Long-baseline snapshot calibrator identification survey

Javier Moldón, Adam Deller

for the long baseline group

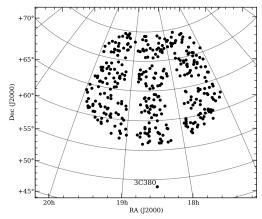
LOFAR Status Meeting ASTRON, October 16, 2013

Project summary

• Context:

• Long baseline observations are completely reliant on a suitable calibrator source, bright and compact, to calibrate the effects of the differential ionosphere, station clocks, and correlator model errors.

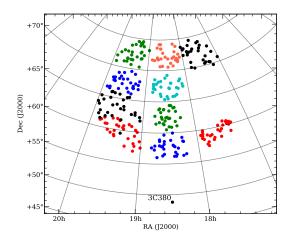
• Aims of the project:


- Find a computationally non-intensive approach for searching good long-baseline calibrators.
- Estimate the distribution of bright and compact sources in the sky at 150 MHz.

Project summary

• Context:

- Long baseline observations are completely reliant on a suitable calibrator source, bright and compact, to calibrate the effects of the differential ionosphere, station clocks, and correlator model errors.
- Aims of the project:
 - Find a computationally non-intensive approach for searching good long-baseline calibrators.
 - Estimate the distribution of bright and compact sources in the sky at 150 MHz.


Catalogue selection criteria

- We selected 360 sources close to 3C380.
- They are present in VLSS (VLA 74 MHz) and either:
 - Are in the VLBI calibrator list with a flux density of at least 100 mJy.
 - Have a flux density above 0.2 Jy at WENSS (WSRT 330 MHz).

- We conducted a 1-h observation with the HBA on May 2, 2013.
- The observation was divided in 12 blocks of 4 minutes each.
- We divided each block in 30 beams observing different candidates.
- All beams have an identical setup: 3 MHz contiguous bandwidth centered at 142 MHz in 64 channels per source.
- Simple pre-processing: RFI flagging and average to 2 sec.

Observations

- Two of the blocks were not observed due to technical problems.
- Therefore we have data on 300 sources.

Data Reduction

Post-processing:

- BBS on 3C380 to calibrate CoreStations for all pointings.
- NDPPP to add the CS to form TS001.
- Convert to RRLL polarization and export to FITS.
- Phase calibration with task FRING in AIPS (phase, delay, rate).

• Analysis:

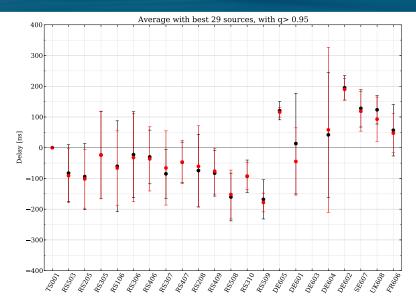
- Statistics on the number of FRING solutions.
- Delay for each antenna.
- Asses compactness of sources based on solutions on the long baselines.

Data Reduction

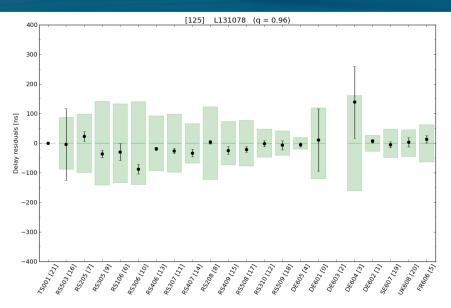
Post-processing:

- BBS on 3C380 to calibrate CoreStations for all pointings.
- NDPPP to add the CS to form TS001.
- Convert to RRLL polarization and export to FITS.
- Phase calibration with task FRING in AIPS (phase, delay, rate).
- Analysis:
 - Statistics on the number of FRING solutions.
 - Delay for each antenna.
 - Asses compactness of sources based on solutions on the long baselines.

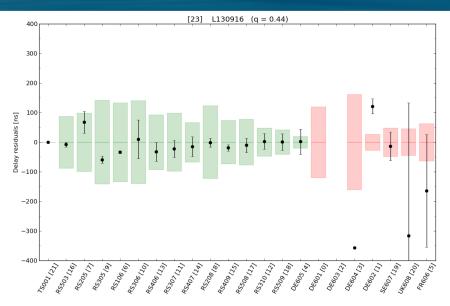
Delay

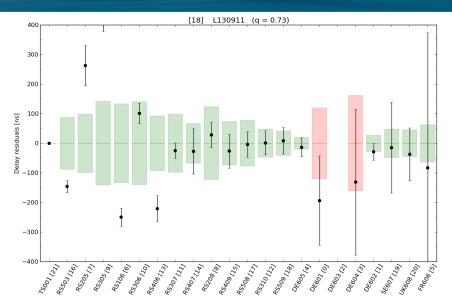

	FR606	•• ••				****			tett	••••	1110		•• '		500
Antenna - source	UK608					1111	-		-		1111				
	SE607					1111	1111		1111					-	400
	DE602					1111	1141		8288		1111				
	DE604				•• •••		•		11.1		114	Aoĝ.		_	300
	DE603		- T	•											
	DE601					1191			-		4114	2424			
	DE605					1111	1111		1111		1111	4444			200
	RS509				182 AAAA	1111			111		1111	****	••		
	RS310			i	188 8888	1111	1111		tttt				••	-	100
	RS508			8								8888	••		IS
	RS409				568 AAAA	1111		İİİİ	1111		1111		••	_	o Delay [ns]
	RS208			-		****		İİİİ	ttt			4448	••		lela
	RS407					1111		İİİİ					••		
	RS307			•				İİİİ					••	-	-100
	RS406			•				İİİİ		,, ,,		1111	••		
	RS306			•			****	İİİİ		Q OO			••	-	-200
	RS106			-				İİİİ					••		
	RS305			-		1111		İİİİ		.		6666	••	_	-300
	RS205			•	 			İİİİ		***		4000	••		
	RS503				HI 111	::::		İİİİ				6888	••		
	TS001				iii 1111	1111		İİİİ		***			••		-400
4.	2	4.4		4.6	4.8		5.0		5	2		5.4	5.6		-500
-	4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 time [h]														

Long Baseline Calibrators

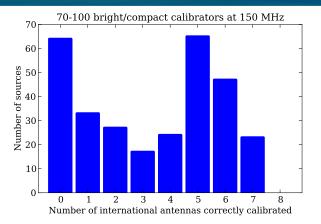

Analysis

7


Average delay per antenna


Example: Bright and compact source

Example: Bright but not compact source


Example: Diffuse emission or 2+ sources

We define different quality factors. For example:

- Number of well calibrated international stations.
- With this data set we have uncertainty due to variability in DE601 and DE604, and the lack of DE603.
- Good calibrator when 7 good antennas, although under normal conditions the number of good antennas could increase by 1–3 for $\sim 40\%$ of the cases.

Preliminary results

- We see about 70-100 sources that are compact and bright enough.
- Our current selection criteria provides an efficiency of 20-30% for finding new calibrators.
- We observed 261 deg^2 . Calibrator density $\sim 0.27-0.38 \text{ per deg}^2$.

Work in progress

- Analyse other possible quality factors.
- Cross correlation with radio catalogues:
 - VLSS (VLA 74 MHz).
 - WENSS (Westerbork 330 MHz).
 - NVSS (VLA 1.4 GHz).
 - VLBI calibrator catalogue.
- Improve the selection criteria based on dependence of quality with:
 - Flux density.
 - Instrinsic source size.
 - Spectral index.
- Unfortunately, preliminary results show vey low dependence with all three parameters.

Future work

• Based on these observations:

- Improve selection criteria.
- Optimize observational approach.
- Observe different regions of the sky to search for calibrators.

• We aim to:

- Determine calibrator distribution on the sky.
- Find average distance to a good calibrator.
- Find characteristics of compact and bright sources in other known catalogues.
- Construct a calibrator catalogue from LOFAR data.

Future work

- Based on these observations:
 - Improve selection criteria.
 - Optimize observational approach.
 - Observe different regions of the sky to search for calibrators.
- We aim to:
 - Determine calibrator distribution on the sky.
 - Find average distance to a good calibrator.
 - Find characteristics of compact and bright sources in other known catalogues.
 - Construct a calibrator catalogue from LOFAR data.