Introduction

Setting the Scene

Ionosphere

• Appleton 1924:

- existence of reflecting layer (long wavelengths) in atmosphere (~125 km)
- ionized
- shorter wavelengths reflected @ 300-400 km
 - ionospheric structure, density changes with altitude
- height of layer changes during sunset/sunrise
- ionization due to solar radiation
- recombination @ night
- ionized layer in atmosphere
- structures varying in space and time
- 3D: ranging from 90 km 1000 km

M.Mevius Ionospheric Effects

Methods to characterize the ionosphere

- dispersive phase delay
 - LOFAR
 - GPS
 - IONEX files
- absorption
 - riometer
- reflection
 - ionosondes
- scintillation

Goals of this meeting

- Define common factors between methods/goals of the different communities
- What can we learn from each other
- Where can we contribute to each others data/goals
- Define working groups to further expand on the ideas of this meeting
 - practical

Examples

- RMextract: Use GPS data (+ magnetic field models) to precorrect polarized data of a LOFAR observation.
 - Time variation of RM "washes" out the signal:
 - Can we improve on the time and spatial resolution of IONEX data (generally 1-2 hr)?
 - Absolute RM for physics:
 - How accurate is the absolute TEC of IONEX? What is the bias?
- Accurate absolute/differential TEC for other projects:
 - cosmic rays from the moon
 - real time absolute TEC for triggering

Diagnostics

- Can we define a method to characterize the ionospheric quality, before, during or after an observation?
 - advantages:
 - Stop observing during bad scintillation
 - Do not attempt to calibrate the data
 - a deep calibration might take weeks or more
 - Save manpower, compute power, data storage
 - Needs information about small scale structures
 - e.g. Structure function from differential GPS

Calibration

- Can we define a method to simplify the calibration?
 - providing an initial model to start self calibration
 - advantage:
 - save computing time
 - improves calibration low source count/low S/N
 - time/bandwidth averaging
 - phase screen modeling:
 - combine calibration phases with GPS TEC data?
 - VLBI (very long baselines):
 - initial correction of differential TEC on >100 km scales

Examples using LOFAR data

- Can LOFAR data be used to improve ionospheric monitoring?
- LOFAR can contribute very accurate 1st and 2nd order differential corrections
- small spatial scales
- short times scales
- scintillation
- measure speed and altitude

Final point: We need a Astron/Jive daily image from this meeting!!

Enjoy your meeting!