Fitting and Testing Ionospheric Phase Screens with MSSS Data

David Rafferty, Bas van der Tol, George Heald (+TT)

Introduction

- The ionosphere can cause time- and position-dependent phase shifts
- Using direction-dependent calibration, these shifts can be measured and corrected (e.g., with phase screens as in SPAM)
- The SPAM approach assumes that instrumental effects have been removed, but (so far) this has not been possible with LOFAR

Credit: Huib Intema

 One solution: use phase differences between sources

Introduction

- The ionosphere can cause time- and position-dependent phase shifts
- Using direction-dependent calibration, these shifts can be measured and corrected (e.g., with phase screens as in SPAM)
- The SPAM approach assumes that instrumental effects have been removed, but (so far) this has not been possible with LOFAR
- One solution: use phase differences between sources

Credit: Huib Intema

Source Differencing

- Perform direction-dependent calibration for bright sources
- Assume that instrumental effects are the same in all directions
- Subtracting phase solutions for two sources will result in purely direction-dependent (ionospheric) effects
- Test with MSSS (MVF) LBA data: 8 2-MHz bands, 9 11-minute snapshots

MSSS Verification Field (MVF) **IDEAR** MSSS Verification Field

MSSS Verification Field (MVF) **IDEAR** MSSS Verification Field

Example Phase Screen

- TEC value was derived for each pierce point every 10 seconds using fit to phases across all 8 bands
- All core stations + 5 remote stations were used
- 7 11-minute snapshots were used (first two snapshots not used due to poor solutions)

Example Phase Screen

- TEC value was derived for each pierce point every 10 seconds using fit to phases across all 8 bands
- All core stations + 5 remote stations were used
- 7 11-minute snapshots were used (first two snapshots not used due to poor solutions)

30 MHz Images

With phase screen

Without phase screen

30 MHz Images

With phase screen

Without phase screen

Detected Sources at 30 MHz (>6σ peak flux)

 At 30 MHz, ~ 50% more sources detected in image with phase screen (~30% more at 45 MHz)

Peak Fluxes at 30 MHz

Positional Errors at 30 MHz

To-do and Application to Other LBA Observations

- Image all 8 bands and compare source detection to images without screen (Giulia)
- Try more sophisticated peeling strategies (varying solution intervals, use of patches, etc.)
- Investigate different screen heights and two layers
- Likely need simultaneous flanking field observations to obtain enough calibrators in all bands, so considerable bandwidth may be required
- Can require a lot of time: current approach for 8 bands, 11 minutes =10-100 hours