

Netherlands Institute for Radio Astronomy

LOFAR MSSS Multifrequency Snapshot Sky Survey

STATUS REPORT AND UPDATI

George Heald (MSSS Project Leader) (on behalf of the MSSS Team) LSM, 26/11/2014

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Additional tests

- See LSM presentation from 1 Oct 2014
- Using generalized script to estimate effect in arbitrary observation: CEP2: /home/heald/snu/senscorr.py (use with suspicion!)

OFAR ASTRON

3

- Based on EM models by Wijnholds, Arts, & Kant
- In principle can be used to adjust fluxes in flux corrected images

Additional tests

- See LSM presentation from 1 Oct 2014
- Using generalized script to estimate effect in arbitrary observation: CEP2: /home/heald/snu/senscorr.py (use with suspicion!)
- Based on EM models by Wijnholds, Arts, & Kant
- In principle can be used to adjust fluxes in flux corrected images

OFAR

AST(RON

Beam normalization: next steps

- Next step is to check quality of "simple" correction applying normalization from reference pointing (zenith)
- Can be checked with MSSS soon, and applied in code that uses beam model with a relatively straightforward procedure (being specified in discussion with Tammo Jan Dijkema)
- Later: implementation of full EM modeling (longer timescale)

Comparing MSSS & GLEAM

	Full Instrument
Number of 16-dipole tiles	128
Number of receivers	16
Observing frequencies	75—220 MHz
Frequency resolution	40 kHz
Longest baseline	2800m
Angular resolution	4'—1.2'
Polarisation	I, Q, U, V
Primary beam FHWM	25°—10°
Confusion limit/mJy	60mJy—5mJy

Comparing MSSS and GLEAM

Substantial overlap in frequency (subset with overlap shown)

- Compatible beam size, (confusion) noise level
- Large overlap in declination coverage (GLEAM goes up to +30°, MSSS down to 0°)
- Both have systematics to address, but they are different (and often orthogonal!)

Comparing MSSS and GLEAM

Region picked between RA=9-11h, Dec=0-30d

George Heald / LSM / 26-11-2014

Comparing MSSS and GLEAM

- LOFAR M*S*S*S ASTRON
- Ongoing comparison between MSSS and GLEAM GLEAM image courtesy Natasha Hurley-Walker

MSSS (v0)

GLEAM

Mosaicing MSSS

Zoomin comparison - GLEAM

Zoomin comparison - MSSS

MSSS-GLEAM comparison highlights

- Dec-dependent flux scale mismatch, due to a combination of systematic effects in both surveys — USEFUL
- Nothing notable in astrometric offsets (initial offsets now fixed)
- Intriguing common discrepancy wrt extrapolation from existing surveys (NVSS & VLSS)

Ongoing work to be described in more detail later

T**(**RON