AST(RON

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Netherlands Institute for Radio Astronomy

OFAR

LOFAR MSSS Multifrequency Snapshot Sky Survey

Update

George Heald (MSSS Project Leader) (on behalf of the MSSS Team) LSM, 21/8/2013

De	mixing						ME	LOFA	R AS	ST(RC	ON
 N MSSS-W 	eed for dem	ixing ii	n MSS	S-HB/	A che	cked	by Ai	ndrea	is Hoi	rneffe	er
Field-Nam	e Why	Distance to	Mean noise	Band0 noise	Band1 noise	Band2 noise	Band3 noise	Band4 noise	Band5 noise	Band6 noise	Band7 noise
H288+31	Comment high noise, close to CvgA	CasA CygA 50.0 deg 13.7 deg	before after 160.4 mJy 72.0 mJy	before after 196 mJy 91 mJy	before after 233 mJy 85 mJy	before after 209 mJy 85 mJy	before after 174 mJy 78 mJy	before after 152 mJy 65 mJy	before after	before after 98 mJy 58 mJy	before after 104 mJy 50 mJy
H318+48	subjective image quality improved, one sourn high noise, close to CasA, CvgA	ce has a "stripe" in the no 22,1 deg 14,8 deg	on-demixed images 127,1 mJy 93,8 mJy	146 mJy 96 mJy	137 mJy 93 mJy	129 mJy 93 mJy	123 mJy 91 mJy	123 mJy 96 mJy	109 mJy 87 mJy	136 mJy 101 mJy	114 mJy 93 mJy
H344+12	subjective image quality improved high noise, away from CasA, CygA	47,1 deg 48,1 deg	168,9 mJy 167,2 mJy	150 mJy 150 mJy	207 mJy 208 mJy	220 mJy 226 mJy	162 mJy 178 mJy	157 mJy 169 mJy	191 mJy 194 mJy	123 mJy 105 mJy	141 mJy 108 mJy
H343+39	(UVmin=0.1) all bands are rather noisy, band high noise, close to CasA	d6: flux in sources 20-30 20,4 deg 32,8 deg	% higher after demix, of 205,6 mJy 191,4 mJy	er bands: not much 231 mJy 215 mJy	difference between 212 mJy 196 mJy	demix and no demix 213 mJy 196 mJy	210 mJy 196 mJy	215 mJy 200 mJy	199 mJy 187 mJy	214 mJy 201 mJy	151 mJy 140 mJy
H016+02	not much difference between demix and no high noise, low dec, away from CasA, CygA	demix 60,1 deg 78,2 deg	175,6 mJy 164,3 mJy	196 mJy 179 mJy	185 mJy 169 mJy	156 mJy 153 mJy	156 mJy 154 mJy	209 mJy 212 mJy	175 mJy 137 mJy	157 mJy 147 mJy	171 mJy 163 mJy
H109+46	(max need to demix: 5.1%, UVmin=0.1) sligt low noise, mid DEC	hly better image quality 63,5 deg 92,7 deg	g 58,3 mJy 64,6 mJy	68 mJy 76 mJy	67 mJy 74 mJy	63 mJy 69 mJy	57 mJy 64 mJy	56 mJy 62 mJy	55 mJy 59 mJy	51 mJy 57 mJy	49 mJy 56 mJy
H191+77	(margnial need to demix max: 4.1%) not must low noise, high DEC	ch difference between de 43,6 deg 54,5 deg	emix and no demix 3 38,9 mJy 38,6 mJy	51 mJy 51 mJy	49 mJy 47 mJy	48 mJy 47 mJy	39 mJy 39 mJy	36 mJy 36 mJy	31 mJy 31 mJy	30 mJy 30 mJy	26 mJy 26 mJy
H155+44	(demixing done in all Bands), essentially ide 90deg from CygA	ntical 76,4 deg 89,6 deg	g 75,1 mJy 75,1 mJy	85 mJy 85 mJy	82 mJy 82 mJy	80 mJy 80 mJy	74 mJy 74 mJy	71 mJy 71 mJy	70 mJy 70 mJy	71 mJy 71 mJy	68 mJy 68 mJy
H137+27	(margnial need to demix max: 3.1% in BANE 90deg from CasA	25) essentially identical 89,7 deg 110,4 deg	g 52,3 mJy 52,7 mJy	72 mJy 72 mJy	66 mJy 67 mJy	60 mJy 60 mJy	54 mJy 54 mJy	47 mJy 47 mJy	45 mJy 45 mJy	40 mJy 41 mJy	36 mJy 36 mJy
H048+44	essentially identical mid high noise, away-ish from CasA, CygA	37,2 deg 73,5 deg	101,7 mJy 101,5 mJy	149 mJy 149 mJy	105 mJy 105 mJy	104 mJy 104 mJy	93 mJy 93 mJy	92 mJy 92 mJy	92 mJy 92 mJy	88 mJy 88 mJy	88 mJy 88 mJy
H167+22	mid high noise, away from CasA, CygA	99,1 deg 103,5 deg	3 52,0 mJy 51,7 mJy	68 mJy 68 mJy	62 mJy 62 mJy	58 mJy 58 mJy	52 mJy 52 mJy	47 mJy 47 mJy	47 mJy 47 mJy	42 mJy 42 mJy	40 mJy 38 mJy
■ SI sc ne	hort summa ome fields, a eeded (if no	ry: dei nd mii demix	mixing nimal d ing wh	prov degra iere 5	ides a datio 5Jy A-	a sub n in f team	stant ields i flux	ial im wher in <1	iprove e it is L% of	emen 5 not ⁵ data	t in a)
■ Re to	ecommendat A-team sou	tion is irces)	to ena	ible d	emix	ing fo	or ren	nainir	ng fiel	lds (c	lose
Georg	ge Heald / LSM / 21-08-	2013									4

LBA: direction dependent gains

8

- Direction dependent gains obtained by Adam Stewart via "peeling" procedure
 - 5 sources, which in the current scheme change based on frequency band (i.e. field of view)
 - Future: mosaic at higher frequencies? shape beams??
- Bas van der Tol is inspecting solutions and using *differential* direction dependent gain phases to constrain phase screens
 - avoiding the need to separate instrument from ionosphere
 - but complicating the interpretation....
- Initial results provide intriguing patterns across pierce point distribution, and suggest an optimum thin-screen height of 200km (i.e. the bottom of the F layer)

George Heald / LSM / 21-08-2013

Netherlands Institute for Radio Astronomy

LOFAR Calibration & Imaging Tiger Team

•George Heald LSM, 21/8/2013

OFAR ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

<section-header><section-header> Who? • Tammo Jan Dijkema • Nicolas Vilchez • Bas van der Tol • Manu Orru • George Heald • Joris van Zwieten

11

George Heald / LSM / 21-08-2013

Why? Why ?								
 Many improvements still needed in imaging pipeline in order to provide post-MSSS image quality from the production system 								
 Manpower not available due to other obligations (cobalt etc) 								
 Fast progress needed: small group selected to work together on top priority items 								
George Heald / LSM / 21-08-2013	12							

