The fastest spinning Galactic pulsar

Cees Bassa

Ziggy Pleunis, Jason Hessels, Vlad Kondratiev, Sotiris Sanidas, Elizabeth Ferrara

ASTRON

February 8, 2017

Why search for millisecond pulsars?

MSPs can be used to understand:

- □ the neutron star equation-of-state
- tests of General Relativity
- □ binary evolution
- □ the physics of accretion
- □ the emission mechanism

Searching for MSPs with LOFAR

Advantages:

- Unexplored parameter space

Disadvantages:

- Interstellar medium (dispersion & scattering)
- High time resolution/data rates required

Semi-coherent dedispersion (Bassa et al. 2017)

Targeted surveys of Fermi γ -ray sources

(Scott Ransom)

Cees	Bassa (ASTRON

∃ →

LC7 LOFAR HBA Survey of Fermi γ-ray sources

Observational setup:

- record complex voltage data
- 7 tied-array beams
- 21 core stations
- □ 200 subbands (115 to 155 MHz)
- target 23 MSP-like γ-ray sources
- □ 2 × 20 min per target

Processing:

- copy from CEP4 to DRAGNET
- □ redigitize from 32 bit to 8 bit
- coherent/incoherent dedispersion
- frequency-domain acceleration searches

Fastest Galactic MSP!

Cees Bassa (ASTRON)

February 8, 2017 6 / 11

Fastest Galactic MSP!

- □ Ter 5ad: 716 Hz (2005; in globular cluster)
- □ J0952-0607: 707 Hz (2017)
- □ **B1937+21:** 641 Hz (1982)
- □ **B1957+20:** 622 Hz (1988)
- □ J1747-4036: 606 Hz (2009)
- □ J1810+1744: 601 Hz (2009)

GBT 350 MHz detection

Cees Bassa (ASTRON)

February 8, 2017 8 / 11

(日) (同) (日) (日) (日)

Spectrum

< ⊒ >

< (7) >

э

System properties

PSR J0952-0607:

- □ 707 Hz spin frequency!
- □ DM of 22.4 pc cm⁻³
- \square Binary system (6.42 hr, 0.02 M_{\odot})
- Highly variable optical counterpart
- Very energetic pulsar
- Black widow type system
- Extremely steep spectrum
- □ No radio eclipses!?
- □ Too faint for LBA...

Right Ascension (J2000)

Summary and ongoing work

Summary:

- Discovery of a 707 Hz binary MSP with LOFAR!
- Extremely steep spectrum
- Counterpart identified; spin properties known with 40 days of timing
- □ LOFAR is ideally suited to find these steep spectrum MSPs (are all fast?)

Ongoing work:

- DDT for GBT 350 MHz to constrain spectrum/evolution of components
- □ Swift X-ray; possible NICER target
- **\Box** Working on γ -ray timing (with AEI Hannover)
- □ Write paper before LC8 deadline!

Thank you!

Summary and ongoing work

Summary:

- Discovery of a 707 Hz binary MSP with LOFAR!
- Extremely steep spectrum
- Counterpart identified; spin properties known with 40 days of timing
- □ LOFAR is ideally suited to find these steep spectrum MSPs (are all fast?)

Ongoing work:

- DDT for GBT 350 MHz to constrain spectrum/evolution of components
- □ Swift X-ray; possible NICER target
- **\Box** Working on γ -ray timing (with AEI Hannover)
- □ Write paper before LC8 deadline!

Thank you!