
  

LOFAR CEP Design & Performance

Chris Broekema

ASTRON



  

Outline

● The LOFAR Central Processor

– Top level design

– Current hardware 
● Current status and recent results

– Standard imaging mode

– Tied-array beamforming (pulsar mode)
● The offline processor

– Performance requirements

– Design
● Summary



  

The LOFAR central processor



  

Central processor
● 3 rack IBM Blue Gene/P

– #75 in the Top 500 (11-2008)

– Peak performance 41.8 TFlops
● (actually 44.4 TFlops, including I/O nodes)

– 13056 PowerPC cores @ 850 MHz
● Quad core system-on-chip CPUs
● Double FPU 
● exceptional complex number support

– ~6 TiB memory

– 192 10GbE links

– Several dedicated internal networks (torus, tree)



  

 Blue Gene/P pset



  

Central processor

● 6 Foundry BigIron RX16 switching frames 
– 1 core, 4 leafs and 1 infrastructure

● ~350 10 GbE ports
– 192 BG/P, ~70 stations, ~70 uplink, ~10 science

● ~300 GbE ports
● Dataflow optimized network design

– keep dataflow within one switching frame

– Bandwidth between frames limited (~50 Gbps)



  



  



  



  

The Blue Gene/P Correlator

● three distributed applications/platforms

– BG/P I/O nodes

– BG/P compute nodes

– external storage nodes



  

I/O node processing

● application on I/O nodes

– more efficient & flexible

– BG/L: saved costs for input cluster

– BG/L: major system software changes (ZOID) [PPoPP'08]



  

I/O node processing

● Two sections

– Input section

– Output section

● Heavily threaded & optimized



  

I/O node input section

– set observation direction

– handle hiccups
● handles missing data
● wall-clock trigger

● one station per I/O node
● 48,828 pkt/s
● circular buffer (~2.5 s):

– WAN delays



  

Work distribution

● O(100) independent data chunks

– 1 second, 1 subband, all stations

– needs > 1 second processing time
● distribute round robin over cores

– receive, process, send, idle



  

Compute node processing (1)

● Exchange (transpose)

– All subbands; 1 station → all stations 1 subband

– asynchronous

● Polyphase filter creates channels

● Phase correction to point accurately



  

Compute node processing (2)

● Correct station-introduced bandbass

● Beam form (add) to create “Super Station” (optional)

● Correlate station samples pair-wise



  

Bandbass correction

● 2 single dipoles
● 58.6 MHz
● 30 minute integration



  

I/O node output section

● adds correlations (optional)
● best-effort queue

– ensures real-time continuation of correlator



  

Std imaging mode performance

● 1 rack BG/P used as correlator
● 1 rack BG/P generates simulated station data

– Up to 64 stations @ 3.1 Gbps each

● ½ rack BG/P receives (and dumps) visibilities



  

Std imaging mode performance

observation mode A B C
#stations 64 64 48

248 496 992
#bits/sample 16 8 4
obs. bandwidth (MHz * #beams) 48.4 96.9 194

64 * 3.1 64 * 3.1 48 * 3.1
62 * 0.58 62 * 1.2 62 * 1.3

CPU load compute nodes 35% 70% 85%
CPU load I/O nodes 67% 81% 80%
data loss ~ .0001% ~ 0.01%

#subbands

input bandwidth (Gb/s)
output bandwidth (Gb/s)

~ 0.01%



  

Std imaging mode performance

● This is representative for full LOFAR
– Up to 64 stations

● In two new observation modes (8 bit & 4 bit)
● At 150% of the specified bandwidth
● With half the designed resources
● Without significant data loss
● EoR mode can be done on 1 rack BG/P

– (6 Racks BG/L originally)



  

Std imaging mode performance
Blue Gene/P I/O node load



  

Std imaging mode performance
Blue Gene/P I/O optimizations

● Heavily modified I/O node Linux kernel
– Avoid TLB misses

– Optimize network stack buffer sizes

● Low overhead protocol to Compute nodes
● Optimum scheduling of threads in application

– Use Linux real-time threads 

● Use of assembler where appropriate



  

Std imaging mode performance
Blue Gene/P Compute node load



  

Std imaging mode performance
Blue Gene/P Compute node optimizations

● Heavy use of assembler in hot spots
– Correlator (96% of peak FPU performance)

– FIR filter (86% of peak FPU performance)

– FFT (43% of peak FPU performance)

● Rewrite transpose to use DMA engine 
– Uses asynchronous send/recv instead of 

MPI_Alltoallv()

– Hides transpose time completely

● Low overhead protocol to (and from) I/O nodes



  

Tied-Array beamforming

● Reference implementation available
– Real-time

– Capable of creating multiple close beams

● Complex voltages
● Stokes I
● Stokes I, Q, U, V
● Incoherent 
● Online integration over time



  

Tied-Array beamforming

● Runs correctly and stable 
– Several successful pulsar observations done

– Multiple pencil beams, up to 64 hours

● Still way too slow 
– Can only form a few beams in real-time

– Reference C++ implementation written for clarity

– Optimized (assembler) version available
● unverified, not finished
● But observed to run ~30 times faster



  



  

The offline processor
Phase 1 specification

● Temporary storage
– ~500 TB

– ~15 Gbps input (continuous)

– ~30 Gbps output (burst)

● Compute cluster 
– Flagging, calibration, imaging, source finding

– ~5 TFlops

– Needs to keep up with the correlator 
(although not necessarily in real-time)



  

Phase 1 hardware (1)
● 24 storage nodes

– 2 Quad-core low-power Intel Xeon CPUs

– 16 GiB main memory

– 24 x 1TB disks each →  ~20 TB usable capacity

– 4 GbE interfaces

● 72 compute nodes
– 2 Quad-core low-power Intel Xeon CPUs

– 16 GiB main memory

– 1 TB local storage (2x 500 GB in RAID-0)

– 2 GbE interfaces



  

Phase 1 hardware (2)

● 8 GbE data switches
– One for each sub-cluster

– 20 Gbps uplink to Core infrastructure

● 2 frontend nodes
– 2 Quad-core low-power Intel Xeon CPUs

– 16 GiB main memory

– ~2 TB storage capacity in RAID-5 



  

Bandwidth optimized sub-clusters

● Offline cluster does mostly batch processing
● Inter node communication is limited
● Huge data volumes 

– Communication needs to be limited

– Necessary communication needs to be optimized

– Cache locally to avoid unnecessary transport

● Divide cluster resources into 8 sub-clusters with 
optimum connectivity



  



  



  

Phase 1 hardware

● Delivery scheduled this week
● Installation until beginning of June
● Commissioning as soon as possible

– Operating system, infrastructure & applications

– Staggered roll-out per subcluster

– Subclusters may be temporarily reassigned

– Currently available cluster OS migration



  

Phase 2 hardware

● Q4 2009 – Q1 2010
● Storage component grows to 2 PB

– Input b/w ~50 Gbps (sustained)

– Output b/w ~100 Gbps (burst)

● Offline processing cluster
– At least ~10 TFlops

– May not be enough 



  

Summary & Conclusions (1)

● The LOFAR central processor is ready
– We can handle full LOFAR in std imaging mode

– At 150% of designed bandwidth

– Tied-array beamforming is coming along nicely

● The phase 1 offline processor to be built shortly
● Phase 2 specifications to be defined next

– Using LOFAR-20 experiences

– Probably dominated by calibration



  

Summary & Conclusions (2)

● Getting to this point required specialists
– Linux kernel hacking on BG/P I/O nodes

– Assembler kernels for computational hotspots

– Detailed hardware design optimized for application

● Computation cannot be separated from I/O
– Network → node

– Memory → cache or CPU

– Cache → CPU

– Many-core architectures complicate this problem
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