

AST(RON

Ger de Bruyn ^{1,2} & Ronald Nijboer ¹ (LOFAR calibration PS & PM) 19Mar08 / 21Aug08 /19May09

¹ASTRON, Dwingeloo & ²Kapteyn Institute, Groningen

LOFAR Technical Status Meeting, Dwingeloo, 19May2009

Outline

- Commissioning phases
- Why do an MS^3
- How to do MS³ and MS³ Products
- MS³ array configuration and their uv-coverages
- MS³ specifications
- Undecided issues
- Important pre-MS³ activities

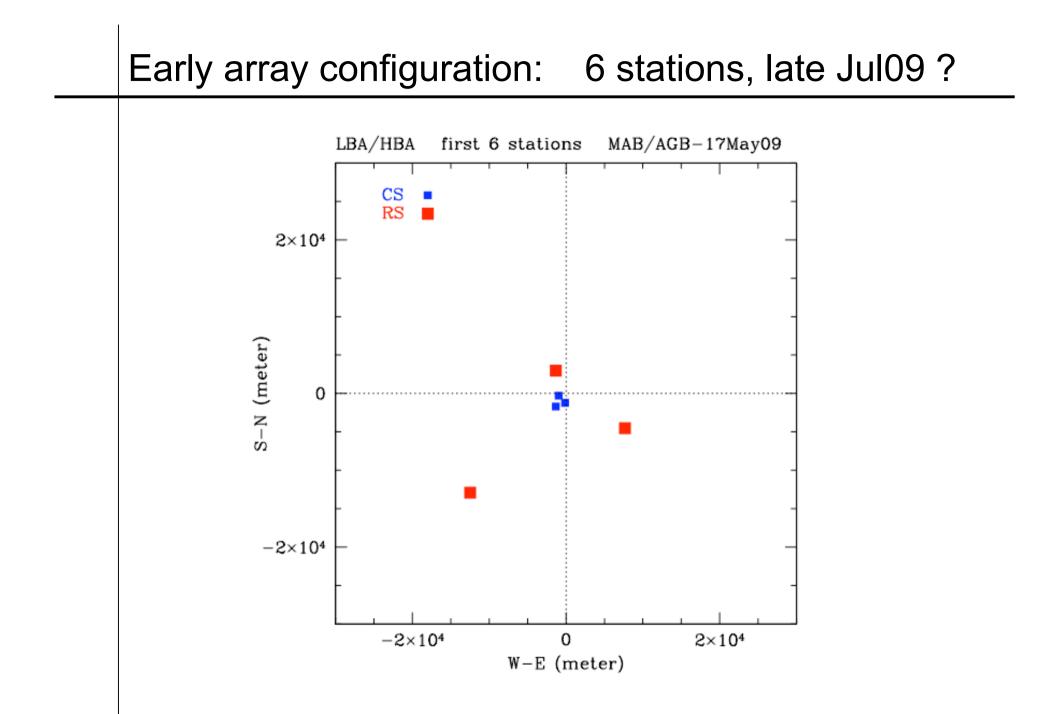
We can distinguish 3 different phases for commissioning activities:

- Before MSSS: Jun-Oct 2009 from $1 \Rightarrow 20$ stations

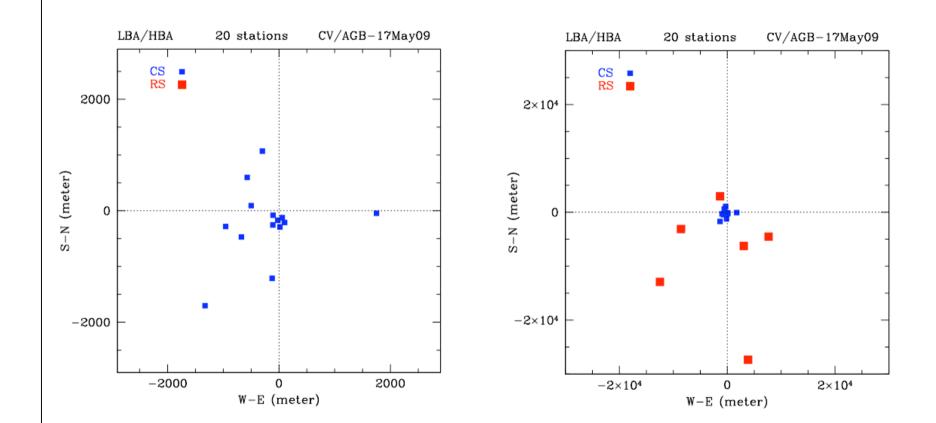
- During MSSS: Nov-Jan 2010 20 stations (+ 3-5 European)

- After MSSS: Feb-Aug 2010 $30 \Rightarrow 40$ stations

Assuming start of regular LOFAR observing in Sep 2010?


LOFAR needs a *Global Sky Model (GSM)* for the northern sky which

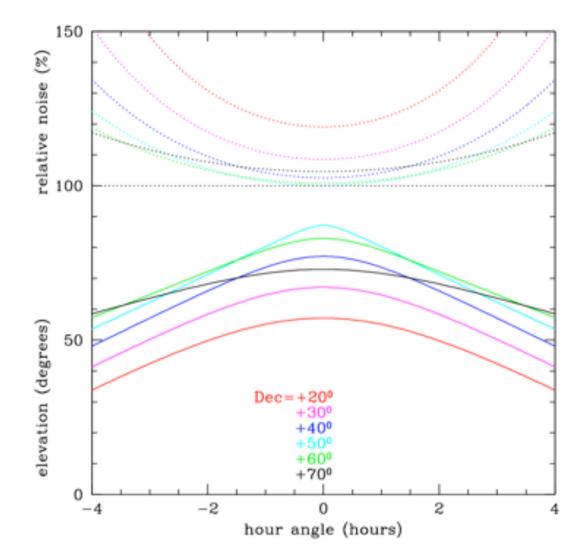
- has a proper flux scale
- has validated (initial) source parameters (spectrum, structure, ..)
- is astrometrically correct to better than 0.5"
- interfaces efficiently to calibration & imaging pipeline (through LSM)

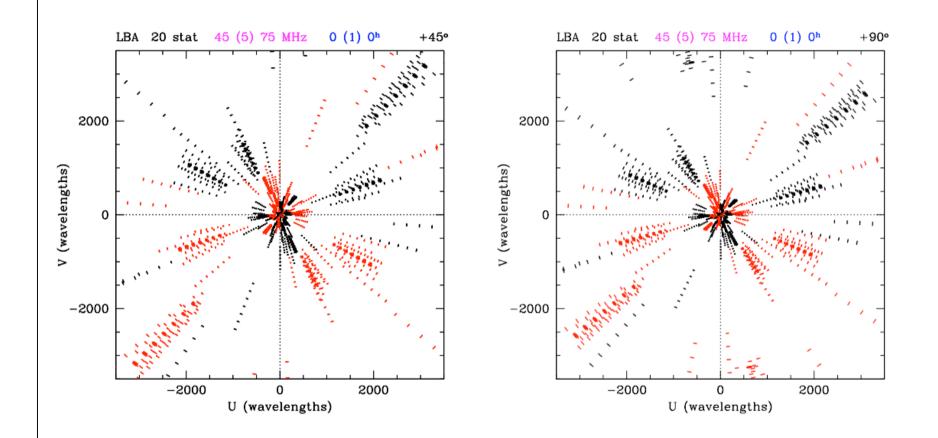

Moreover, carrying out MS³ will

— create a *joint focus for activities*

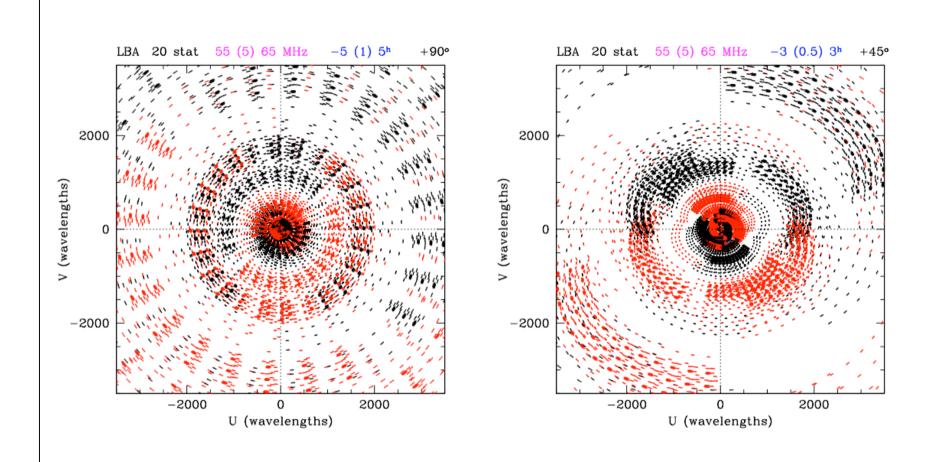
- integrates scheduling, monitoring, processing, calibration & imaging
- test all KSP-pipelines
- provides a field-test for storage and processing resource needs
- provide the conditions for a rehearsal of full LOFAR operations

MSSS configuration: 20 stations, Oct09

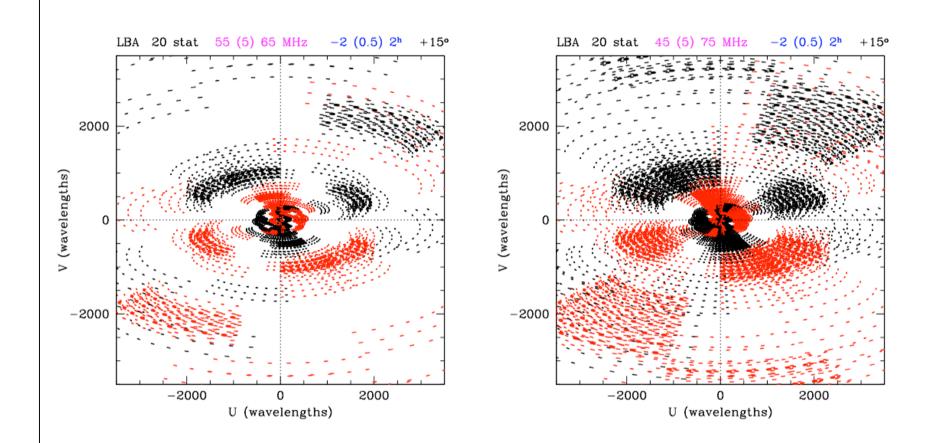

HA-range: uv-coverage vs projection

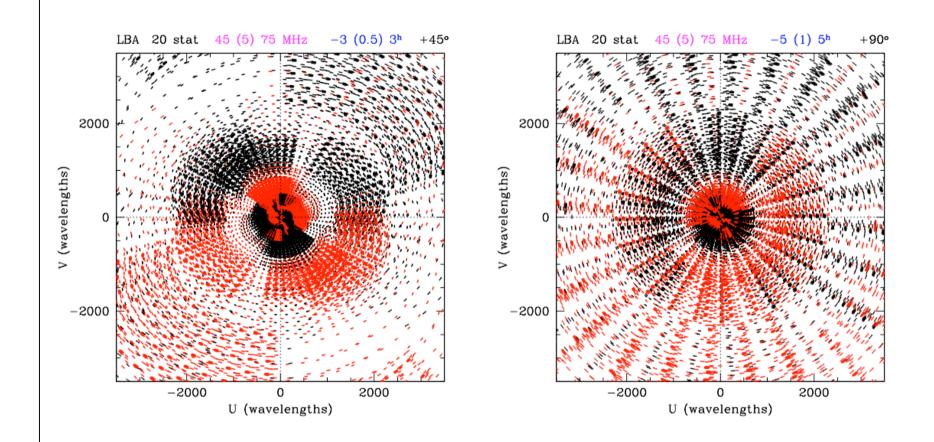

Ideallymany snapshots at widely range of hour angles, say -4h to 4h

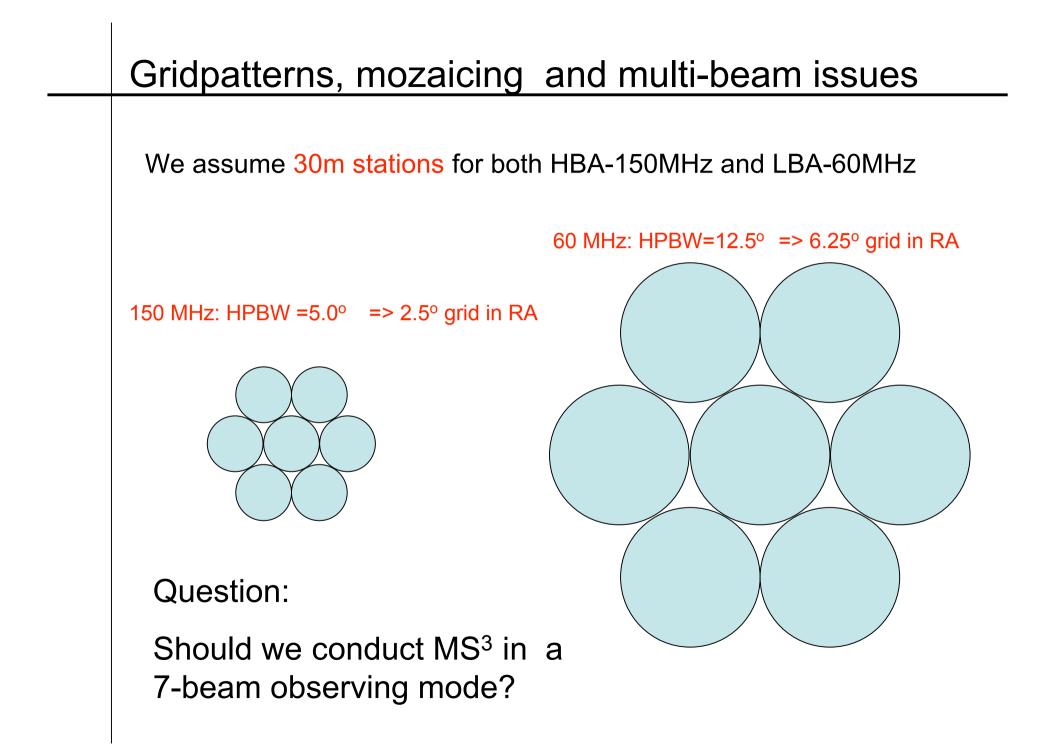
BUT


for Dec < +20° severe sensitivity penalty !

 \Rightarrow for low Dec probably aim for snapshots within -2h, +2h HA-range




snapshot (1 cut, 5m) + very broadband (30 MHz)


multiple cuts of 5m + broadband (10 MHz)

multiple cuts of 5m + broadband (10 MHz)

multiple cuts of 5m + very broadband (30 MHz)

How to do MS³ : an initial proposal

Observations:

- 20 NL stations (13+7) => multiple snapshots for decent uv-coverage
- limit to two (broad?) frequency ranges: 60 MHz & 150 MHz
- complete in < 3 months (30% efficiency) & 'real-time' processing
- 4 beams of ~10 MHz (+ CasA beam, ~1 MHz)

Products:

- 1 million sources, of which ~ 100,000 will be high S/N (i.e. ~ 5 / \Box°)
- spectral indices for the \sim 100,000 sources seen in both bands
- structural information: ~20 60" PSF (~VLSS/WENSS/NVSS)
- fully tested pipelines
- arcsecond images of ~ 4,000 (?) European-LOFAR calibrator sources
- lists of polarized calibration sources for ionospheric RM-monitoring

MSSS - some basic numbers (Nijboer, March09)

	60 MHz	150 MHz
Bandwidth	8 MHz	8 MHz
Observing time per FoV	36 times 5 minutes	12 times 5 minutes
FoV	106 deg^2	19.4 deg^2
FWHM	11.6 deg	4.97 deg
PSF resolution (10 km)	82.5 arcsec	33.0 arcsec
Correlator time resolution	1 s	
Correlator freq resolution	0.76 kHz	0.76 kHz
Uv data size	762 Gbyte	678 Gbyte
Post DP^3 time res.	5 s	5 s
Post DP^3 freq res.	21.3 kHz	42.6 kHz
Post DP [^] 3 uv data size	~ 4.76 Gbyte	~ 2.12 Gbyte
# channels per image cube	Tbd	Tbd
# pixels per image plane	2048 x 2048 ?	2048 x 2048 ?
Total image size	Tbd	Tbd

Table 1: Specifications per pointing / FoV

• 2048 squared plane ~ 16.8 MByte

MSSS - some basic numbers (Nijboer, March09)

L									
	Frequency	Area	Rms	BW	Sources /	Int. time	#	Tot. obs.	Tot.
	(MHz)	(sq. deg.)	(mJy)	(MHz)	FoV	(hrs)	pointings	(days)	sources
	60	20262	5.37	8	6062	3	609.1	19.0	1.18e+6
	150	20262	0.499	8	5768	1	3346	34.9	6.14e+6
1									

- # sources @ 5 σ thermal noise
 - Multiple freq. planes & 30 σ: few times1e+5
- Total obs. Time (100% eff.): 53.9 days or 7.7 weeks
- At 50% eff.: 15.4 weeks or 3.4 months
- Not taken into account:
 - Nyquist sampling yields another factor 1.5 in sensitivity
 - (or 2.25 in observing time)
 - Tapering of HBA stations for near sidelobe reduction

MSSS - some basic numbers (Nijboer, March09)

	60 MHz	150 MHz	
Total # fields (2 pi steradian)	609	3346	
Total observing time (100% eff., using 4 beams)	456.75 hr	836.5 hr	
Total # sources	Tbd	Tbd	
Total uv data size	466 Tbyte	2.27 Pbyte	
Total post DP^3 uv data size	~ 2.9 Tbyte	~ 7.1 Tbyte	
Total image data size	Tbd	Tbd	

Table 2: "All sky" specifications

• 1 freq. plane: 16.8 MByte x 3955 = 66.4 GByte

Assumptions/choices and their consequences

- ~ 3 months total in (say) Nov09 Jan10 \Rightarrow mostly nighttime Hence RA ~14h - 22h region will have to be done mostly in daytime !
- required uv-coverage and (relative) sensitivity are based on mnay cuts If efficiency $50\% \Rightarrow 9 \times 5m$ (HBA) and $36 \times 5m$ (LBA) Efficiency determines number of cuts. Will become clear after 1 month. Should we observe each field more than once (also yields variability data)
- 30m HBA and LBA stations in core ?
 Should we space-taper RS in NL to 30m ?
 ⇒ Nyquist grid of 2.5° (150 MHz) and 6° (60 MHz)
- Only one longish baseline (28 km) high sidelobes !
 ⇒ probably require imaging with strongly tapered array (~ 10km?)
- Room for some simulations !!

Preparing for MS³

Some important still largely undecided (?) issues, with significant consequences (there arec many many more!) :

- use of bandwidth synthesis in imaging: How wide can we go?
- number of calibration and deconvolution loops ?
- MSSS requirements on ionospheric modeling
- intrinsic polarization (RM-synthesis ?) in both HBA and LBA ?
- participation of European stations: 3 8 ? (see next talk)

```
European baselines : 800 km
```

```
=> 400 k\lambda at 150 MHz => 0.5" fringe
```

```
=> 160 k\lambda at 60 MHz => 1.25" fringe
```

During daytime compact sources with sightlines within ~ 45° from Sun will be affected by scintillation due to the Inter Planetary Medium (IPM). This causes amplitude fluctuations on timescales of seconds ! Only sources that contain structure <1" will scintillate

A program to identify IPS scintillating sources, with core or superstation data, would be an interesting TRANSIENT and SolarSystem KSP program during MS³. They could find out which compact sources are suitable for European scrutiny !