Status LCO_012:

Using LOFAR for detailed studies of AGN and AGN physics

Proposal part of the survey group
\Rightarrow targeted nearby known radio sources: study of the energetics and life-cycle

3CR radio galaxies +Virgo A
$\begin{array}{ll} \\ & \text { double-double/giants } \\ & \text { relics } \\ & \text { radio in X-ray cavities }\end{array}$

G spectral index
\Rightarrow study of relics and restarted (targeted and serendipitous) and double-double radio galaxies

Who is working on the data:

Targets

Targets for LCO_012 CycleO LOFAR
Using LOFAR for detailed studies of AGN, and AGN physics

Judith Croston, Volker Heesen, Jeremy Harwood Aleksandar Shulevski, Emanuela Orru ', RM De Gasperin, Rafferty/Birzan Hardcastle + longbaseline group

Observing strategy

- HBA observations interleaved calibrator-sources (2-11min). Quite a lot of time spent on calibrator \rightarrow important to know stability of the system and accurate flux scale: ongoing tests
- LBA: part of the band on a calibrator (3C196, 3C295...) - Problem with many of the LBA observations (demixing): reobserved a few weeks ago => work on LBA data is lagging behind.
- We did not request night time \rightarrow investigating the effect of this, so far it seems to be not too bad for HBA but we need to check LBA!
- Pre-processing done initially by pipeline \gg but the "manual" calibration seems to work better.
- Raw data kept only for Judith's sources and moved to Southampton
- Other datasets: kept the pre-processed, averaged data => we are moving most of the datasets to the cluster @ASTRON FLITS (10 nodes, 200 Tb).

3C31 LOFAR observations Provided by Judith Croston and Volker Heesen

- 10 hrs observing time in HBA
-3C48 and 3C196 as primary calibrators
-HBA data pre-processed by ASTRON
- Initial NDPPP
- Calibrate calibrator and transfer solutions
-Combine sub-bands
-Phase-only calibration on each band (starting model VLSS) => pipeline work in Southampton by Adam Stewart
- Image with CASA or awimager

LOFAR

144 MHz (244 SBs)

$$
2000 \text { Right Ascension }
$$

- LOFAR largest-angular-scale 15\% larger than at VLA 330 MHz

VLA
1600 MHz

J 2000 Right Ascension

WSRT 608 MHz

- Noise rms = $0.7 \mathrm{mJy} / \mathrm{beam}$
- Resolution: 17x12 arcsec
- Imaged with CASA clean
- Peak flux density: 5.2 Jy
- Noise rms $=0.7 \mathrm{mJy} / \mathrm{beam}$
-Resolution: 17x12 arcsec
-S/N = 7400
- LOFAR largest-angular-scale 15\% larger than at VLA 330 MHz

flux scale looks reliable to within at least $\sim 15 \%$

Large field!

Plot file version 5 created 25-JUN-2013 15:28:35
BEAM 0 IPOL 144.835 MHZ 3 N15-HBA.SUBIM.
 Grey scale flux range $=-2.1100 .0 \mathrm{M}$ Milin $/$ /BEAM
Peak contour flux $=2.7957 \mathrm{E}-01 \mathrm{~J} / \mathrm{BEAM}$ Peak contour flux $=2,7957 \mathrm{E}-01 \mathrm{JY} / \mathrm{BE}$ AM
Levs $=7.000 \mathrm{E}-04{ }^{*}(3,6,10,20,40,80,160)$

J2000 Right Ascension

Relic VLSS 1431+1331 HBA - Aleksandar Shulevski

 (selected from van Weeren et al. sample)Calibrator amplitude solutions over the observing run.

Processing strategy:
LOFAR Pipeline:

- calibrator scan A\&P calibration
- Solution transfer to target

Our pipeline:

- Concatenate data in freq. and time, remove A-team, flag RFI / outliers.
- Phase calibration on target, VLSS initial model (Sagecal, selfcal)

Relic VLSS 1431+1331 HBA - Aleksandar Shulevski

 (selected from van Weeren et al. sample)Calibrator amplitude solutions over the observing run.

Processing strategy:
LOFAR Pipeline:

- calibrator scan A\&P calibration
- Solution transfer to target

Our pipeline:

- Concatenate data in freq. and time, remove A-team, flag RFI / outliers.
- Phase calibration on target, VLSS initial model (Sagecal, selfcal)
- AW imaging

11" resolution, noise: $1.89 \mathrm{mJy} /$ beam

Check of the "automatic" vs "manual" calibration

AST(2ON

maxBCG_20SB_pipeline_sigma $=4.78 \mathrm{mJy} /$ beam

20SB - pipeline

5SB - manual

Derive age of the relic VLSS 1431+1331 via spectral index analysis

AST(2ON

Virgo A - Francesco de Gasperin

HBA Work of Amanda Wilber and Alex Spacek (summer students)

Broad-band calibration to improve uvcoverage (important for the clean)

HBA: still working at improving the calibration of the remote stations (added and calibrated in th eselfcal cycles)

\rightarrow HBA

6 SBs spread all over the bw
4 remotest station excluded (we are working to calibrate them)
robust: 0
RMS: 20 mJy
Dyn Range: 35k
resolution: 24"x12"
\Rightarrow LBA
7 SBs spread all over the bw
all station included
robust: -0.5
RMS: 40 mJy
Dyn Range: 60k
resolution: 18"x18" (almost the same resolution of the old HBA map)

3 C223 - Band 1 LBA INITIAL IMAGING - Jeremy Harwood

- RMS: 27 mJy / Beam
- Total flux correct to within ~5\% compared to Orru 2010 (extrapolated from 73.8 MHz)
- Total flux density: 35.39 Jy
- Northern lobe: 19.28 Jy
- Southern lobe: 16.10 Jy
- Extrapolation from 178 MHz shows under estimation of flux density - A promising initial sign for our future spectral analysis!

Left: 4 Degree FoV of 3C223 at 51.6Mhz using AWImager
Right: Image zoomed to 3C223

$3 C 223$ - Current Issues and Next Steps

- 'Fuzzy halos' around background point sources
- Artefacts close to source
- Image out to ~10 degrees to locate any further bright sources
- Imaging with CASA for comparison of image quality and flux
- Reduction of HBA data and further LBA bands

What next?

AST(ZON

- Still problems for source sources (Hydra A, Her A)
- A number of test to be done:
are we happy with the approach we have followed for the observations? in particular the interleaving calibrator of HBA, did we spend too much time on calibrator? was it necessary? did we have problems with observations done (partly) during the day?
- Catch up with the LBA datasets....
- First source (3C247) observed for the "longbaseline" group and soon starting the reduction
- More sources to be observed soon (e.g. double-doubles)

