LOFAR observations of 3C 31

Volker Heesen & Judith Croston (U Southampton)

Some technical details

HBA

Observations and intial calibration

-10 hr, 8hr on-source, interleaved 10 min scans -10 hr, 8hr on-source, simultaneous on 3C48

- -324 subbands, 18x18 sets
- -No demixing
- -RSMPP pipeline (A. Stewart, Oxford)
- -Solves gains on primary (3C48)
- -Gain transfer
- -Phase cal on set with VLSS skymodel

Self-cal and imaging

- -Create mask with PYBDSM -Image FOV with awimager (18 subbands) -Determine SKYMODEL with PYBDSM -60pixel sliding window -Self-calibration in phase with BBS -Imaging with CASA MS-CLEAN -Robust=0 or 0.5 -Pixel size 5 arcsec
- -MS-scales of 0,3,6,10,20,40

LBA

Observations and intial calibration

- -245 subbands, 12 subbands combined
- –Demixing of Cyg A and Cas A
- -ASTRON pipeline for amplitude gains
- -RSMPP pipeline for phase-calib on VLSS

Self-cal and imaging

- –Use HBA mask
- -Image FOV with awimager (12 subbands)
- -Determine SKYMODEL with PYBDSM
- -60pixel sliding window
- -Self-calibration in phase with BBS
- -Imaging with CASA MS-CLEAN
- -Robust=0
- -Pixel size 5 arcsec
- -MS-scales of 0,3,6,10,20,40

LBA – 55 MHz

HBA – 144 MHz

(Jy/beam) 5 7 7 7 0 0 0 7 0 0 0 0

Some details:

- CLEANed with nterms=2
- rms noise = 5mJy/beam
- Resolution = 38x23 arcs

Some details:

- CLEANed with nterms=I
- rms noise = 0.5–0.7 mJy/beam

~2 degrees

• Resolution = 16x12 arcs

New LOFAR and VLA observations

—LOFAR LBA—	
Observations ID	L96535
Array configuration	LBA_OUTER
Integration time	1 s
Observation date	2013 Feb. 03
Total on-source time	8 h
Correlations	XX, XY, YX, YY
Frequency setup	30–87 MHz full coverage
Bandwidth	58 MHz
Bandwidth per sub-band	195.3125 kHz
Channels per sub-band	128
—LOFAR HBA—	
Observations ID	L86562-L86647
Array configuration	HBA_OUTER
Integration time	1 s
Observation date	2013 Feb. 17
Total on-source time	8 h
Correlations	XX, XY, YX, YY
Frequency setup	115–178 MHz full coverage
Bandwidth	95 MHz
Bandwidth per sub-band	195.3125 kHz
Channels per sub-band	128
—VLA <i>P</i> -band—	
Observations ID	13B-129
Array configuration	A-array / B-array
Integration time	1 s
Observation date	2014 Apr. 07 / 2013 Dec. 14
Total on-source time	4 h (each)
Correlations	XX, XY, YX, YY
Frequency setup	224–480 MHz full coverage
Bandwidth	256 MHz
Bandwidth per sub-band	16000 kHz
Channels per sub-band	128

Inner bright jet region

Spectral index 145–360 MHz

Radio spectral index

Wednesday, 4 February 15

Wednesday, 4 February 15

I-D Modelling of CR-Transport

Inner boundary condition: $I0\mu G$ (Croston & Hardcastle 2014)

Convective cosmic ray transport

Northern radio tail $h_B = 350-450 \text{ kpc}$ $V = 1800-2400 \text{ km s}^{-1}$

Transition region $h_B = 120 \text{ kpc}$ $V \sim 2000 \text{ km s}^{-1}$

Transition region $h_B \sim 120 \text{ kpc}$ $V \sim 2000 \text{ km s}^{-1}$

Southern radio tail $h_B = 1400 - 1500 \text{ kpc}$ $V = 2300 - 2800 \text{ km s}^{-1}$

Conclusions

- Largest ever detected angular extent
- Total source extent: ~1.2 Mpc
- Spectral ageing in the radio tails
- Convections speeds ~2000 km s⁻¹
- Magnetic field: $3-10 \ \mu G$ in the tails
- Dynamical age: ~250 Myr

Outlook: image NGC 315

Wednesday, 4 February 15

Spectrum integrated

Res.=55 arcsec Using BRATS (Harwood et al. 2013)

Spectrum southern lobe

Fit JP-model inj. index = 0.5B = 10μ G

Spectrum northern lobe

Fit JP-model inj. index = 0.7B = 10μ G

Model vs Observed Flux as a Function of Frequency

New spectral models

Northern lobe

Southern lobe

JP-model fits

(BRATS, Harwood et al. 2013)

Spectral age

Radio continuum data:

• LOFAR Low-band Antennae (LBA), 30–85 MHz

- LOFAR High-band Antennae (HBA), 115–178 MHz
- VLA P-band, 230–380 MHz, A- and B-configuration
- Spatial resolution = 19 kpc (FWHM=55", D = 73 Mpc)

Reduced chi²

Model input:

- Injection spectral index = 0.5
- Magnetic field strength = 10 µG(Crostron & Hardcastle 2014)