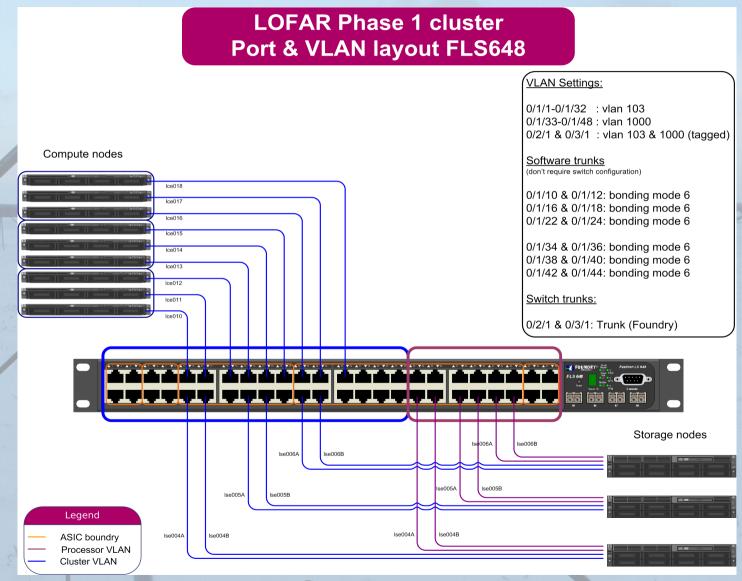
The LOFAR phase II cluster

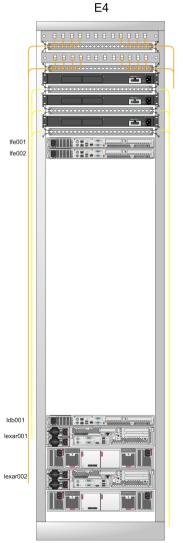
The phase I cluster

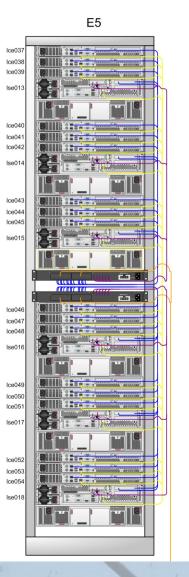
- 500 TB storage
- Limited design bandwidth
 - 15 Gbps write (continuous)
 - 30 Gbps read (burst)
- Total compute power ~4.8 TFlops (R_peak)
 - 3.6 TFlops in compute nodes
 - 1.2 TFlops in storage nodes
- Gigabit Ethernet as interconnect

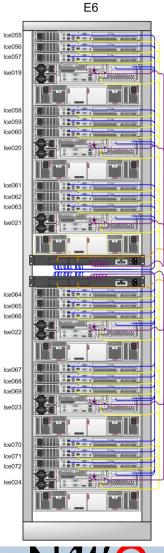
The phase I cluster


- 72 Compute node
 - 2x Intel L5520
 - 4 Cores, 2.5 GHz
 - 8 Cores total, 50 Gflops
 - 16 GB main memory per node
 - 2 GB/core
 - 1 TB scratch space (2x 500 GB in RAID0)
- 24 Storage nodes
 - Identical CPUs / Memory as compute node
 - 24x 1TB disks
 - ~20 TB storage capacity available per storage node
- Configured in 8 sub-clusters
 - 3 storage nodes + 9 compute nodes = 1 sub-cluster

The phase I cluster






LOFAR Phase 1 cluster Rear view

- Storage was/is too slow
 - RAID controllers quite slow
 - Simultaneous read/write virtually impossible
 - CPUs on the storage nodes mostly idle
- Sub-clusters mostly worked out
 - But moving data from storage nodes is not ideal
 - Good for commissioning, not for production
- Gigabit Ethernet is not ideal
 - Every storage node uses 4x GbE
 - 10GbE to 1GbE boundary performance sucked
- We need to Archive data

- Storage was/is too slow
 - Reduce the capacity of each node
 - Add lots more nodes (more controllers)
 - Require minimum write capacity 3.1 Gbps/node
 - Minimum required for uncompressed pulsar observations
 - Bring compute power to the data

	Read (MB/s)	Write (MB/s)	Read/Write (MB/s)
HP P800	228	259	118 / 278
Areca ARC1880	1052	919	418 / 670

- Subclusters not suited for production
 - We need a place for commissioners and developers
 - But production needs most/all of the new cluster
 - Reuse phase I cluster for commissioning and development
- Gigabit Ethernet is not ideal
 - Infiniband for cluster nodes
 - Requires a bridge between the LOFAR Ethernet network and the Infiniband interconnect
 - BridgeX offered and rejected, PC based solution

- We need to archive data
 - Was not fully considered when building phase I
 - Reuse storage nodes phase I as staging cluster
 - Target project in Groningen
 - Provide high bandwidth archive facility
 - For end products and raw data
 - Possible to stream directly to Target from phase II cluster
 - Hopefully will provide significant additional compute power too
 - LTA's in Amsterdam and Juelich
 - Currently less bandwidth available (but we're ready for more)
 - Archive only end products here

Headlines (1)

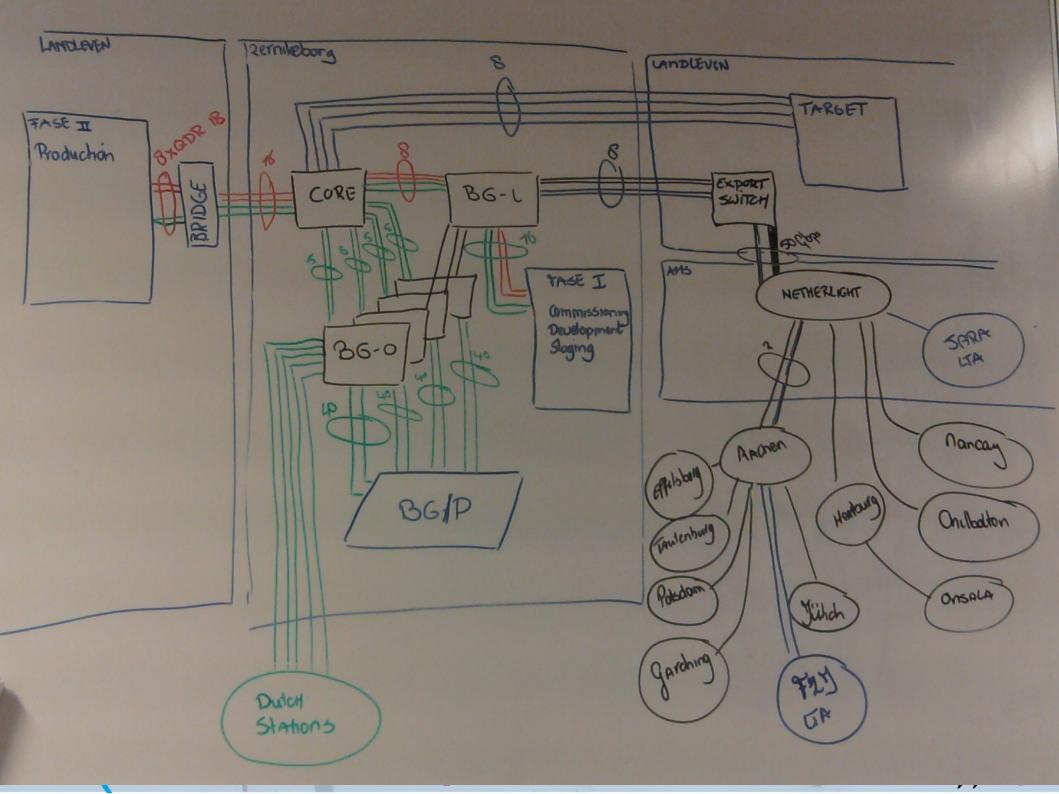
- 100 hybrid storage / compute nodes
 - 2x AMD Opteron 6172 CPUs per node
 - 12 Cores, 2.1 GHz
 - 24 Cores total, 201,6 GFlops
 - 64 GB main memory per node
 - 2.67 GB/core
 - Areca ARC-1880ixl RAID controller
 - 12x 2TB 7200 rpm disks
 - ~20 TB storage capacity available per node
 - QDR Infiniband interconnect
 - 32 Gbp theoretical maximum throughput (~20 Gbps realistic)

Headlines (2)

- Storage capacity
 - 12x 2 TB disks in RAID5
 - 2 TB scratch space per node
 - 20 TB available
 - 2 PB total capacity
- Computational capacity
 - 100x hybrid compute/storage nodes
 - 20.6 TFlops Peak performance

What will I notice

- A lot more cores per node
 - Parallelism even more important
- A bit more memory per core; a lot more per node
- Data is now (hopefully / mostly) stored locally
 - No / fewer NFS issues to contend with
- RAID performance should be much better
- High performance interconnect
 - No fully non-blocking, but much better than phase I cluster
- Bandwidth to and from cluster via bridge
 - Performance as yet unknown


Phase II cluster – Bandwidths (Gbps)

	From To	Stations	BG/P	Cluster	Staging	Target	LTA's
	Stations	X	200	80-160	80	-	-
	BG/P	-	X	80-160	80	-	-
	Cluster	-	80-160	X	80	80	-
	Staging	-	-	80	X	80	10-80
1	Target	-	-	-	-	X	-
£	LTA's	-	-	-	-	-	X

