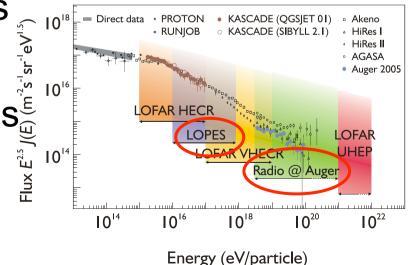


LOFAR Cosmic Ray Comissioning

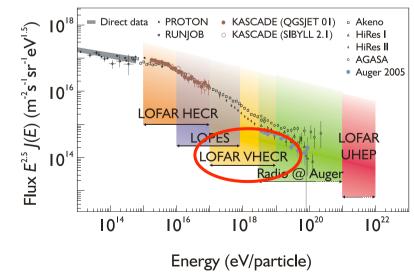
Andreas Horneffers view of the LOFAR-CR Effort


LOPES and Radio@Auger

- measure radio pulses from air showers together with an existing air shower experiment:
 - LOPES: together with KASCADE-Grande
 - Radio@Auger: with the Pierre-Auger-Observatory
- LOPES: experiment is running,

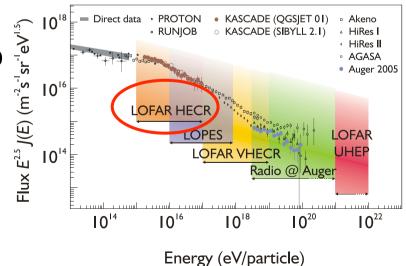
some data analysis remains

 Auger: mostly hardware development for autonomous antennas



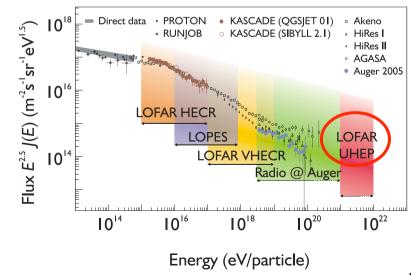
VHECR

- Very High Energy Cosmic Rays
- measure air showers in by triggering on single dipoles
 - frequency range: 10-88 MHz
 - triggering in several stages
- main goals:
 - study single air showers in great detail
 - measure the transition from galactic to extragalactic CRs



HECR

- High Energy Cosmic Rays
- measure air showers in by triggering beamformed data
 - frequency range: 10-88 MHz
 - triggering on station beams at CEP
- main goal:
 - extend measured spectrum to lower energies



UHEP

- Ultra High Energy Paricles
- observe radio flashes from the moon
 - frequency range: 115-190 MHz
 - form several tied-array beams on the moon and trigger on the beam-formed data stream
- main goal: observe for the first time particles > 10²¹ eV

OSASS

- One Second All Sky Survey
- General TBB-imaging
 - Includes imaging of lightning
- Search for transients on time-scales << 1 sec</p>
 - frequency-range: ? (same as surveys?)

Commissioning (aka ToDo-List)

- 1. Technical issues
- 2. Commissioning-data

Technical

Commissioning

- TBB read-out
- MAC/SAS integration
 - Control of TBBs
 - Trigger interface
- Metadata interface
- General TBB imaging
 - Imaging of large datasets
- VHECR trigger
 - TBB trigger
 - LCU trigger-frame
 - CEP trigger-frame
- UHEP/HECR trigger
 - CEP-latency (TBB buffer size!!!)
 - Moon tracking
 - Ionosphere de-dispersion
 - PPF inversion implementation

VHECR

- Figure out the correct parameters for the trigger
 - Survey of single-dipole pulse parameters
 - Piggy-backed(?) runs of ~1day with one channel
 - Iterative LCU trigger-algorithm development
 - Piggy-backed(?) runs of ~1day with the superterp
 - Run together with the particle array
- Correct parameters for the offline pipeline
 - Tune the reconstruction algorithm
 - Parameters for event-selection
 - Piggy-backed runs
- UHEP
 - Study noise level and effect of PPF/PPF-inversion
 - Iterative trigger-algorithm development
 - "short measurements" (~15min)

Triggering

- for VHECR mode
 - 1. TBB stage
 - essentially done, need final testing
 - 2. LCU stage
 - first version done, needs testing and refinement
 - 3. CEP stage
- for UHEP/HECR mode
 - 1. de-dispersion (only UHEP)
 - hope we can borrow this from other KSPs
 - 2. PPF inversion
 - algorithm defined, needs implementation on Blue Gene
 - 3. peak finding
 - 4. UHEP peak evaluation
 - 5. HECR peak evaluation
- Particle array
 - general design and layout planned
 - need to build and test detectors

LOFAR CR-KSP Tasks

- tasks are grouped into four tasks:
- 1. Triggering
 - "Algorithms to decide when to dump the TBB data"
- 2. Software
 - implement analysis software
 - batch and interactive mode
 - have to write basically everything on our own
- 3. Simulations
 - lots of work done by loosely associated people
- 4. Data analysis