

Status of the Standard Imaging Pipeline

Ronald Nijboer (ASTRON) On behalf of the LOFAR "Off-line" team

ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

LOFAR Technical Status Meeting

http://www.lofar.org/operations/doku.php?id=software:standard_imaging_pipeline

OLAP processing

Subband passband correction at OLAP - John Romein

DPPP

- Pre-flag document V.N. Pandey
- DPPP documentation
- LOFAR Data Processing School DPPP Exercise 6

BBS

- Outdated (?) BBS page
- Outdated (?) CS1 BBS page
- Commissioning of BBS
- Initial BBS performance 07Jan08 Joris van Zwieten
- LOFAR Data Processing School BBS Exercise 🗗

MeqTree

Lions: Ionospheric Simulations

MWImager / CImager

- Specification of the Frequency Resolution Ger de Bruyn
- Commissioning of the Imager

Source Finding

- TKP Source Extraction System John Swinbank
- TKP source extraction code description Hanno Spreeuw
- TKP notes on Duchamp John Swinbank

Global Sky Model

Database solutions - Bart Scheers

Integration of the Standard Imaging Pipeline

- Standard Imaging Pipeline: first results 09Dec08 Marcel Loose
- TKP pipeline framework John Swinbank

ParSet documentation

- DPPP: DPPP parameter set documentation
- BBS: BBS parameter set documentation

Other documents

Notes on IPython - John Swinbank

WLOFAR Imaging pipelines

- Standard Imaging Pipeline
- Precursor for
 - Surveys pipeline
 - EoR pipeline
 - Transients pipeline
 - Magnetism pipeline
 - Solar pipeline

Magnetism pipeline

AST(RON

LOFAR Technical Status Meeting

W LOFAR Distributed Processing (1)

Uses .vds file for describing the cluster configuration and data distribution

C **Default Pre-Processing Pipeline (DPPP)** LOFAR

- Sub-component
 - Flagging
 - A-priori knowledge
 - Algorithmic (RFI, ...)
 - Application of global bandpass correction
 - Correction for clock drifts
 - Solving for and subtraction of the A-Team
 - Compression of data
 - Time

LOFAR Technical Status Meeting

- Frequency
- Combining of Subbands / MSs

- Status
 - To be commissioned

- To be implemented
- Under investigation
- To be investigated
- Ready

Ready

DPPP: RFI Flagging

AST(RON

- Algorithms
 - Frequency Flagger
 - Complex Median Flagger
 - Modified Complex
 Median Flagger
 - Binning Flagger
 - MAD Flagger
- For details: Pandey / Adriaan Renting

CS1_us0 and CS1_us1 (XX correleation)

Integ 30s

MS9315 (40MHzOct 24,2008)

No absolute Threshold Flagging

Frequency ->

LOFAR BlackBoard Selfcal (BBS)

- AST(RON
- Two calibration packages are being used and developed:
 - MeqTrees is being used to increase our understanding
 - In BBS we will implement what we have learned
- BBS
 - Emphasis on performance, batch-mode operation, and distributed processing of large data volumes
 - Integrated with SAS / MAC / OLAP
 - Performance is being optimized
 - Disk I/O is being minimized
 - Memory I/O is being optimized
 - BlackBoard design pattern for distributed processing
 - Pool of independent processes operate on shared memory
 - A central control process examines the black board and decides what is to be done next depending on the current state
 - BlackBoard implemented as a database

BBS: calibration Strategy

- List of processing steps to perform
 - Predict, Solve, Subtract, Correct
- Hierarchical specification
- Calibration steps are defined in a parset file

BBS supports parameter fitting across subbands

LOFAR Technical Status Meeting

Dwingeloo, 18 May 2009

BBS: capabilities

Parameter types

- Constants
- Polynomials of frequency and/or time

Source models

- Point source
- Elliptical Gaussian: to be tested
- Shapelets: to be implemented
- (Higher order) Spectral index: to be implemented

Instrument models

- Bandpass
- (Directional) Gain (Simultaneous)
- Basic Ionospheric model (SPAM based; Mevius, Intema): to be further tested
- Beam
 - Analytical dipole model (S. Yatawatta)
 - Semi-analytical dipole model (J.P. Hamaker)
 - Full station beam: to be implemented
- Excising unphysical solutions: in progress

BBS: data inspection

- Calibration parameter values are stored in a database
- Parm Facade, a Python interface, is available

LOFAR Technical Status Meeting

LOFAR Technical Status Meeting

WLOFAR BBS: WSRT lonosphere (1)

30196 160 100 Declination (J2000) mly/Beam 8^b10^c 8 00 Right Ascension (J2000) Residual image using 5 Peeling solutions

LOFAR Technical Status Meeting

WLOFAR BBS: WSRT lonosphere (2)

LOFAR BBS: consistency of source positions

AST(RON

Further improvements

- •Use more subbands
- Include dipole beam (2 pass solution)
- •Exclude data when calibrator sources are near the horizon

LOFAR Imager

CImager

- Distributed use through MWImager
- Full polarization: not available
- Weighting schemes: available
 - Go through the data once (Wiener filtering technique)
- Facet imaging: being implemented
 - Problems with efficiency being investigated
- Facet based correction (to be done)
 - Also needs interface to interpolated calibration solutions
- W-projection: available
- Deconvolution: available
 - Also global deconvolution (Global Solver).
- Uv-taper: available
- Channel imaging: almost done
- AW-Projection: availability for LOFAR unknown.

CASA Imager

- Building of Python bindings may be tricky
- Distributed use through MWImager possible
 - ParSet needs conversion to Python script input (to be done)
- Full polarization: available
- Weighting schemes: available
 - Go through the data twice (may not be a problem for MSSS)
 - Otherwise: natural weighting
- Facet imaging: available
- Facet based correction (to be done)
 - Also needs interface to interpolated calibration solutions
- W-projection: available (also per facet)
- Deconvolution: available per MS
 - No global deconvolution.
- Uv-taper: available
- Channel imaging: available
- A-Projection: to be put into CASA
- Construction of Model and Corrected Data column to be removed

LOFAR Source Finding

• Procedure

- Find sources in image cubes per frequency plane
- Find source parameters / associate over freq. planes
- Update Local Sky Model for next iteration of Major Cycle
- Merge final results in Global Sky Model
- Current implementations
 - (py)BDSM by N. Mohan (extensive features)
 - Transient module (fast)

LOFAR Local and Global Sky Models (LSM / GSM)

- GSM stored as a database
 - Many predictive functions available
 - Python interface for access
 - Filled with VLSS, WENSS, NVSS, 3C, 8C, ...
- LSM currently a text file
 - To be upgraded to a database

LOFAR Technical Status Meeting

LOFAR Summary (MSSS) Processing steps

AST(RON

Software Component

- External calibration
 - Global Bandpass
- Pre-processing of the data
 - Flagging of RFI, …
 - Application of global bandpass correction
 - Correction for clock drifts
 - Solving for and subtraction of the A-Team
 - Compression of data
- Uv-plane calibration
 - Phases
 - Gains
- Direction dependent calibration
 - Total Intensity calibration (using Cat I sources)
 - Ionospheric phase: SPAM based
 - Station beams
- Cat II subtraction
- Imaging in facets
 - Correction per facet
- Image combining
- Source finding
 - Sky model update

Status

- Non-existent
 - To be investigated
- Existent
 - To be commissioned
 - To be implemented
 - Under investigation
 - To be investigated
 - Ready
- Existent
 - Needs complex source models to be implemented
- Existent
 - Approach needs to be updated
 - To be commissioned
 - To be investigated
- Ready
- Existent
 - To be implemented
- Unknown
- Existent
 - To be implemented

UDFAR Summary SIP additional tasks

- Characterization of A-team sources
- Solution based flagging in BBS
- LSM / GSM
- Filling of initial GSM
- Integration of components in the pipeline
- Closing of Major Cycle
- Deployment of code on multicore machines
- MSSS preparation
 - Observational issues
 - Absolute flux scale
 - Data quality checks

- To be investigated
- In progress
- In progress
- In progress
- In progress
- To be implemented
- To be implemented
- To be investigated

, Co LOFAR **Development and commissioning team**

- DPPP
 - Adriaan Renting
 - V.N. Pandey
- BBS
 - Joris van Zwieten
 - Marcel Loose
 - Maaijke Mevius
 - V.N. Pandey
- Imager
 - Ger van Diepen
 - ASKAP team
 - Evert Rol
- Source Finding
 - John Swinbank

- **RM** Synthesis
 - Sven Duscha
- LSM / GSM
 - Ger van Diepen
 - Bart Scheers

- Pipeline Integration
 - Marcel Loose

Calibration Project Scientist

- **Calibration Project Manager**
 - Ronald Nijboer

- Ger de Bruyn

