

Bundesministerium und Forschung

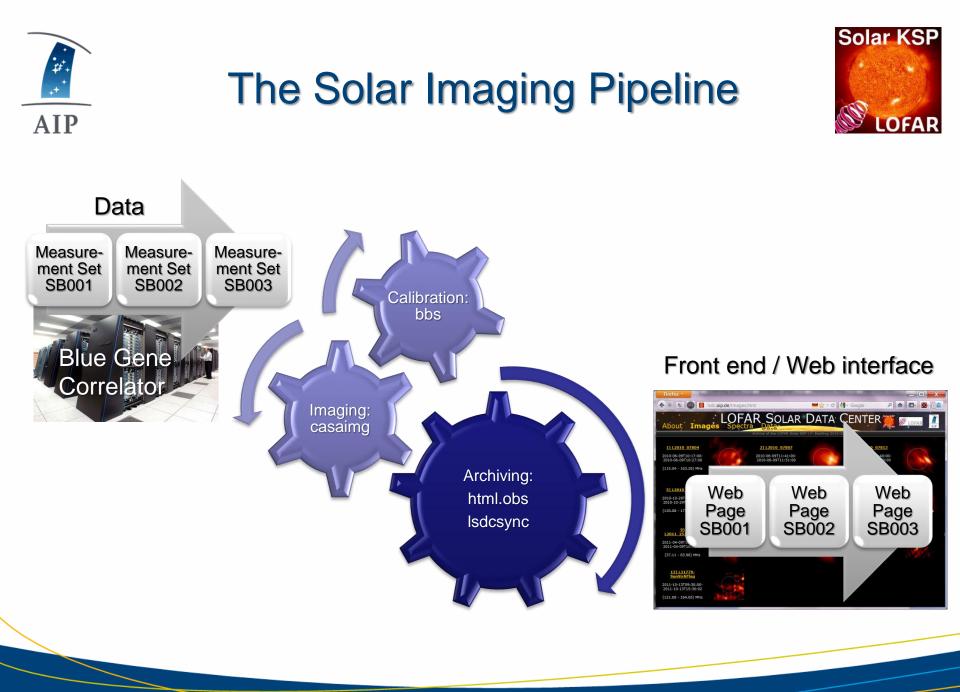
Status of the **Solar Imaging Pipeline & Solar Data Center**

Frank Breitling Gottfried Mann, Christian Vocks Leibniz-Institut für Astrophysik Potsdam (AIP) Solar Key Science Project

LOFAR Status Meeting 2012, July 11 **ASTRON**

- Motivation
- Status of the Solar Imaging Pipeline
- Status of the Solar Data Center
- Learned and to be learned
- Roadmap, Summary, Outlook

Objective of the Solar KSP


Study of solar activity / monitoring of solar radio bursts (space weather)

- \Rightarrow images of high time resolution (\leq 1s)
- \Rightarrow poor uv coverage (no aperture synthesis)
- \Rightarrow flood of images (43200 in 12 h)
- \Rightarrow for every subband / frequency
- ⇒ automatic processing required: LOFAR Solar Imaging Pipeline
- ⇒ archive with interface required: LOFAR Solar Data Center

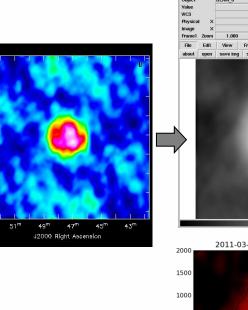
- LOFAR remote station of AIP in Potsdam-Bornim:
 - ≈ 930 k€ station
 - ≈ 250 k€ site preparation / constructions
 - ≈ 50 k€ for others
 - ≈ 1230 k€ in total
- by German government: D-LOFAR I + II (6 participants) 400 k€ for 6 years (→ F. Breitling)
- by AIP operation costs: ≈ 80 k€ to ASTRON
 - ≈ 35 k€ operating costs / electricity
 - ≈ 15 k€ data link
 - ≈ 120 k€ in total per year
 - 1 staff position (\rightarrow C. Vocks LOFAR scientist at AIP)

Programs

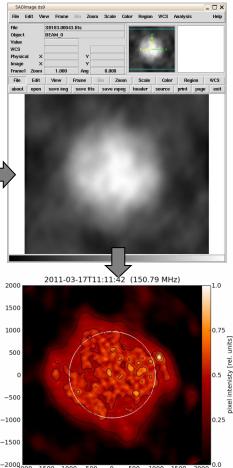
- ndppp, flag
- bbs (calibration)
- casaimg (imaging)
- fits2SolarCoordinates.py
- autocorrelations / spectrum
- Data center scripts
- Configuration files
 - skymodel with calibrators
 - parsets: calibrartion, simulation, solution transfer …

Tools

- findfiles (creating file lists)
- obstats (time, frequency, antennas, beam dir, etc.)
- subjobs (job submission)
- clusterload & clusterspace
- jpgmaker
- moviemaker (mp4)
- fixtracking.py
- Documentation



Milestones: Version 1(.0) – First prototype


(by June 2011)

- preprocessing
- calibration using sky models
- dirty images using CASA
- job submission for parallel processing on CEP1 cluster
- conversions to
 - solar coordinates
 - FITS, JPGs
 - thumbnails
- movies

[arcsec

Version 1(.0) – Tools & Data Center

- Tools
 - findfiles
 - clusterload & clusterspace
 - changemount
 - obstats
- Solar Data Center
 - web server
 - frame work
 - static web pages

CEP1 ==								1ce059	942177408 809452220 132725188 86% /data
sub1	sub2	sub3	sub4	sub5	sub6	sub7	sub8	lce014	942177408 804470192 137707216 86% /data
								1ce068	942177408 790851488 151325920 84% /data
l ce001	l ce010	l ce019	l ce028	l ce037	l ce046	l ce055	Ice064	lce071	942177408 776012972 166164436 83% /data
0.07	0.00	0.00	2,00	0.02	0.06	0,00	0.10	1ce065	942177408 777993688 164183720 83% /data
1ce002	l ce011	1ce020	1 ce029	l ce038	lce047	l ce056	Ice065	lce058	942177408 767138876 175038532 82% /data
1.15	0.04	0.00	0.13	0,08	0.05	1.08	0.31	lce051 lce006	942177408 768342332 173835076 82% /data 942177408 768547872 173629536 82% /data
1ce003	1ce012	lce021	1 ce030	l ce039	lce048	1ce057	Ice066	1ce008	942177408 748540844 193636564 80% /data
0.06	0.02	0.07	0.00	80.0	80.0	1.09	1.06	1ce003	942177408 746938000 195239408 80% /data
Ice004	Ice013	Ice022	Ice031	Ice040	Ice049	I ce058	I ce067	1ce066	942177408 739517560 202659848 79% /data
0.06	0.12	1.60	0.05	0.06	0.10	0.07	2,70	1ce050	942177408 743533620 198643788 79% /data
Ice005	Ice014	Ice023	Ice032	Ice041	Ice050	1 ce059	I ce068	lce001	941470592 739839048 201631544 79% /data
0.00 Ice006	0,00 Ice015	1.04 Ice024	2.07 Ice033	0.07 Ice042	0,10 Ice051	0.00 Ice060	0.02 Ice069	1ce072	942177408 734567284 207610124 78% /data
0.00	0.00	1.12	0,00	0.07	0,04	0.16	0.02	lce012	942177408 717733200 224444208 77% /data
1ce007	Ice016		Ice034	Ice043	1ce052		Ice070	1ce042	942177408 707300428 234876980 76% /data
0.07	0.14	1.00	1.05	0.02	0,00	0.02	0.07	1ce039	942177408 709465900 232711508 76% /data
1ce008	lce017		1ce035	Ice044	Ice053	1ce062	Ice071	1ce057	942177408 701211320 240966088 75% /data
0.17	0.14	0.00	0.00	0.02	9.21	1.10	1.14	1ce040	942177408 702213680 239963728 75% /data
Ice009		Ice027	Ice036	Ice045	Ice054	1 ce063	1,14 1ce072	1ce038	942177408 705190252 236987156 75% /data
0.07	0.14	1.13	0.02	0.00	0.10	0.10	0.08	lce013	942177408 696030304 246147104 74% /data
							0.00	1ce048	942177408 680212776 261964632 73% /data
lce005	1 ce033	Ice043	1 ce003	lce042	lce054	1 ce008	Ice024	lce011	942177408 685738188 256439220 73% /data
0.00	0.00	0.02	0.06	0.07	0.10	0.17	1.12	1ce070	942177408 676131664 266045744 72% /data
Ice006	Ice035	Ice044	Ice004	Ice058	Ice063	I ce065	Ice027	1ce063 1ce046	942177408 674301436 267875972 72% /data 942177408 670405520 271771888 72% /data
0.00	0.00	0.02	0.06	0.07	0.10	0.31	1.13	1ce046 1ce045	942177408 670405520 271771888 72% /data 942177504 650505328 291672176 70% /data
Ice010	Ice045	Ice061	Ice040	Ice070	Ice064	1 ce025	Ice071	1ce045	942177408 655317240 286860168 70% /data
0.00	0.00	0.02	0.06	0.07	0.10	1.00	1.14	1ce004	942177408 656571312 285606096 70% /data
Ice014	1ce052	1ce068	Ice046	1ce038	Ice013	Ice023	Ice002	1ce007	942177408 635419544 306757864 68% /data
0.00	0,00	0.02	0.06	0.08	0.12	1.04	1,15	1ce008	942177408 621850120 320327288 67% /data
l ce015	l ce055	l ce069	l ce001	l ce039	l ce029	l ce034	Ice022	1ce035	942177408 617666972 324510436 66% /data
0.00	0,00	0.02	0.07	0.08	0.13	1.05	1.60	lce010	942177408 619418832 322758576 66% /data
l ce019	l ce059	l ce011	l ce007	l ce048	l ce016	l ce066	l ce028	1ce009	942177408 602324316 339853092 64% /data
0.00	0,00	0.04	0.07	0,08	0.14	1,06	2.00	1ce055	942177408 583933232 358244176 62% /data
l ce020	1ce012	lce051	1 ce009	1ce072	lce017	1 ce056	Ice032	lce017	942177408 572815436 369361972 61% /data
0.00	0.02	0.04	0.07	80.0	0.14	1.08	2.07	1ce056	942177408 557974316 384203092 60% /data
Ice026	I ce036	Ice031	Ice021	I ce049	Ice018	Ice057	Ice067	lce016	942177408 546629304 395548104 59% /data
0.00	0.02	0.05	0.07	0.10	0.14	1.09	2,70	1ce041	942177408 542430748 399746660 58% /data
Ice030	Ice037	Ice047	Ice041	Ice050	Ice060	I ce062	I ce053	lce018	942177408 537643044 404534364 58% /data
0.00	0.02	0.05	0.07	0,10	0.16	1,10	9,21	1ce062 1ce060	942177408 492680048 449497360 53% /data 942177408 447737072 494440336 48% /data

- improved calibration strategies with external calibrators
- complete rewrite of job submission
 - much cleaner (modular) design
 - working for CEP1 and CEP2
- code highly optimized and efficient
 - casaimg (CPU time -75%, speed up 4x)
 - exactimage lib (CPU time -80%, speedup 5x)
- multi-core parallelization for JPGs, thumbnails, etc. (speed up 10x)
- spectra from autocorrelations in imaging data
- flagging

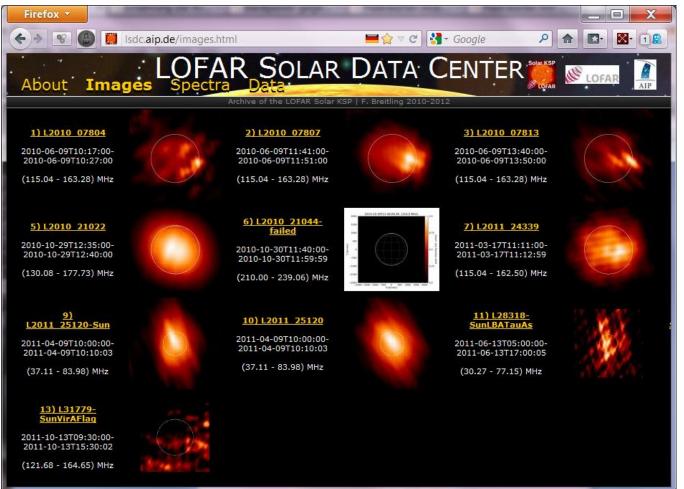
- New tools
 - fixtracking.py for tracking observations
 - data management (distribute data to cluster, transfer to data center)
 - splitms.py for measurement sets
 - fixarchive to update the data center

Solar Data Center

- modular web pages with frames and Javascript
 - \Rightarrow total data reduction for 12h 20SBs: 2500 MB => 200 MB
 - \Rightarrow speed up: 45 minutes => 10 minutes
 - \Rightarrow faster loading of pages and navigation
- additional data from

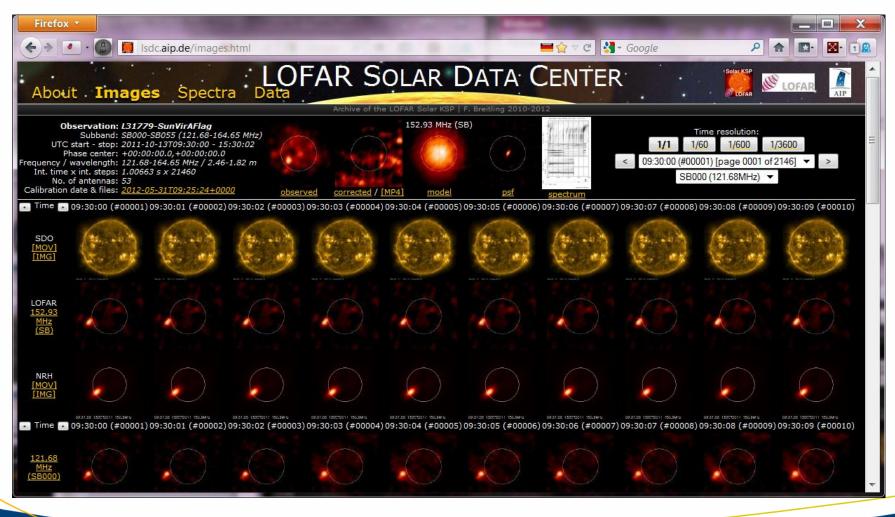
LOFAR Status Meeting 2012-07-11

- SDO, Nancay, Artemis (spectra)

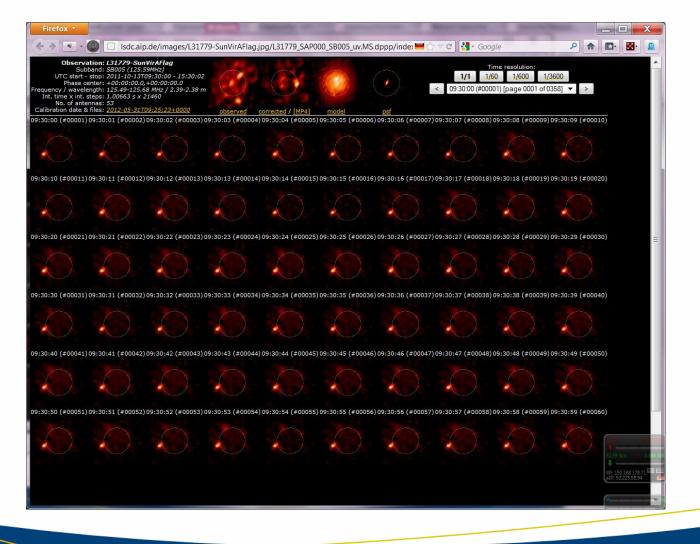

⇒systematic analysis of data now possible

LOFAR Status Meeting 2012-07-11

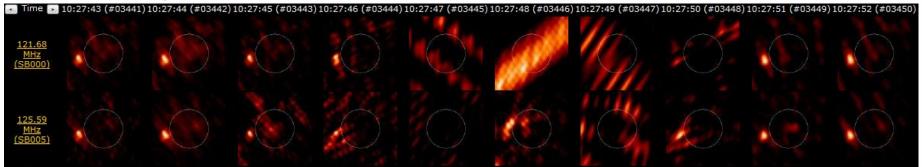
The Data Center's web interface

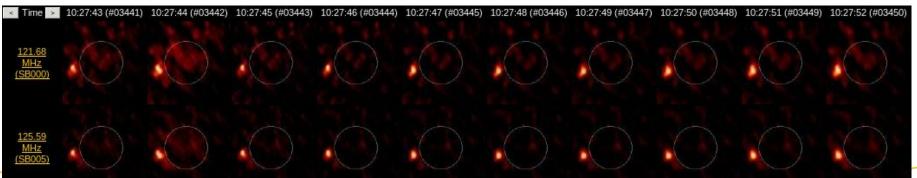


Observation L31779 – Overview of all SBs / frequencies



Observation L31779 – SB005 / 125MHz


- self-calibration works
- calibration with calibrator sources works even better:
 - correct astrometry
 - correct fluxes
 - good agreement with Nancay
 - short solar bursts (<5s) are detected very well
 - solutions only valid for ±10 minutes (need simultaneous calibrator beams)
- but sun needs strong calibrators
 - working: Taurus A (1400 Jy), Virgo A (1100 Jy)
 - not yet working: 3C123 (204Jy), 3C157(270Jy), 3C273(79Jy), 3C279(25Jy)
- spectra can be obtained simultaneously and are ideal compl. products
- reduction of image quality
 - with frequency (different spectral index of sun and calibrator)
 - towards the afternoon (ionosphere)



Problem: flagging removes bursts => we cannot flag the beam to the Sun

 \Rightarrow but many radio bursts outshine calibrators => bad calibration

Solution: flagging calibrators only, then transfer solution to Sun beam

Learning in progress –

1st systematic solar calibrator study LOFAR

Solar KSP

- \Rightarrow develop map / calendar of best LOFAR calibrators for the Sun (started with Tau A in June 2012)
- Short (<10 min) observation in the morning
- with strong
- point like (<1 arcmin) calibrators
- over one year

LOFAR Status Meeting 2012-07-11

Version 3(.0) and later (to do)

- Outstanding implementations
 - Verify absolute flux scale
 - Fix CASA imaging performance issue (partition MSs) / AWImager
 - (Multiscale-) Clean
 - Ionospheric corrections
 - Calibration + imaging synthesis of tracking observations (LOFAR2.0)
 - Polarization
- Add
 - Spectra from LOFAR imaging data
 - High resolution spectra from single station / BF observations
 - Interplanetary scintillation data from R. Fallows et al.
 - Measurement Sets and FITS files
 - Data from the GOES satellite

- Administration
 - Migrate the LSDC prototype to its new server at the AIP
 - Set up backup with the LOFAR Long Term Archive
 - Process the data from the first 48h campaign this fall
 - Documentation
 - Solar Imaging Cookbook

- + Version 2 of Solar Imaging Pipeline is working and produces
 - images and spectra
 - at all frequencies in low- and high-band
 - with a time resolution of 1 second
 - of the active Sun and in particular of radio bursts
 - \Rightarrow a useful tool to process and analyze solar data
- + a couple of things have been learned about solar imaging
- + there is more to learn, e.g. from 1st systematic solar calibrator study
- + The Solar Data Center has been set up
- Some features of the Solar Imaging Pipeline are still missing but will be implemented in version 3 or later
- Possible due to substantial funding by the Solar KSP

Solar Imaging Pipeline & Data Center

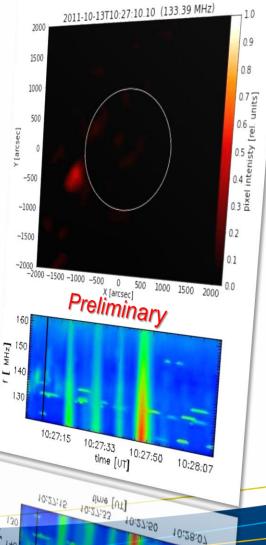
Thanks for your attention!

the Data Center

An example is show to the right

future meetings

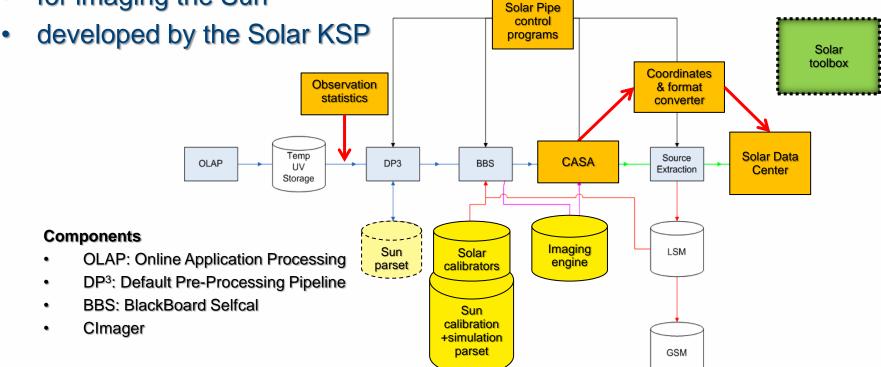
These preliminary results are currently


- The data will become available through
- studied in detail and will be presented at

Many radio bursts have been detected in

the commissioning data

. #≠+ ++

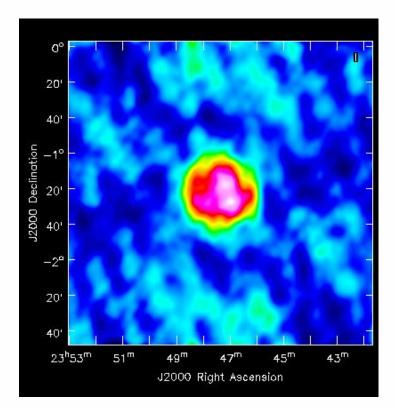


Solar vs. Standard Imaging Pipeline

- the Solar IP is an extension to the LOFAR Standard IP
- for imaging the Sun

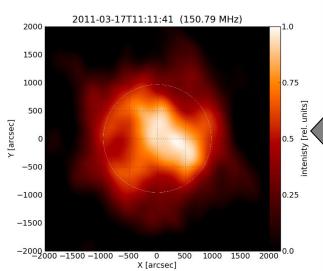
LOFAR Status Meeting 2012-07-11

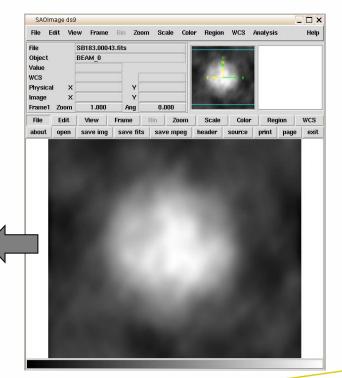
- generates skymodels with calibrators and correct Sun position
- generates parsets for calibration, simulation and solution transfer
- distributes the processes to the cluster
- organizes the log files


(Name, Type, Patch, Ra, Dec, I, Q, U, V, ReferenceFrequency='7.38000e+07', SpectralIndex='[]', MajorAxis, MinorAxis, Orientation) = format # The above line defines the field order and is required.

Sun, GAUSSIAN, , 23:47:12.34, -01.23.09.0, 35000, , , ,160e6, [2.0], 2000.0, 2000.0 TauA, GAUSSIAN, , 05:34:32.00,+22.00.52., 1888.5, , , ,81.5e6,[-0.299], 420., 290. 3C123, POINT, , 04:37:04.72, +29.40.15.6, 454.97, , , , 7.4e7, [-1]

- creates images for every
 - time step
 - subband (frequency)
- runs distributed on the cluster
- keeps log files
- runs CASA makeimage / clean
- converts it further via fits2SolarCoords.py
- creates thumbnails





- Reads pixel intensities from FITS image
- Calculates Sun's position angle and rotate
- Sets Field of View
- Adds color palette
- Adds date and frequency
- Exports as JPG

LOFAR Status Meeting 2012-07-11

