation Jones matrix in BBS
- To verify the need for solving F-Jones in this case, look to the data!
- Solve for all 4 elements of Gain (G) in BBS

$$V = G_i C G_j^{\dagger}$$

• Ansatz: Faraday rotation part is separable, and remainder is diagonal:

$$G = \begin{pmatrix} G_{00} & G_{01} \\ G_{10} & G_{11} \end{pmatrix} = \begin{pmatrix} G'_{00} & 0 \\ 0 & G'_{11} \end{pmatrix} \begin{pmatrix} \cos(\phi\lambda^2) & -\sin(\phi\lambda^2) \\ \sin(\phi\lambda^2) & \cos(\phi\lambda^2) \end{pmatrix}$$

 In this case, combinations of the parameters that BBS solves for should give an estimate of the rotation measure:

$$\frac{G_{01} - G_{10}}{G_{00} + G_{11}} = \tan(\phi \lambda^2)$$

3C196

L2010_16704 (Tautenburg test)

- Calibrated using BBS, after:
 - running NDPPP to flag, and then compress in frequency
 - splitting out a small (~40 min) time range
 - eliminating DE603LBA and RS503LBA
 - flipping X,Y for DE601 (CS*/RS*): ~seven lines of python, using pyrap!

AFTER

BEFORE

- Calibrated using BBS, after:
 - running NDPPP to flag, and then compress in frequency
 - splitting out a small (~40 min) time range
 - eliminating DE603LBA and RS503LBA
 - flipping X,Y for DE601 (CS*/RS*): ~seven lines of python, using pyrap
- Used following strategy:
 - use CS005LBA as the reference station
 - hold reference phase fixed to 0 for diagonal G terms
 - hold offdiagonal G terms fixed to 0
 - fit all four terms of G for every other station, using a 20sec time interval, and an independent solution for each (compressed) subband
 - inspect fitted gains as function of frequency

• The time range that I picked seems to have little to no differential Faraday rotation between Effelsberg and Exloo:

and also none between Dutch stations

- To do:
 - Find a more appropriate dataset / time range. Which data set did Sarod use to extract differential Faraday rotation in MeqTrees?
 - Use a strong polarized source

8 MHz "ripple"

• Olaf detected a strong sensitivity variation with frequency, period ~8 MHz.

 Problem began mid-January, and is roughly consistent with different cable lengths in the stations. *Did we stop correcting for cable length?*

Clock offsets

 Are observed ~100ns - 1us "clock errors" really due to clock problems, or are they delays?

- Future observation strategy under development to
 - find out if "clock errors" are constant with time, or variable
 - compare their values with properties of individual stations e.g. cable lengths