Phasing up the superterp

 \ldots and notes on calibration and S/N improvement

Olaf Wucknitz wucknitz@mpifr-bonn.mpg.de

LOFAR Status Meeting 22nd August 2012, Dwingeloo/Bonn

Phasing up the Superterp (notes on calibration and S/N improvement)

- Motivation
- How to do it
- Calibration
- Actual S/N improvement

Superterp: 6/12 stations

titlepage introduction summary

back forward

-1 +1

fullscreen

Motivation

Adding up *n* stations coherently is as good as a station *n* times larger.

- for autocorrelations (e.g. pulsars): sensitivity $\times n$
- for baselines to other stations: factor of \sqrt{n}
- for the superterp: $\sqrt{6} = 2.45$ and $\sqrt{12} = 3.46$
- but this is only true for
 - \star perfect calibration of phase offsets
 - \star uncorrelated noise
- can be done before or after correlation

 \leadsto LBG asked the LCCG to provide phasing-up option in NDPPP

titlepage introduction summary

-1 +1

Meanwhile . . .

- wrote own script to demonstrate the idea
- ... and to convince the LCCG/ASTRON to allow Ger van Diepen to implement it
- can also be used for real data!
- limited efficiency (pyrap script, single-core)
- tested also in 'Long Baseline Week I' May 2012
- Seems to work!

Features

- can select stations to add up
- can correct for offsets between stations (or only correct without phasing up)
- can produce autocorrelations
- can correct weights for correlated noise (highly significant for TauA!)

Determining the offsets

- done in separate script
- fits phase and delay offsets
- does not use intra-superterp baselines (ϕ_{12})
- instead differential phases to external reference station(s)
- no model needed, assume true $\phi_{13} \approx \phi_{23}$

$$\rightsquigarrow \phi_1 - \phi_2 = \phi'_{13} - \phi'_{23}$$

Mathematical model for fits

- index for superterp station: *j*
- integration, frequency: t and ν
- unknown visibility superterp-reference: $\tilde{V}(t,\nu)$
- calibrated measurement: $V'_j(t,\nu)$

$$egin{split} V_j'(t,
u) &= \mathrm{e}^{\mathrm{i}(\phi_j+2\pi
u' au_j)} \, V_j(t,
u) \ \chi^2 &= \sum_{t,
u,j} w_j(t,
u) \left| V_j'(t,
u) - ilde{V}(t,
u)
ight|^2 \end{split}$$

• fit $\tilde{V}(t,\nu)$ implicitly, then ϕ_j and τ_j with Newton-CG method (using gradient and Hessian)

titlepage introduction summary

Example: fits for TauA in L45786 (to DE602)

Phases [deg] vs. freq [MHz] relative to external station DE602HBA

back forward

Example: results (1)

fit for delays and phases
good data points: 31071412, parameters: implicit 2622894 + explicit 22
chi^2 no correction 3.212521e+07 with correction 2.329588e+07
diff 8.829331e+06 diff/22 4.013332e+05
diff relative to phases 9.848838e+04 diff/11 8.953489e+03
reduced chi^2 no correction 1.129241e+00 with correction 8.188790e-01
(error bars assuming reduced chi^2 of unity)
phases in deg and delays in nsec (phases XX and YY, delays XX and YY):
reference frequency in MHz (fitted over 114.966-162.573 MHz)
phase_delay_offsets= dict (

reffreq= 138.769531,

CS002HBA0=	Γ	10.728372	,	5.595891	,	0.203229	,	0.363467],
CS002HBA1=	[-12.226986	,	-15.731574	,	-0.356111	,	0.240983],
CS003HBA0=	[-12.776805	,	-11.840582	,	-0.205941	,	-0.038600],
CS003HBA1=	[5.296623	,	-0.581472	,	-0.108467	,	0.346829],
CS004HBA0=	[39.052095	,	25.414495	,	0.674259	,	-0.060649],
CS004HBA1=	[26.677695	,	6.676455	,	0.253863	,	-0.183799],
CS005HBA0=	[-9.663662	,	-6.778751	,	-0.095212	,	-0.247486],
CS005HBA1=	[-21.756341	,	-13.219949	,	-0.141094	,	-0.617608],
CS006HBA0=	[9.597167	,	25.344461	,	0.354160	,	0.702026],
CS006HBA1=	[-61.627535	,	-41.753241	,	-0.890461	,	-0.866817],
CS007HBA0=	[2.359800	,	-2.205662	,	-0.222073	,	-0.003485],
CS007HBA1=	[24.339576	,	29.079928	,	0.533848	,	0.365139],
)								

titlepage introduction summary

Example: results (2)

#	phase_delay_errors=	dict (
#	CSOO2HBAO= [0.016306 ,	,	0.015814	,	0.003141 ,	0.003049],
#	CS002HBA1= [0.016509,	,	0.016449	,	0.003195 ,	0.003187],
#	CSOO3HBAO= [0.016401 ,	,	0.015892	,	0.003164 ,	0.003069],
#	CSOO3HBA1= [0.016504 ,	,	0.016414	,	0.003178 ,	0.003168],
#	CS004HBAO= [0.016383 ,	,	0.015891	,	0.003161 ,	0.003074],
#	CS004HBA1= [0.016100 ,	,	0.016332	,	0.003108 ,	0.003155],
#	CSOO5HBAO= [0.017283 ,	,	0.017326	,	0.003352 ,	0.003364],
#	CS005HBA1= [0.016460 ,	,	0.015729	,	0.003176 ,	0.003041],
#	CSOO6HBAO= [0.016386 ,	,	0.016543	,	0.003169 ,	0.003199],
#	CSOO6HBA1= [0.016185 ,	,	0.015573	,	0.003118 ,	0.003004],
#	CS007HBAO= [0.019326 ,	,	0.019308	,	0.003809 ,	0.003791],
#	CS007HBA1= [0.016553 ,	,	0.015859	,	0.003194 ,	0.003069],
#)						

Correlated noise

- also produce data weights, first assumed independent noise
- too high residuals in subsequent fits (e.g. X Y offsets)
- I found S/N increase of about 2.0 for TauA (HBA) \star should be ≈ 3.5
- George Heald found following S/N increase (baseline)
 - ★ almost none for CygA (HBA)★ 2.99 for 3C295 (HBA)

Data weight with correlated noise

- from Gaussian noise (modulo constant factors)
- 1/weight = variance of baseline noise: ACF₁ · ACF₂
- ACF of superterp

$$egin{aligned} &\left< \left|\sum_{j} V_{j}
ight|^{2}
ight> = \sum_{jk} \left< V_{j} \overline{V}_{k}
ight> \ &= \sum_{j} \left< |V_{j}|^{2}
ight> + \sum_{j
eq k} \left< V_{j} \overline{V}_{k}
ight> \end{aligned}$$

ACF plus cross-correlations (intra-superterp)

corrections explain empirical values

NDPPP

- Ger van Diepen implemented phasing-up in NDPPP
- StationAdder
- takes care of meta data for proper station beam models (tested and confirmed by George)
- data weights do not take correlations into account!
- have to calibrate before!

• please use and test it!

have to compare with my script

Summary

- phasing up the superterp provides more (baseline-) sensitivity
- reduces the data volume
- can be done after shifting the phase centre
- we can calibrate before phasing up
- correction terms can be determined
 BBS (George Heald) and my script agree now
- a priori calibration generally bad
 - \star but seems to be stable over \sim weeks
- correcting improves the beam shape (Jason's daily image)

• use NDPPP (preferred) or my script (for correct weights)

titlepage introduction summary