CITT UPDATE

E. Orru' on behalf of the Calibration and Imaging Tiger Team

OUTLINE

- NDPPP
- imaging
- pre-factor
- factor

BASIC COMPONENTS

Calibration: NDPP and BBS

NDPPP NEW Features:

✓ multi-channel solver (multiple solutions within one SB) >> to avoid decorrelation in LBA

 \checkmark apply solution in gaincal >> to save one NDPPP step

✓ apply Faraday Rotation in NDPPP (needed specially in LBA)

 \checkmark solve for common scalar amplitude (solve for scintillation in LBA)

✓ multi-frequency TEC solver (needed for bright sources in FACTOR and LBA to increase S/N)

✓ Average specifying freq and time resolution

Motivation:

- NDPPP becomes the only software for calibration
- Increased speed and flexibility
- Preparation for calibrating the LBA

Plan

- Replace BBS with
 NDPPP
- Facilitate the LBA calibration

To DO

- commission multi-frequency solver
 - investigate on DDC
 - performance

developed by T.J. Dijkema

BASIC COMPONENTS

Imaging: AWIMAGER and WSClean

*AWIMAGER2: to be imported in the production LOFAR software

*AWIMAGER2: High priority multi-channel imaging

*WSCLEAN: IDG run fine on CEP4. Developed a software layer to tight up on wsclean.

✓WSCLEAN: Average element beam correction is produced at the end of the imaging process.

✓ Baseline dependent averaging implemented in WSclean and now in FACTOR

Plan

- Speed up both imaging algorithms using IDG
 - Implement missing features
- developed by S. van der Tol & A. Offringa + DOME project

Tuesday, 30 August 16

HBA: instrumental calibration >> pre-FACTOR

Calibrator field >> to separates contribution of the instrumental delays from the ionospheric delays

Builded on generic pipeline in the LOFAR pipeline framework.

Calibrate the calibrator, then transfer the gain amplitudes (bandpass), clock delays and phase offsets to the target data

Direction-independent phase calibration of the target

Image and subtract sources.

Products

• <u>data</u> ready to be processes with DDC-selfcal

• the <u>final image</u> before the subtract step high quality adding one non direction independent self-cal loop

Plan

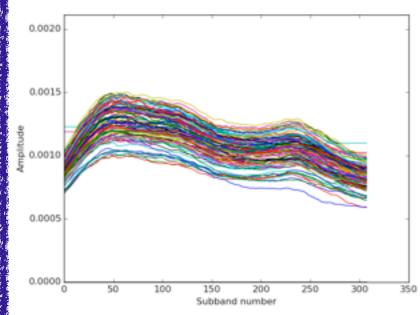
implement pre-factor in the RO pipeline replacing calibrator, target and imaging pipelines

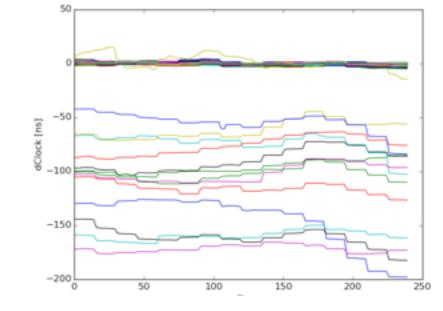
To DO

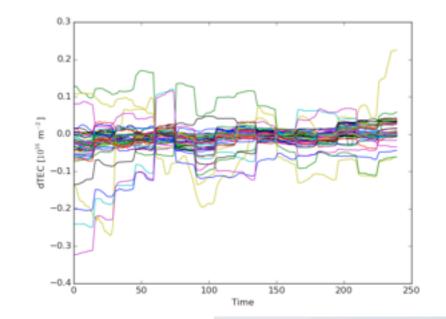
I. Release version 2.0 (add RM-extract module (high resolution TEC maps, uses NDDD for applycal and phase cal solving, use baseline averaging imaging)

pilot project for generic pipeline RO

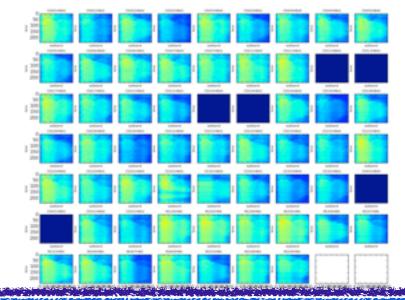
full pre-FACTOR implementation in RO Problem with V emission being supperssed

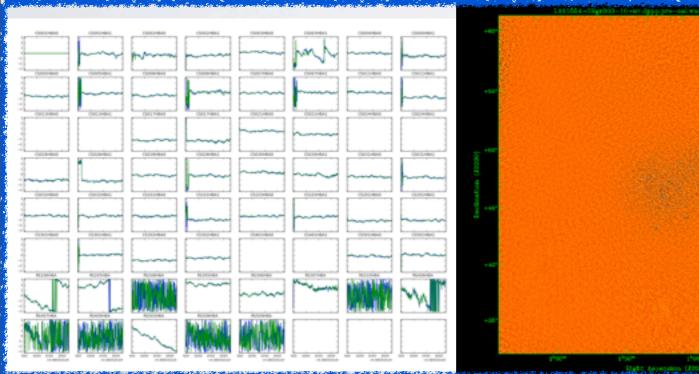

developed by A. Horneffer

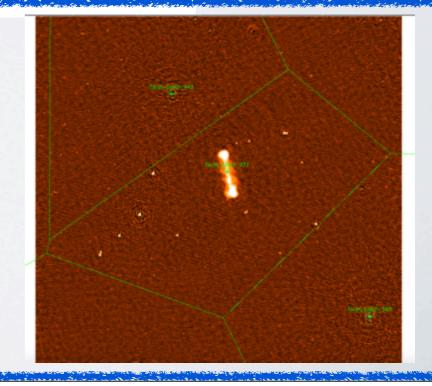

2.


3.

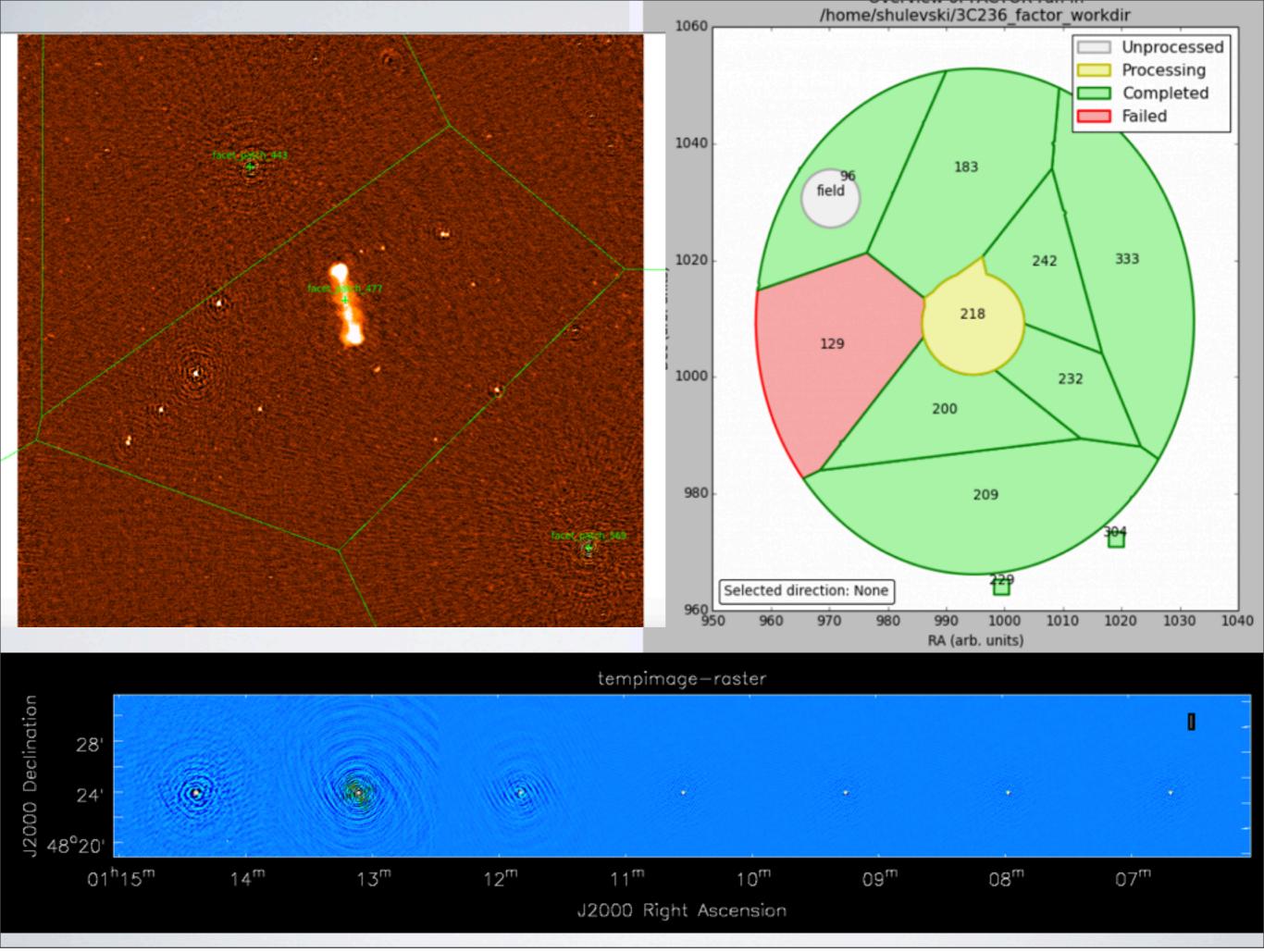
4.


Tuesday, 30 August 16





E 3				E 1	E 1	1	E 1
CSRISHEAD	CSRESHEAT	CSD06H6AD	CSROBPIERT	CSOT/THEAD	CSREWMAT	CSDITHEAD	CSUITHEAT
- CSECHEAD	CSOCIMENT	CSDITHEAD	CSDITHEAT	CSDJIREAD	CSDJUMEAT	CSDJ EHEAD	CSULEMENT
CSEDAHEAD	CROSPERT	CSR2BPIEAD	ESROBINIAT	CSRIDPHEAD	CSUIDHEAT	CSRITUREAD	CSRITURIAT
CIERLINGAD	CSOT2HEAT	TSTITIHEAD	TSTITIFEAT	tsatinew	TSTOPHEAT	CS20096A0	TSTOTHEAT
CONTRACT	CONTRACT.	CS382948AD	CSTRUMBAT	CSREDREAD	USREEREAT	CYSECREAD	CYSCUREAT
wsibees	#5205HBA	#5208HBA	*5109484	NSIDDRA	15107184	RSITIONBA	TSADDIBA
*SAD THEN	изираных	RSSD3HBA	RSSDEHEN	KSSDRHBA			
	stetanetaneto	statiationeto	1045404540450	1045404540450	1045404540450	1145414581451	1145404540450


Tuesday, 30 August 16

HBA: direction dependent self-cal >> FACTOR

Target field >> Factor corrects for direction-dependent effects including ionospheric effects and beam-model errors.

phase calibration on sho amplitude calibration lor Supports interleaved an continuous observations	nto many facets and solving for the rections in each facet using the ort time scale >> ionospheric effects ng time scale >> residual beam errors d multi-night datasets as well as s. f jobs over multiple nodes of a cluster of facets in parallel.	 Products instrumental-noise limited images (~ 0.1 mJy/beam for an 8-hour observation) high-resolution images (~ 5 arcsec FWHM) high-fidelity images
Plan implement a semi- automatic version of FACTOR that users can use for post-processing	• improve performance (e.g use NDPPP v1.: TO • complete the commissioning discuss for of data-	and baseline averaging imaging WSClean

Tuesday, 30 August 16

Tuesday, 30 August 16

LBA

Calibrator field >> to separates contribution of the instrumental delays from the ionospheric delays and calculate bandpass gains Target field >> fit a TEC screen

 \checkmark DFR is solved both for the calibrator and target field.

✓ Calibrate the calibrator, then transfer the bandpass clock delays and phase offsets to the target data

*Direction-dependent calibration of the target solving for the TEC over the all bandwidth for few calibrator sources

★Fit a TEC screen

Status:

TEC solver applied to the target field. Seems to treat polarization in a preferential way. Under investigation.
difficult to understand how to tackle scintillation since it is DDE

- TEC maps might be used as starting point for correction
- Low S/N and high decorrelation complicate the scenario

PI F. de Gasperin

Plan

Find a calibration procedure for the target field Work in a close contact with ionospheric physicists

To DO

TEC solver

- investigate on simultaneous DDC able to solve for TEC and amplitude
- Workshop Leiden 5-7 Oct
 - direction dependent calibration using: KillMS, Sagecal, Factor-LBA
 - ionospheric calibration: CT/ separation, screen fitting, modeling
 - pipeline design
 - -code implementation, developing of calibration schemes/ideas