Getting Ionospheric Information from LOFAR Data

M. Mevius

outline

- LOFAR data \rightarrow ionospheric information
 - calibration data:
 - phases \rightarrow diffractive delay
 - (differential) Faraday Rotation
 - structure function
 - diffractive scale
 - image analysis:
 - position shifts of sources \rightarrow phase gradient over array in different directions

Using Calibration data

- Full Jones solution in direction of bright calibrator
- main effects:
 - delay error: clock ~ ν
 - ionospheric delay: dTEC $\,\sim\,1/\nu$
 - Differential Faraday rotation: rotation angle α~ 1/ν²
 decompose full Jones solution matrix (per subband)

$$\left(\begin{array}{cc}G_{xx} & G_{xy}\\G_{yx} & G_{yy}\end{array}\right) = \left(\begin{array}{cc}\cos(\alpha) & \sin(\alpha)\\-\sin(\alpha) & \cos(\alpha)\end{array}\right) \cdot \left(\begin{array}{cc}G_{xx} & 0\\0 & G_{yy}\end{array}\right)$$

dTEC from calibration phases

$$\left(\begin{array}{cc} G_{xx} & 0\\ 0 & G_{yy} \end{array}\right) = \left(\begin{array}{cc} A_{xx}e^{i\phi_{yy}} & 0\\ 0 & A_{yy}e^{i\phi_{yy}} \end{array}\right)$$

 separate clock from TEC phases making use of wide bandwidth

 $\begin{aligned} d\phi &= 2\pi \cdot clock \cdot \nu - 8.45 \cdot dTEC/\nu \ rad \\ &+ 2^{\rm nd} \ {\rm order \ effects} \\ + \ {\rm 3^{rd} \ order \ TEC \ (1/\nu^{3,} \ LBA)} \end{aligned}$

 ν in GHz, clock in ns, dTEC in TECU

independently fit each timeslot example: 10s data, HBA, 3C196

TEC solutions versus time, HBA all stations

TEC solutions versus time, HBA all stations

Spatial fluctuations:

 $D_{\phi}(||r_1-r_2||) = \langle (\phi_1 - \phi_2)^2 \rangle$

Kolmogorov turbulence, thin layer approximation:

$$D_{\varphi}(\mathbf{r}) = (\mathbf{r} / s_0)^{\beta}$$

$$\beta = 5/3,$$

$$s_0: \text{ diffractive scale,}$$

$$D_{\varphi}(s_0) = 1 \text{ rad}^2$$

Measure structure function by calculating variance of dTEC vs. time for all baselines

variance removes mean \rightarrow filters global scale

baseline length (km) M.Mevius Ionospheric Effects

Spatial fluctuations:

 $D_{\phi}(||r_1-r_2||) = \langle (\phi_1 - \phi_2)^2 \rangle$

Kolmogorov turbulence, thin layer approximation:

> $D_{\varphi}(\mathbf{r}) = (\mathbf{r} / s_0)^{\beta}$ $\beta = 5/3,$ $s_0: \text{ diffractive scale,}$ $D_{\varphi}(s_0) = 1 \text{ rad}^2$

power law over long range of distances ~ 80 km Measure structure function by calculating variance of dTEC vs. time for all baselines

variance removes mean \rightarrow filters global scale

Mevius Ionospheric Effects

Spatial fluctuations:

 $D_{\phi}(||r_1 - r_2||) = \langle (\phi_1 - \phi_2)^2 \rangle$

Kolmogorov turbulence, thin layer approximation:

> $D_{\omega}(\mathbf{r}) = (\mathbf{r} / s_{0})^{\beta}$ $\beta = 5/3,$ s_o: diffractive scale, $D_{0}(s_{0}) = 1 \text{ rad}^{2}$

Measure structure function by calculating variance of dTEC vs. time for all baselines

variance removes mean \rightarrow filters global scale

Spatial fluctuations:

 $D_{\phi}(||r_1-r_2||) = \langle (\phi_1 - \phi_2)^2 \rangle$

Kolmogorov turbulence, thin layer approximation:

> $D_{\varphi}(\mathbf{r}) = (\mathbf{r} / s_0)^{\beta}$ $\beta = 5/3,$ $s_0: \text{ diffractive scale,}$ $D_{\varphi}(s_0) = 1 \text{ rad}^2$

bandlike structure: diffractive scale depends on baseline orientation Measure structure function by calculating variance of dTEC vs. time for all baselines

variance removes mean \rightarrow filters global scale

Mevius Ionospheric Effects

Analyzed 29 nighttime winter observations (2013/2013)

Typical nighttime S₀ values @150 MHz: 2-40 km

scintillation conditions S₀<2km

Rotation of the signal from XX,YY to XY,YX due to different Faraday rotation angles for different antennas

- HBA: small rotation most of the time
 - sometimes ("wild" ionosphere) visible in RAW uv data
- LBA: significant effect

fit RM (α~RM/ν²) for every timeslot 10s, HBA, 3C196 12

Differential Faraday rotation provides clean independent measure of ionospheric fluctuations (ignoring differential B)

In principle possible to extract absolute TEC via:

$$\Delta RM_{ij} \sim TEC_i \cdot B_{||i} - TEC_j \cdot B_{||j}$$
$$= (TEC_i - TEC_j) \cdot B_{||j} + TEC_i \cdot (B_{||i} - B_{||j})$$

In practice large uncertainty on $\Delta B_{||}$

Differential Faraday rotation provides clean independent measure of ionospheric fluctuations (ignoring differential B)

In principle possible to extract absolute TEC via:

$$\Delta RM_{ij} \sim TEC_i \cdot B_{||i} - TEC_j \cdot B_{||j}$$

$$= \underbrace{(TEC_i - TEC_j)}_{B||j} B_{||j} + TEC_i \cdot (B_{||i} - B_{||j})$$
In practice large uncertainty on $\Delta B_{||}$
from calibration phases

Differential Faraday rotation provides clean independent measure of ionospheric fluctuations (ignoring differential B)

In principle possible to extract absolute TEC via:

$$\Delta RM_{ij} \sim TEC_i \cdot B_{||i} - TEC_j \cdot B_{||j}$$
$$= (TEC_i - TEC_j) \cdot B_{||j} + TEC_i \cdot (B_{||i} - B_{||j})$$

In practice large uncertainty on $\Delta B_{||}$

from models (WMM) ¹⁶

TEC using polarized source

Pulsar (blue) and GPS + IGRF(red) RM variation

use polarized source to determine ionospheric RM

Sotomayor-Beltran et al (2013)

Calibrating high-precison Faraday rotation measurements for LOFAR and the next generation of lowfrequency radio telescopes

Brentjens et al (in preparation)

Field Aligned Structure

bandlike structure \rightarrow orientation of the baseline

Earth magnetic field aligned?

projected field lines along LOS single ionospheric height

perspective view → time dependent orientation bin data in according to angle wrst projected field lines field aligned structure observed in ~ 50 % of the observations

Earth magnetic field : WMM

Imaging Structures

ionosphere: linear gradient \rightarrow position shift

higher order term \rightarrow distorted source use only short baselines: CS only

 $\Delta \theta = C/\nu^2 \nabla \bot \mathsf{TEC}$

I. correct all with calibration gains of central field

subtract 3C196 from central field

II. image corrected data (wsclean) → extract sources for reference (pybdsm)

III. remove TEC-phases from calibration gains, correct all

wsclean: combine SBs to create 3 images with different frequency ~ 4 SB each, due to missing files

1 minute snapshot image SAP004 L86767

Summary

- methods to gather info on ionosphere:
 - calibration parameters:
 - dTEC
 - dRM
 - 3rd order effects
 - structure functions:
 - diffractive scale measure of "wildness" of ionosphere
 - image analysis:
 - source positions \rightarrow instantaneous image of small scale TEC gradients
 - absolute TEC:
 - using Faraday rotation of polarised source
 - using differential Faraday rotation/dTEC and B-field

Extra

Clock/TEC separation Start from selfcal phases over wide frequency range. Fit for A(clock) and B(TEC) in:

$$\Delta\phi(\mathbf{v}) = A \cdot 2\pi\mathbf{v} + B \cdot 8.4479745 \cdot 10^9 / \mathbf{v}$$

Complication 2π ambiguities:

if ϕ is a solution so is $\phi + 2\pi$

corresponds to fixed offset in clock and TEC

Clock/TEC separation Start from selfcal phases over wide frequency range.

Fit for ,

Clock/TEC separation Start from selfcal phases over wide frequency range.

Correct remaining wraps by inspecting residuals/spatial M.Mevius Ionospheric Effects