Faraday Tomography of the local ISM with LOFAR

Detecting Magnetic Fields

Here's the processes involved:

- cosmic rays + magnetic field = polarized synchrotron emission
- polarization + free electrons + magnetic field = Faraday rotation

Change in polarization
$$\propto \lambda^2 \int_0^d n_e \vec{B} \cdot \vec{dl}$$

Faraday depth

(f)

Faraday Tomography

 Broad-band radio polarization cubes can be transformed into Faraday depth cubes:

Polarization processing

- Data requirements: 2+ channels/SB
- Apply correction for ionospheric Faraday rotation: RMextract (by Maaijke Mevius)
 + BBS/NDPPP Correct step
- Image Stokes Q/U for each channel
- RM synthesis: pyRMsynth

It's not that computationally intensive. Maybe your data is suitable? Ask me how to do it!

The (high-resolution) Faraday sky to date

The IC342 field

Tier 1 HETDEX

Tier 1 HETDEX

Colourized! Hue = Faraday depth, brightness = flux That green-to-purple gradient is very interesting.

Modelling the IC342 field

It's not just pretty, it's scientific. I did some modelling of the line-of-sight using the polarization data.

Take-home points

- LOFAR is amazingly sensitive to diffuse emission
- While polarization leakage is still unsolved, we can still get great polarization data out of LOFAR
- This is a very new way of exploring magnetic fields in our Galaxy, so there's still a lot to figure out.

For more information:

A&A 597, A98 (2017) DOI: 10.1051/0004-6361/201629707 © ESO 2017

Astronomy Astrophysics

Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342*

C. L. Van Eck¹, M. Haverkorn¹, M. I. R. Alves², R. Beck³, A. G. de Bruyn^{4,5}, T. Enßlin^{6,7}, J. S. Farnes¹, K. Ferrière², G. Heald^{8,5}, C. Horellou⁹, A. Horneffer³, M. Iacobelli⁴, V. Jelić^{10,4}, I. Martí-Vidal⁹, D. D. Mulcahy¹¹, W. Reich³, H. J. A. Röttgering¹², A. M. M. Scaife¹¹, D. H. F. M. Schnitzeler³, C. Sobey^{13, 8, 4}, and S. S. Sridhar^{5, 4}

¹ Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands e-mail: c.vaneck@astro.ru.nl

- ² IRAP, Université de Toulouse, CNRS, 9 avenue du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
- ³ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
- ⁴ ASTRON, The Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands
- 5 Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands
- ⁶ Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
- ⁷ Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
- ⁸ CSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Kensington, WA 6151, Australia
- ⁹ Dept. of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden
- ¹⁰ Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- ¹¹ Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- 12 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands
- ¹³ International Centre for Radio Astronomy Research Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Received 13 September 2016 / Accepted 30 November 2016

https://arxiv.org/abs/1612.00710

Exploring the Threefold Invisible Universe:

Coming this summer: my PhD thesis