

Netherlands Institute for Radio Astronomy

Musings on Beam Profiles and Scintillation

Richard Fallows

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO).

The General Problem

- I want to observe interplanetary scintillation (IPS)
- This means (usually)observing in daytime
- The Sun is up in daytime
- The Sun dominates the power in beam sidelobes in many observations

Pretty Pictures But...

- Observing the Sun leads to pretty pictures
 - Right: Type III radio
 burst seen through a
 thunderstorm
- However, this is not IPS...

Potential Solutions

Observe at night:

- Restricted "viewing" distance from the Sun
- Everybody else wants to observe then!
- Try and find observation times when the Sun would not be in a sidelobe:
 - Mapping wide-field beam patterns of single stations
 - Main subject of this talk
- Use a second off-source beam:
 - Being investigated, probable final solution (but does restrict bandwidth available)

- A 6-hour beam-formed HBA observation, centred around midday, was taken on 24 June 2012:
 - Two beams:
 - First SAP: "Fixed" beam pointing due south to the elevation of the Sun at midday;
 - Second SAP: Tracking beam on the Sun.
 - Reminder: First SAP determines (analogue) tile beam pointing
 - Low time resolution (~0.17s).
 - 10 sub-bands at ~5MHz spacings used with 16 channels per sub-band. Spreads bandwidth to ~50MHz.
 - International stations, "flys-eye" mode.

The Wide-Field HBA Beam: A First Look

The Wide-Field HBA Beam: A First Look

HBA Tile Beam – Profiles at Different Frequencies

HBA Low Station Beam – Example Profiles for DE604

- These have been attempted, using similar observations of the Sun with fixed and tracking beams
- So far, the Sun has proved to variable and beam profiles less clear-cut
- Attempt similar observations with Cygnus A:
 - First, 1-hour observation
 - Second, 2-hour observation

LBA Beam Mapping – Fixed Beam on Cygnus A

- 1-hour observation, international stations
- fixed beam pointing toCygnus A at transit
- Source drifts off beam halfway through
- Scintillation-type structures
 seen: likely to be
 ionospheric.

Ionospheric Scintillation

- Beam-mapping of HBA tile and international station SAP beams attempted.
- Similar LBA attempts less successful
- Ionospheric scintillation seen in observations of Cygnus A