Lecture: GLOW radio interferometry school.

19 November 2008, Max Planck-Institut fuer Astrophysik, Garching
Time-line of Low Frequency Radio Astronomy

1931-1935 **Jansky**. Birth of radio astronomy, CMB was discovered at (ν ~ 15-30 MHz)
1935-1940 **Reber** discovered the non thermal emission (ν ~ 150 MHz)
1942 **Hey** discovered the Solar radio emission
1946 **First 2 element interferometer was built by Ryle**
1955 **Kraus** et al. made the first all sky survey (ν ~ 80 MHz)
1955 **Burke** et al. discovered the first planetary radio emission (ν ~ 10-100 MHz)
1958 – 88 **Erickson** built the **Clarke Lake TPT** (ν ~ 100-1400 MHz)
1962-1963 **Bennet** completed the 3C catalog (ν ~ 160 MHz)
1963 **Hazard Schmidt Sandage** discovered the first quasar (ν ~ 178 MHz)
1967 **First VLBI fringes** (ν ~ 20-1400 MHz)
1968 **Bell** discovered the first pulsar (ν ~ 81 MHz)
1980 **Dedication of the VLA**
1990 **Implementation of the 74 MHz system at the VLA**
2000’s LOFAR & LWA & MWA
Key science unique to low frequencies:

- Synchrotron
- Synchrotron self absorption or free-free absorption
- Thermal: Rayleigh-Jeans
Key science unique to low frequencies:

- Ionospheric studies
- Solar Burst studies
- Interstellar Medium (CR, HII regions, SNR, pulsars)
- Galaxy Evolution (distant starburst galaxies)
- Transient searches (including extrasolar planets)
- Early Structure Formation (high z RG)
- Large Scale Structure evolution (diffuse emission)
- Wide Field (up to all-sky) mapping
- Large surveys
- Epoch of Reionization (highly redshifted 21 cm lines)
- Serendipity (exploration of the unknown)
STANDARD interferometry observations, @ ν>1 GHz

Correlate signals coming from two or more antennas

\[V(u,v) \xrightarrow{FT} I(\alpha,\delta) \]

Complex function Amplitude & Phase

The PHASE give the position of the source on the sky at each time.

How we correct phase error?
Typical observation at 1.4 GHz: BW 50 MHZ
Amplitude calibrator ~5 min
Phase calibrator~3 min
Source~20 min
Phase calibrator~3 min
Source~20 min
Phase calibrator~3 min
Source~20 min
Amplitude calibrator ~5 min

Additional effects..
Primary beam attenuation → the answer of the interferometer is modulated with respect to the answer of a single antenna: attenuation of the signal in the edges

Bandwidth smearing → observations are affected by the chromatic aberration caused by the bandwidth: sources at the edges show a radial distortion.
Low frequency interferometry

First observations with the Very Large Array

- 327 MHz → λ=90 cm → 1990 → 6" res. FOV 2.5°
- 74 MHz → λ=4 m → 1998 → 20" res. FOV 11°

First to “break the ionospheric barrier”

First to obtain resolutions < 1’ below 100 MHz

Why only now?......
In practice...

- Phase coherence through ionosphere
- Large Fields of View
- Bandwidth smearing
- Radio Frequency Interferences
- Finite Isoplanatic Patch Problem
Ionosphere

\[n_r \propto \sqrt{1 - n_e \omega^2} \propto \sqrt{1 - \left(\frac{\nu_p}{\nu} \right)^2} \]

\(n_e \) depends on:
latitude, day-time, season etc

Ionospheric barrier

\(\nu_p \approx 10 \text{ MHz} \)

Loss of
phase coherence

Low angular
resolution
Wedge Effects: Faraday rotation, refraction, absorption below ~ 5 MHz (atmospheric cutoff)

Wave and Turbulence Effects: Rapid phase winding, differential refraction, source distortion, scintillations

The wedge introduces thousands of turns of phase at 74 MHz

Interferometers are particularly sensitive to difference in phase (wave/turbulence component)
• Both global and differential refraction seen.

• Time scales of 1 min. or less.
 Different approach for calibration…??

• Equivalent length scales
 In the ionosphere of 10 km or less.
Wide Field of View

- Primary Beam (PB)
 - \(45'/\nu_{GHz}\)
 - 74MHz \(\sim 2.5^\circ\)
 - 327 MHz \(\sim 11^\circ\)

Problems . . .

- Non-complanar baseline
- V(u,v,w) 3D Fourier transform 3D
 - Important if FOV is large compared to resolution
 - Essential for all observations below 1 GHz and for high resolution, high dynamic range even at 1.4 GHz
 - Requires lots of computing power and disk space

- Bandwidth smearing
- not negligible effects at low frequency with wide FOV

HOW THESE HAVE BEEN OVERCOME?
Multi-facet images

- enormous processing required to image entire FOV
- reduce processing by targeting facets on selected sources (still large number!)
- overlap a fly’s eye of the central region and add individual outliers

Example: VLA B array 74 MHz:
- ~325 facets
- A array requires 10X more:
 - ~ 3000 facets
 - ~108 pixels

FT → Cellsize=12"; imsize=1700 pixels
Bandwidth Smearing

- Averaging visibilities over finite BW results in chromatic aberration worsens with distance from the phase center -> radial smearing

\[(\Delta v/v_o) \times (\theta_o/\theta_{\text{synth}}) \sim 2 \Rightarrow I_o/I = 0.5 \Rightarrow \text{worse at higher resolutions}\]

<table>
<thead>
<tr>
<th>Freq. (MHz)</th>
<th>BW (MHz)</th>
<th>A-config. (\theta_{\text{synth}}) ((^{\circ}))</th>
<th>Radius of PB_{\text{FWHM}} ((^{\circ}))</th>
<th>(\theta_{\text{MAX}}) ((^{\circ})) for 50% degradation</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>1.5</td>
<td>25</td>
<td>350</td>
<td>41</td>
</tr>
<tr>
<td>330</td>
<td>6.0</td>
<td>6</td>
<td>75</td>
<td>11</td>
</tr>
<tr>
<td>1420</td>
<td>50</td>
<td>1.4</td>
<td>15</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Solution: spectral line mode (already essential for RFI excision)
Radio Frequency Interferences (RFI):

As at cm wavelengths, natural and man-generated RFI are a nuisance
– Getting “better” at low freq., relative BW for commercial use is low

VLA
74 MHz → origin in VLA (comb predictable), some are external.
327 MHz → externally generated (completely random)
Can be wideband (C & D configurations), mostly narrowband

Solar effects (non predictable): Sun bursts, geomagnetic storms, scintillations

IONOSPHERE: partially stable in daytime and night time
unstable at the sunrise and sunset

... Mitigated observing in `LINE MODE`

RFI can usually be edited out – tedious but “doable”
Radio Frequency Interferences (RFI)
For each baseline

Before After

Time

Frequency (CH)
RFI EXCISION

Approach: averaging data in time and/or frequency makes it easier to isolate RFI, which averages coherently, from Gaussian noise, which does not

● Once identified, the affected times/baselines can be flagged in the un-averaged dataset

● Where to start?
AIPS tasks: QUACK, SPFLG, TVFLG, UVPLT, UVFND, UVFLG, UVSUB, CLIP, FLGIT, FLAGR, RFI, ...
CASA tasks: plotxy, flagdata
Obit tasks: AutoFlag, MednFlag
● Stokes V can be helpful to identify interference signals
Wedge Effects: Faraday rotation, refraction, absorption below ~ 5 MHz (atmospheric cutoff)
Wave and Turbulence Effects: Rapid phase winding, differential refraction, source distortion, scintillations
Isoplanatic patch

DEF: The area where the wavefront remain plane.

- At low frequency, the wide FOV is characterized by several isoplanatic patches. The IONOSPHERE behave as a variable refractive medium.

- Effect is contained in small dimension telescopes.

- Estimated isoplanatic patch size at 74 MHz is ~ 4°, the FOV~12°.

- Needed a new technique of calibration:
 the phase calibrator must be in the same isoplanatic patch of the target source.

Analogy with the optical astronomy…
Isoplanatic patch
WIDE FIELD OF VIEW from PROBLEM to ADVANTAGE

...observing in continuous LINE MODE:
dividing the bandwidth in channels \[\rightarrow\] solve bandwidth smearing

Wide FOV + low frequency = huge n° of sources in the field

SELF CALIBRATION at 330 MHz

MODEL for the IONOSPHERE at 74 MHz
Self-calibration: 'Dealing' with the Ionosphere

- Self-calibration models ionosphere as a time-variable antenna-based phase: \(\phi_i(t) \)
- Loop consisting of imaging and self-calibration

Typical approach is to use a priori sky-based model such as NVSS, WENSS, or higher frequency source model (AIPS: SETFC, FACES, CALIB, IMAGR)

freezes out time variable refraction and ties positions to known sky-model

This method assumes a single ionospheric solution applies to entire FOV

- Problems remain with standard self-calibration:
 - often fails if target is not brightest source in FoV
 - also issues of differential refraction, image distortion, reduced sensitivity
 - Ultimate solution: selfcal solutions with angular dependence \(\phi_i(t) \rightarrow \phi_i(t, \alpha, \delta) \)
Field Based Calibration

• Zernike polynomial phase screen
 – Delivers astrometrically correct images
 – Takes snapshot images of bright sources to compare to NVSS positions
 – Fits phase delay screen rendered as a plane (3-D viewed from different angles)
 – Apply time varying phase delay screens while imaging
Field Based Calibration

Problems remain with field based calibration:

- Need high S/N, significant data loss under poor ionospheric conditions
- Total flux should be dominated by point sources
- Good for baselines < 12 km

New tools needed for next generation of instruments with BL > 200 km
Summary

“Line Mode” observations correction for the bandwidth
smearing mitigation for RFI

Wide FOV permits to create a model for the
ionosphere calibration & self-calibration

IN CONTINUOUS EVOLUTION

Data Reduction: AIPS
CALIBRATION: Amplitude, Phase, Bandpass
EDITING: task SPFLG, UVLFG, CLIP… ~ 10-30% flagged data
SPLAT

74 MHz
Wide Field Imaging
Ionospheric correction with
VLAFM (B. Cotton)
Self Calibration

327 MHz
Wide Field Imaging
(SETFC+IMAGR)
Self Calibration
Current Low Frequency Interferometers

Two Receivers:
330 MHz = 90cm
PB ~ 2.5° (FOV ~ 5° -- res ~ 6"
74 MHz = 400cm
PB ~ 12° (FOV ~ 14°-- res ~ 24"

Five Receivers:
153 MHz = 190cm
PB ~ 3.8° (res ~ 20"
235 MHz = 128cm
PB ~ 2.5° (res ~ 12"
325 MHz = 90cm
PB ~ 1.8° (res ~ 9"
610 MHz = 50cm
PB ~ 0.9° (res ~ 5"
Next Generation of Low Frequency Instruments

- Next generation low frequency telescopes will have no moving parts:
 - traditional interferometry uses delays to combine signals from different antennas
 - instantaneously limited to a single look-direction on the sky
 - dipole arrays are sensitive to the entire sky
 - different delays allow systems to simultaneously beam form in multiple different directions
LOw Frequency Array (LOFAR)

- Under construction in the NL
 + DE..EU..

- Two frequency bands:
 - low band -- 30-80 MHz
 - high band -- 120-240 MHz

- Baselines to 100 km with European expansion to 1000 km

- Science Drivers:
 - Epoch of Reionization
 - Extragalactic Surveys
 - Transients and Pulsars
 - Cosmic Rays
Long Wavelength Array (LWA)

- Under construction in New Mexico:
- Frequency range: 20-80 MHz, BL < 400 km
- Science Drivers:
 - Cosmic Evolution & The High Redshift Universe
 - pre-reionization – Dark Ages
 - 1st super-massive black holes
 - LSS - Dark Matter & Dark Energy
 - Acceleration of Relativistic Particles in:
 - SNRs in normal galaxies up to 10^{15} eV
 - Radio galaxies & clusters up to 10^{19} eV
 - Ultra high energy cosmic rays up to 10^{21} eV?
 - Plasma Astrophysics & Space Science
 - Ionospheric waves & turbulence
 - Solar, Planetary, & Space Weather Science
 - Acceleration, Turbulence, & Propagation
 - Exploration Science
 - Maximizes the opportunity for Discovery
Science through flexibility
Murchison Widefield Array (MWA)

• Under construction in W. Australia:

• Frequency range: 80-300 MHz, BL < 3 km (most < 1.5 km)

• Science Drivers:
- Epoch of Reionization
- Solar, Heliosphere and Ionosphere
References:

White Book: Synthesis imaging in radio astronomy

From Clark Lake to the Long Wavelength Array: Bill Erickson’s Radio Science, ASP Conference Series 345

Tracy Clarke Talk: Low Frequency Interferometry, Eleventh Synthesis Imaging Workshop Socorro, June 10-17, 2008