Calibrating LBA

Francesco de Gasperin

Let's start with PHASES

Circular polarization

Ionosphere delay and FR are diagonal and phase only

$$
\mathbf{J}=\left[\begin{array}{cc}
e^{j(\theta+\varphi)} & 0 \\
0 & e^{j(\theta-\varphi)}
\end{array}\right]=\left[\begin{array}{cc}
e^{j \phi_{R}} & 0 \\
0 & e^{j \phi_{L}}
\end{array}\right]
$$

We can reconstruct two terms

$$
\begin{aligned}
\Delta \theta & =\left(\Delta \phi_{R}+\Delta \phi_{L}\right) / 2 \\
\Delta \varphi & =\left(\Delta \phi_{R}-\Delta \phi_{L}\right) / 2
\end{aligned}
$$

Delays $\longrightarrow \Delta \theta=2 \pi f \Delta t+8.44797245 \times 10^{9} \Delta T E C / f$
Faraday rotation $\longrightarrow \Delta \varphi=\Delta R M \lambda^{2}$.

Rotation Measure
(LosoTo" "tarady" pepation)

Clock/TEC separation

(LoSoTo"clocktec" operation)

					SoTo "clockte	tec" operat	ation)				
		Clock				-	-				
								TE	C		
						-					
						-					
							mman		-	$=$	nmins
						-	m	mins		mm	mam

Higher orders

> I order II order III order $\iota \approx \frac{\kappa}{c \nu^{2}} \int_{0}^{d} n_{\mathrm{e}}(x) \mathrm{d} x .+\frac{3 \kappa^{2}}{2 c \nu^{4}} \int_{0}^{d} n_{\mathrm{e}}^{2}(x) \mathrm{d} x .+\frac{5 \kappa^{3}}{2 c \nu^{6}} \int_{0}^{d} n_{\mathrm{e}}^{3}(x) \mathrm{d} x .+\cdots$.

What about AMMPLITUDES?

Amplitudes

$=50$

\vdots
$\dot{\underline{B}}$
$\dot{\square}$

		Amplitudes			
:	:	\%		\%	
\%	:	\#	\#	\#	\%
:	:	:	\#	\%	\%
\%	:	\#	\#	E	2
\#	I	\#	\%	$\underline{5}$	
$\underline{\square}$	E	\%	$\underline{\square}$:	=

