

A technique for compressing
LOFAR visibilities

Lofar Status Meeting 2016-06-22, André Offringa (ASTRON)

A shrink ray gun for LOFAR data

Lofar Status Meeting 2016-06-22, André Offringa (ASTRON)

● Visibilities and weights make up >85% of
the size of a measurement set

● Larger nr. channels / ms → Rel. smaller metadata

● Each visibility uses 3 x 32-bit floats

(real, imaginary, weight)

Lofar Status Meeting 2016-06-22, André Offringa (ASTRON)

● Compressing weights is easy:
just store 1 of the 4 polarizations

● Further quantization possible to compress
further

Compression

● Compression can be lossless or lossy
● Lossless compression is limited by the

randomness of noise
– At best a reduction from 100% to ~75% of

the visibilities

● However, lossy compression needs to be
tested carefully

– E.g. What are the consequences for long
time integrations? And for flux levels?

Compression

● I am investigating lossy compression of
visibilities

● Compression factor of ~4 seems possible
● I compress visibilities in 2 steps:

1) Normalize the visibilities

2) Use non-linear quantization and
bitpacking

Visibility normalization
● Group visibilities of the same timestep and

polarization
● Result: a cube of #ant x #ant x #channel

visibilities:

Channel 1
Antenna 1 2 3 4 ...

1
2
3
4

...

Channel 2
 1 2 3 4 ...

1
2
3
4

...

...

Visibility normalization
● Find per vis group a factor per antenna and per

channel that normalizes the variance

● Antenna factors absorb different antenna noise
levels.

● Channel factors absorb bandpass.

● Additionally, make sure highest value in time
block can be quantized.

This is an optimization problem, but it is easy to
generate a proximate optimum.

● The (#ant + #channels) factors are stored as
floats, along with the quantized values

Visibility quantization
● Quantization is “rounding” a value to a nearby

quantity that can be represented with fewer
bits.

● Normalized visibilities are ~pure Gaussian
distributed noise values.

● Optimize the quantization: make smaller errors
near 0, because we have many more “small”
values

Visibility quantization

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

y-
va

lu
e

index

Quantized

● Larger values → larger
quantization errors

● Avoid bias by “dithering”:
by chance select the 2nd
closest quantization value

● Comparable with adding
uniformly distributed noise

Visibility quantization

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

y-
va

lu
e

index

Quantized

0 10 20 30 40 50 60 70 80 90 100
index

3x quantized

0 10 20 30 40 50 60 70 80 90 100
index

100x quantized

Fig. : A quantization example using the Gaussianoptimized leastsquares quantization scheme with dithering to quantize a sinc
function. 4bit quantization and a single scaling factor were used. Left plot: result of encoding and decoding. Because the quanti
zation is optimized for Gaussian distributed values, the quantization steps are smaller near zero. Central and right plot: average of
3 and 100 times encoding and decoding respectively.

Result: 8-bit compression

Uncompressed
Compressed

 to 8 bits
(no visual difference)

Difference
(Unstructured noise)

Rms of 400 microJy

Test set: LOFAR 3c196
4 s / 36 kHz vis resolution
Calibrated after compression

Result: 2 bit (!!) compression

Fig. 5: Demonstration of added 2bit compression noise using LOFAR test set C. Left image: Results of calibration, 3c196 sub
traction and imaging without compression. Centre image: Same, but before processing the visibilities were compressed using the
2bit quantization scheme (16× compression) with the maximized truncated Gaussian distribution, truncated at 2.5σ. Right image:
Difference between left and centre images. While the added compression noise dominates the noise in the image, the compression
has not affected the sources and the added noise is unstructured.

● 2-bit compression: maybe not a good idea
● ...but possible for very high time/freq res
● Added noise is still random unstructured

noise, sources have the right flux.

Results

0.0001

0.001

0.01

0.1

1

10

2 4 6 8 10 12 14 16

Im
ag

in
g

er
ro

r R
M

S
(m

Jy
)

Nr. of bits

Test set A (LOFAR 4 s / 36 kHz)

Gauss. (not maximized)
Gaussian

Uniform
Student T

Trunc. Gaus. 1.5
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

0.0001

0.001

0.01

0.1

1

10

2 4 6 8 10 12 14 16

Im
ag

in
g

er
ro

r R
M

S
(m

Jy
)

Nr. of bits

Test set B (LOFAR 24 s / 180 kHz)

Gauss. (not maximized)
Gaussian

Uniform
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

0.001

0.01

0.1

1

10

100

2 4 6 8 10 12 14 16

Im
ag

in
g

er
ro

r R
M

S
(m

Jy
)

Nr. of bits

Test set C (LOFAR 4 s / 36 kHz, calibrator, before cal.)

Gauss. (not maximized)
Gaussian

Uniform
Trunc. Gaus. 2.5

0.001

0.01

0.1

1

10

100

2 4 6 8 10 12 14 16

Im
ag

in
g

er
ro

r R
M

S
(m

Jy
)

Nr. of bits

Test set D (MWA 4 s / 80 kHz)

Gauss. (not maximized)
Gaussian

Uniform
Student T

Trunc. Gaus. 1.5
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

Gray dashed line: Stokes V noise level

Results

9.5

10

10.5

11

11.5

12

2 4 6 8 10 12 14 16

Im
ag

e
R

M
S

(m
Jy

)

Nr. of bits

Test set A (LOFAR 4 s / 36 kHz)

Gauss. (not maximized)
Gaussian

Uniform
Student T

Trunc. Gaus. 1.5
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

80

90

100

110

120

130

140

150

160

170

180

2 4 6 8 10 12 14 16

Im
ag

e
R

M
S

(m
Jy

)

Nr. of bits

Test set D (MWA 4 s / 80 kHz)

Gauss. (not maximized)
Gaussian

Uniform
Student T

Trunc. Gaus. 1.5
Trunc. Gaus. 2.5
Trunc. Gaus. 3.5

● Approx. no added noise ≥ 6 bits
● data=Gaussian not always best assumption
● Assuming a truncated distribution is better

(note that this does not imply the data is
truncated)

Compression factor

0

20

40

60

80

100

Original 2 bits 3 bits 4 bits 6 bits 8 bits 12 bits 16 bits

C
om

pr
es

se
d

si
ze

 (%
)

Compression method

Metadata for 15 channels/band
Additional metadata for 5 channels/band
Visibilities and weights

Implementation

● Casacore has a transparent system
allowing “storage managers”

● I’ve implemented a storage manager doing
compression on the fly

● Once a storage manager of an MS is
changed, it is smaller, but still compatible
with all tools (casa, ndppp, wsclean, ...)

Implementation

● The storage manager is called

The dynamical statistical compression
 storage manager

Implementation

● The storage manager is called

The dynamical statistical compression
 storage manager

so in short

The Dysco storage
manager (dyscostman)

Results: computational
performance

● Decompression is fast
– Single table lookup

– IO is the bottleneck

– reading+decompression is faster than
reading the full data

● Compression is slower
– Binary dictionary search, multi-threaded

– On spinning disks, faster than full write

– On fast SSD, can be slightly slower

Applications
● Transparent compression with a factor 4 possible

for LOFAR observations

● Best to apply on noisy data

– LOFAR data with 36 kHz, 4 s seems always
noisy enough for 4x compression

● Best to apply after flagging to remove outliers that
add extra noise

Raw data → NDPPP → Compressed set → calibrate

● Fine for uncorrected, corrected and model data, as
long as resolution is high. Uncorrected makes
most sense.

● Auto-correlations are currently not preserved

Any questions?

Lofar Status Meeting 2016-06-22, André Offringa (ASTRON)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

