TEC and scintillation modeling

Marcin Grzesiak

Terminator

Fig. 3. Filtered TEC series $\boldsymbol{d I}(\boldsymbol{t})$ for PRN 10 and for all GPS sites \boldsymbol{S}_{i} in dependence on the latitude ϕ and the morning terminator local time $d T$.

Afraimovich, E. L., Edemskiy, I. K., Voeykov, S. V., Vasyukevich, Yu. V., Zhivetiev, I. V., The first GPS-TEC imaging of space structure of MS wave packets excited by the solar terminator, Ann. Geophys., 27, 1521-1525, 2009

$$
C(\boldsymbol{\xi})=\int d \mathbf{k} P(\mathbf{k}) e^{i \boldsymbol{\xi} \cdot \mathbf{k}}
$$

$49.68^{\circ} \mathrm{N}, 19.20^{\circ} \mathrm{E}$

$$
g_{k l}=\frac{1}{\operatorname{var}(f)}\left\langle\frac{\partial f}{\partial x_{k}} \frac{\partial f}{\partial x_{l}}\right\rangle=\frac{\int d \mathbf{k} k_{k} k_{l} P(\mathbf{k})}{\int d \mathbf{k} P(\mathbf{k})}
$$

100 km

Grzesiak, M., A. Swiatek, Solar terminator-related ionosphere derived from GPS TEC measurements, Acta Geophysica, August 2012, Volume 60, Issue 4, pp 1224-1235

Structure reconstruction (2D case)

2D test field with satellites traces imposed

An example of a scalar field not satisfying model
assumptions
(there is no "typical" structure here)
and the result of basic analysis.

100 m

Modeling evolution - dispersion analysis

Simulations - example

$$
\begin{array}{r}
C\left(\boldsymbol{\zeta}+v_{d} \tau\right)=\int d k k \int d \alpha \delta\left(k-k_{0}\right) \exp \left(i k\left(\zeta \cos (\alpha+\beta)-v_{d} \tau \cos \alpha\right)\right)= \\
k_{0} \int d \alpha \exp \left(i k_{0}\left(\zeta \cos (\alpha+\beta)-v_{d} \tau \cos \alpha\right)\right)=2 \pi k_{0} J_{0}\left(k_{0} \sqrt{\zeta^{2}+v_{d}^{2} \tau^{2}-2 \zeta v_{d} \tau \cos \beta}\right)
\end{array}
$$

Dependence on separation

$$
\begin{gathered}
\frac{d}{\Delta \tilde{\imath} \cos \beta} \\
P(\vec{\zeta}, \omega)=\int d \tilde{\tau} c\left(\vec{\zeta}+\overrightarrow{v_{d}} \tilde{\tau}\right) e^{-i \omega \overline{2}} \\
v_{d}=1, k_{0}=1 \longrightarrow \frac{\partial \Delta \phi}{\partial \omega}=\frac{\omega \sin \beta}{\sqrt{1-\omega^{2}}+\cos \beta} \\
d_{1}<d_{2}<d_{3}
\end{gathered}
$$

Drift dispersion

5-6.04.2010 magnetic storm

Spatio-temporal analysis

Taylor hypothesis imply that spatio-temporal correlation function "drifts" in delay coordinates, which means that there is a "singular" (with zero eigenvalue of the hessian) direction.

$$
\begin{array}{r}
\mathbf{r} \rightarrow \mathbf{r}-\mathbf{v} t, C(\boldsymbol{\zeta}) \rightarrow C(\boldsymbol{\zeta}-\mathbf{v} \tau), \tau=t_{1}-t_{2} \\
\frac{\partial C}{\partial \tau}+\mathbf{v} \cdot \nabla C=0
\end{array}
$$

Drifting of spatio-temporal autocorrelation function (1D + time)

Space-time triangulation (2D + time)

Validation of Taylor hypothesis for Cluster data - one of the Eigenvalues of spatio-temporal covariance matrix is very small (figure in y-log scale.

Experimental TEC/scintillation modeling (climatology)

Scintillation

Characteristic (e.g. S4)

$$
\text { /TEC }=F(M L A T, M L T, K p, \ldots)
$$

Where F is a suitable function.
Its choice depends on experiment - a set of observations taken for "many" n-tuples (MLATs, MLTs, Kps,...)
An example: Low-latitude model (Aarons et al., 1985,

$$
S I(d B)=2^{(q+r)}
$$

$$
\begin{aligned}
& q=F A+F B+(-1.5 F A+0.8 F B) \cdot \cos [(\pi / 12)(H-0.2-0.25 \mathrm{Kp} \\
& r=F C\{\cos [(\pi / 6)(H+3.3)]-0.4 \cos [(\pi / 4)(H+1.5)]\} \\
& F A=(-2.7-0.3 F D)(S / 100) \\
& F B=0.2+F D+(0.1-0.1 F D) K p \\
& F C=(1.6+0.7 F D)(S / 100)+0.1 \mathrm{Kp} \\
& F D=\cos (2 \pi / 365)(D+1.3)-0.6 \cos (4 \pi / 365)(D-4)
\end{aligned}
$$

Upper plot: Scintillation index for 3 days of the year, with solar flux of 100 and $\mathrm{Kp}=2$. Lower plot: Mean scintillation index for February15 with 10-cm solar flux of 50, 100, and 150 units; Kp=2 (after Aarons, 1985).
and D is the day number, H is the local time in hours, S - solar flux at $10 \mathrm{~cm}, \mathrm{Kp}$ - planetary magnetic index. All angles are in radians.

Aarons, J., E. MacKenzie, and K. Bhavnani, High-latitude analytical formulas for scintillation levels, Radio Sci., 15, 115-127, 1980.

TEC models based on IRI

The choice: F interpolating polynomial

An example: Indian model (Iyer et al. 2006)

$$
S O(t, d, F, \theta)=\sum \sum \sum \sum a_{i, j, k, l} N_{i, 4}(t) N_{j, 2}(d) N_{k, 2}(F) N_{l, 2}(\theta)
$$

The scintillation occurrence SO dependence on local time t, day of the year d, solar flux F, and latitude θ is expressed as a simultaneous product of univariate normalized cubic-B splines

Scintillation occurrence over Trivandrum for solar minimum (upper panels) and maximum (lower panels) (after lyer et al., 2006).

Deterministic approach

K_{t}
\downarrow

geographic longitude [deg]

$$
\frac{\partial}{\partial t} \int_{\Delta_{k}} d V f=-\int_{\partial \Delta_{k}} d \mathbf{s} \cdot\left(f \mathbf{v}_{k}\right)
$$

Finite volume formulation, identification of parameters (TEC)

SVD spectrum 1.11.2011

Figure 7: Spectrum of the SVD singular values (from 1 to 112) plotted in decreasing magnitude.

$$
\begin{aligned}
& \mathbf{M v}=\mathbf{d} \mathbf{f} \\
& \mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*} \\
& \mathbf{v}=\mathbf{V} \boldsymbol{\Sigma}^{+} \mathbf{U}^{*} \mathbf{d f}
\end{aligned}
$$

Figure 8: Reconstructed velocity field; the green arrow shows velocity vector with magnitude of 100 m / s

Scintillation parameters prediction

$$
\frac{\partial}{\partial t} \int_{\Delta_{k}} d V f=-\int_{\partial \Delta_{k}} d \mathbf{s} \cdot\left(f \mathbf{v}_{k}\right)
$$

$$
\frac{\partial}{\partial t} \int_{\Delta_{k}} d V f=-\int_{\partial \Delta_{k}} d \mathbf{s} \cdot\left(f \mathbf{v}_{k}\right)+\int_{\Delta_{k}} d V \pi_{k},
$$

SVD spectrum 1.11.2011 for S4 prognosis with source term

Tests

